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Preface

This book contains the papers of lectures presented at the XII Finnish Mechanics Days
conference held at the Tampere Congress & Culture Centre Puistotorni on 4-5 June
2015 and hosted by Tampere University of Technology.

The first Mechanics Days were held in Oulu 33 years ago in 1982. The conference
has been organized every three years since then. The objective of this conference is to
stimulate and promote research and applications within the area of solid mechanics,
fluid mechanics and mathematical problems related to mechanics. The conference
provides a forum for researchers, designers, teachers and other professionals to network,
discuss and share ideas and information.

Sincere thanks go to all of the authors and participants for making the XII Finnish
mechanics days a stimulating conference. This conference book contains 59 papers,
including papers of four plenary speakers invited: Professor Anders Eriksson, KTH,
Sweden, Professor Gordan Jenenic, University of Rijeka, Croatia, Professor Ignacio
Romero, Universidad Politecnica de Madrid, Spain and Professor Tarmo Soomere,
Tallinn University of Technology, Estonia. Finally, we thank all the sponsors: A-
Insindorit, EDR&Medeso, ETI Products, Federation of Finnish Learned Societies,
FEMdata, Finnish Association of Civil Engineers RIL, Pressus Oy, Rambgll Finland Oy
and Vertex Systems, whose support was indispensable for the organisation of this
conference.

Just before finalizing this book we received a message of the untimely death of
Professor Emeritus Juhani Koski. We remember Juhani as a kind and helpful colleague
and friend and we will dedicate this book to his memory.

Tampere, May 2015

Editors



Juhani Koski in memoriam

17.2.1947 - 14.5.2015
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(All kinds of) instabilities in structural membranes

Anders Eriksson

KTH Mechanics, Osquars backe 18, SE-10044 Stockholm, Sweden, anderi@kth.se

Summary. Many classes of optimized structures can exhibit instability phenomena, related to large
displacements, material effects, loading or contact conditions. Numerical treatment of these structures
needs sophisticated simulation algorithms for the evaluation and interpretation of instabilities. The
contribution will discuss methods for such simulations, in a general FEM-based context. The presentation
will use as main example the response of thin closed membranes to applied pressure loads, from gas or
fluid. The special aspects of displacement-dependent loading on a flexible structure will be discussed,
as will their consequences for stability conclusions. Main results will be formulated on how the stability
conclusions depend on what is considered as the control variable for the load, where, for instance, gas
pressure or injected gas amount will give different conclusions for balloon-like structures. Aspects will be
given on the direct and indirect stability effects from wrinkling in the thin membrane material, and how
these effects can be described in the simulations.

Key words: Instability; large deflections; pressure load; simulations; parameter dependence; wrinkling.

Introduction

Many classes of optimized structures are prone to exhibit instability phenomena, related to large
displacements, material effects, loading or contact conditions. General aspects of, primarily,
geometric instabilities are discussed in classical works like [22], but also often in the context of
finite element simulations.

The presentation examplifies the problem class by discussing very thin membranes, loaded
by internal over-pressures, from gas or fluid. A large variety of thin three-dimensional inflat-
able structures are used in several engineering and medical contexts, [10, 11, 14], representing
significantly different length scales. These situations are both geometrically non-linear due to
finite deformations and materially non-linear through the constitutive relationship. Analytical
results can be obtained for several simple geometries, [13, 20]. Numerical treatment of more or
less general situations are also available in literature, [1, 2]. The main conclusions below are,
however, also valid for other classes of optimized structures.

Basic formulation

Numerical treatment of instability affected structures, in a general FEM-based context, needs
sophisticated simulation algorithms for the evaluation and interpretation of results obtained.
First, a reliable finite element formulation is needed, which is not overly sensitive to, e.g., the
scaling of the problem. For thin membranes, shell models have been shown to be less reliable,
due to large rotations, the aspect ratios of the elements, and the stiffness differences in membrane
and bending action. Rotation-free shell elements suggested by many researchers are described
and compared in [8]. In the present work, simulations of the loading process have been based
purely on the membrane behavior. The mechanical model is thereby one of local plane stress
conditions, but in a 3-dimensional setting. When discretizing a structural model, triangular
elements with linear kinematic assumptions are used, disregarding the bending stiffness, [6].



It is further assumed that hyper-elastic material models can be used for the formulation of
the internal energy during large strain situations. Several formulations are available, each with
a number of free parameters for accurate description of a particular material. The relations be-
tween constitutive parameters in a material model significantly affects the response of simulated
membranes, [6, 15]. The material can show an instability at certain stress states, [9, and many
others]. A recent study discussed the stability of hyper-elastic material models in a situation
of bi-axial stresses, [7], showing that a two-parameter Mooney-Rivlin model [12, 19] can give
non-intuitive instabilities for certain bi-axial membrane states.

The kinematic assumptions and the material model are used to formulate the structural
internal forces

f=Ff(u) (1)

with u the global structural displacement components. Similar expressions give the the tangent
stiffness matrix.

Pressure loading

The loading on a pressurized membrane comes from one-sided gas or fluid over-pressures, with
significant differences in their formulations. Where an over-pressure from gas 1 is uniform over
all elements, giving the structural external force vector p = p(u, ), a hydro-static pressure is
linearly varying over a subset of elements. Assuming gravity in the global negative z direction,
the pressure on an element surface is described by ©¥(z) = pg(zauq — 2) for z < zgug, with p
the fluid density, g the gravitational acceleration, and zguq the fluid surface level. Consistent
nodal loads representing the discontinuous linear pressure variation give a vector of external
forces p = p(u, zauiq). In either case, the external forces are described by a primary load control
variable

b= p(“’?’)/) (2)

It is noted that the structural loads are follower forces dependent on current displacements.
They are commonly conservative, giving a symmetric tangential stiffness matrix.

Symmetry

Membranes, as most classes of optimized structures, often possess a high degree of symmetry in
their geometries. Typically, the response to pressure loading respects these symmetry aspects,
at least when moderate loading levels are considered. In many cases, however, instabilities
lead to symmetry-breaking secondary response paths for the structure, [17]. In these cases, the
kinematic formulation of the model must allow the non-symmetric response aspects, or these
are easily hidden in the simulations. The symmetry in the structure, and also in its discretized
model can have significant effects on the obtained results, and in their interpretation.

Simulation algorithms

For a quasi-static formulation, the discretized equilibrium between external and internal forces
demands solutions (u, ) satisfying the structural residual equilibrium equations:

F(“?’Y) = f(u) - p(u77) =0 (3)

where F', f, p, and u are of dimension N,, and 7 is the load control parameter. With one
free parameter, this system gives solutions in the form of one-dimensional curve segments. The
differential relation corresponding to Eq. (3) is:

op

OF = (K — Ky) b — by 57 (4)



which gives a tangent stiffness matrix containing a load-dependent term, [21]. Important prop-
erties of an evaluated equilibrium configuration are described by this matrix.

The response to loading must be evaluated as load-displacement paths, where an equilibrium
path is represented by a sequence of equilibrium configurations. Different forms of instabilities
are often found along these paths. These must be seen as main aspects of the structural response,
and should be detected and classified.

Parameter dependence

For the membranes, a key issue for the simulation algorithms is thereby the analysis of the
parameter dependence in a simulated response, in particular the interesting solution points. For
this, specially designed algorithms can introduce augmenting variables, representing a parame-
terization of the structure or the loading, and then solve the equilibrium problem, and its cor-
responding stability properties in the higher-dimensional space. The generalized path-following
algorithm used in the present work is discussed in [3, 4], with a linear step-wise parameterization
and regulation [5].

Instability

The most prominent instability phenomena in thin membranes are related to the geometric
non-linearity, with significant configuration changes. These will often lead to limit points with
respect to a considered loading parameter. Bifurcations, for instance giving symmetry-breaking
deformation modes can also occur in the loading process. Special solution states of particular
interest are thereby turning points in any interesting parameter, and states where the degree
of instability of the equilibrium changes, i.e., where the tangent stiffness matrix has a zero
eigenvalue, [3].

Wrinkling

In the analysis of thin pressurized membranes, wrinkling of the material under compressive
stresses is a common result. This phenomenon, which does not allow a detailed modelling with
finite-sized elements, can be reasonably handled by relaxed energy formulations, [18], which in
essence disregard all compressive stress components. The wrinkling of parts of a membrane
leads to direct as well as indirect stability effects in the results.

Contacts

In particular in biological contexts, thin membranes often interact with mechanically stiffer
surroundings. Recent work, [16], has studied how the response of a pressurized cylindrical
membrane is constrained by stiff or soft foundations. For a general FEM-based simulation,
penalty formulations are preferred, but a conclusion is that at least third order penalty forces
must be used, in order to avoid strong discontinuities in stiffness.

Control variables

The displacement-dependent loading on a flexible structure demands special attention. Tech-
nically, the follower forces affect the equilibrium formulation of the problem, demanding new
aspects in the solution algorithm. In addition, the setting of the problem demands new meth-
ods to interpret the obtained results. An important discussion is related to how the stability
conclusions depend on what is considered as the control variable for the loading. It is in [6]
noted that the instability can be related to either the internal over-pressure or to the amount
of gas introduced in a gas-pressurized closed membrane. A model for the inflation of a closed
membrane must therefore pay attention to the precise mechanism for the introduction of the
pressure loading.
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Figure 1. Gas-pressurized sphere. Non-dimensional vertical displacement of top node in model, related
to non-dimensional pressure in (a), and to non-dimensional enclosed volume in (b).

Numerical example

Several circular, spherical and cylindrical membranes have been simulated, when subjected to
gas or fluid loading, affected by pre-stretching and with rigid or flexible substrates restricting
the deformation. Only results from the spherical membrane of radius Ryg = 10 mm are presented
here. The membrane had an initial thickness of Dy = 0.01 mm. Material data were chosen as
c1 = 0.1920 MPa, ¢co = 0.1¢; in an invariant-based Mooney-Rivlin model for strain energy W =
c1(I1(C) = 3) + ca(I2(C) — 3) with C the strain tensor. Gravity acceleration was g = 9.81 m/s?.

The element mesh used was based on successive refinements of a 20-face regular icosahedron,
arriving at a 5120 element model. Almost minimal supports were introduced around the lowest
node, creating a model of 7678 active d.o.f.s. Additional contacts were disabled for the results
below.

For gas loading, the sphere will expand radially with an increasing injected amount of gas.
The equilibrium path will show two limit points with respect to the pressure variable, Fig. 1(a),
but the expansion will be monotonous and stable with respect to the injected volume, Fig. 1(b).
The membrane will not show any wrinkling at any positive pressure, but the whole structure
will be wrinkled and computationally not reachable for any negative pressures, corresponding
to a volume lower than the initial Vj (calculated for the faceted model).

For fluid loading, the response is highly dependent on the fluid density p. For a relatively
high density, p = 10~%kg/mm?3, related to the non-dimensional parameter (pgR3)/(uDy), the
deformation will deviate from spherical due to the variation of internal over-pressure, which
is visible as another relation between top point displacement and enclosed volume, Fig. 2(a)
An enclosed volume lower than the initial Vj can be simulated, as not all the computational
elements will enter wrinkling at the same loading. Figure 2(b) shows the deformed membrane,
and a coloring of the wrinkling regions at a volume of 0.825 V{), where almost 23% of elements are
wrinkled. Simulations were continued, without significant numerical problems down to a volume
of 0.6 Vo, when top point deflection wiop, = —1.660 Ry, and 28% of elements are wrinkled. It is
noted that the support conditions assumed are of major importance for the results.

Concluding remarks

Hyper-elastic thin membranes show several forms of instabilities when pressurized. Limit points
with respect to the pressure variable are commonly detected, in particular when hyper-elastic
material models with low hardening are considered. Bifurcations, often related to symmetry-
breaking secondary paths are common, when fluid-loading is considered. Wrinkling, commonly
defined from compressive principal stresses in some regions of a structure, often occurs. A re-
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Figure 2. Fluid-pressurized sphere. (a) Non-dimensional vertical displacement of top node in model,

related to non-dimensional enclosed volume, with a comparison to Fig. 1(b); (b) Deformed membrane
and wrinkling extent for an equilibrium solution with V' = 0.825 V.

duced stiffness in the compressed direction can then be modelled by relaxed energy expressions,
where details of the wrinkling are disregarded and only the effects on a mid-surface described.
Wrinkling has both local and global stability effects which must be considered. The hyper-elastic
model itself can also, under some conditions related to the modelling of the acting loads, lead
to a non-uniqueness in response. The instability effects and conclusions in the simulations are
often significantly dependent on the discretization used, and in particular the mesh of finite ele-
ments. The instability conditions are difficult to introduce in common optimization algorithms,
but constraint path following can show the boundaries of a feasible design domain related to
instability conditions.
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Summary. Finite-element implementation of mechanical problems defined on non-linar manifolds re-
quires particular attention, since some of the important physical properties of equilibrium or motion are
not necessarily automatically inherited from the underlying continuous governing equations. Here we
review some of the features of the so-called objective, helicoidal and fixed-pole approaches and show that
there exist interesting similarities between them even though their development has been motivated by
clearly different demands. More detail is presented for the configuration space formed by a product of
a three-dimensional vector space and a three-parametric orthogonal differential manifold as well as the
non-linear non-orthogonal six-parametric differential manifold of complete motion.

Key words: objectivity, configuration-dependent interpolation, helicoidal interpolation, linked interpola-
tion, fixed-pole approach, 3D rotation group, 6D group of complete motion

Introduction

The geometrically exact 3D beam theory developed by Simo in 1985 [1] along with its original
finite-element implementation in 1986 [2] makes perhaps one of the most well-known excursions
into applications of numerical techniques, the finite-element method in particular, to mechanical
problems defined on non-linear manifolds. The non-linearity of the problem domain here shows
up as a consequence of non-linearity of the manifold of 3D rotations — the special orthogonal Lie
group. Other examples naturally include higher-dimensional cases of the Cosserat (or micro-
polar) continuum theory, such as shells with drilling rotations [3] or a 3D micro-polar continuum
[4], but also more sophisticated implementations of the 1D (beam) theory defined on a complete
six-parametric Lie group of complete motion [5, 6].

Special care need be exercised in the process of interpolation of the degrees of freedom that
belong to the non-linear part of the configuration space lest one may end up in a numerical
procedure that fails to inherit the important physical property of objectivity of the solution
with respect to the frame of reference of the observer. A possible solution has been presented in
[7] involving a configuration-dependent interpolation for the rotational degrees of freedom, but
a number of alternative procedures have been suggested also, e.g. [8, 9].

A perhaps not so well-known relationship exists, however, between the interpolation for the
rotational degrees of freedom presented in [7] and the so-called helicoidal interpolation given in
[10], which was originally devised with a completely different objective in mind - to provide a
solution which is independent of the choice of the beam reference axis. It turns out, interestingly,
that so long as we limit our attention to two-node beam elements, the interpolation for the
rotational degrees of freedom in these two sources turns out to be the same. On the other
hand, the helicoidal interpolation appears to be more sophisticated in that it also produces a
more elaborate, and in many senses beneficial, configuration-dependent interpolation for the



displacement field which, incidentally, turns out to be identical to that utilised for interpolation
of the rotational field.

An attempt to generalise the helicoidal interpolation to beam elements with arbitrary number
of nodes has been made in [11], but there clearly appears to remain present both a need and a
potential for further development of the procedure proposed. The idea to apply the interpolation
of the rotational field from [7] (which has been developed for a general n-node element) to
the displacement field comes as very natural, but a closer inspection reveals that this is not
necssarily so. The principal obstacle appears to lie in a conflict between the demands to secure
the exact solution of a linear problem [12] and the solution independent of the position of
the reference axis [10]. Intrestingly, this conflict disappears precisely and exclusively for the
two-node elements, thus effectively asserting that the helicoidal interpolation is a genuinely
two-noded interpolational concept.

The helicoidal interpolation also has links with the so-called fixed-pole approach [5]. Nonethe-
less, there is no limitation to two-node intepolation in the fixed-pole concept while, in contrast
to the helicoidal interpolation, objectivity of the formulation is not provided unless specifically
taken care of [13, 14]. The fixed-pole concept also provides a very natural setting for devel-
opment of conservative and group-motion preserving energy-dissipative time-stepping schemes
in implicit non-linear dynamics, where simultaneous conservation of both global momenta and
energy is, if needed, much more easily attained than in the standard 'moving-pole’ approaches.

Also, the fixed-pole concept effectively re-expresses governing equations of a problem in a
fully non-linear manifold inhabited by the complete motion, where translations and rotations
are only the specifically defined parts of a new six-dimensional motion parameter. This poses
certain practical problems, as we end up in having to work with non-standard problem unknowns,
which are not straightforward to relate to the standard displacements and rotations present in
the existing finite elements. Also, they are awkward to utilise to define even relatively simple
support conditions and an attempt to exploit its benefits, while by-passing its short-comings has
been made in [13], where the standard degrees of freedom have been re-introduced at the nodal
level. Again, objectivity of a finite-element implementation is not automatically guaranteed in
the fixed-pole approach and an algorithm which enforces it may be devised in analogy with the
procedure given in [7]. This follows as a consequence of the fact that the six-parametric group of
complete motion is also a Lie group, and the governing equations of the problem defined on this
group take a strikingly parallel form to those defining the kinematic and constitutive equations
as well as the equations of motion for the rotational part in the 'moving-pole’ approaches [14].

Brief outline of 3D geometrically exact beam theory and its original FE implementation

The geometrically exact 3D beam theory provided by Simo in 1985 [1] makes one of the mile-
stones in the development of the non-linear finite-element method by introducing a non-linear
manifold, composed of a three-dimensional vector space of displacements and a three-parametric
Lie group of the rotation tensors as the configuration space. To present it briefly, for a beam of

length L in free flight the weak form of the power-balance law reads fOL [(v’ +r w)-n+w - m} dz+

fOL (v k+w- 7'r> dx = 0, where n and m are vectors of spatial stress and stress-couple resul-

tants, k = Apv and w = AJ,A'w are the vectors of specific momentum and angular momentum
with respect to the beam reference axis at a cross-section, r and A are the position vector of the
reference line and the orientation tensor of the principal axes of the cross-section with respect
to their position in the reference state, which belong to a non-linear configuration space com-
posed of a three-dimensional vector space R® and the three-parametric special orthogonal group
SO(3). A dot and a dash in the power-balance equation indicate differentiation with respect to
time ¢ and the beam-length parameter x, a superimposed hat indicates a cross-product operator,
v =& and w (for which W = AtA) are the velocity and the angular velocity vectors, A and p



are the cross-sectional area and density of the material, and J, is the tensor of cross-sectional
moments of inertia.

Originally [2], only the velocity fields in the power-balance equation have been interpolated
using Lagrangian polynomials I'(x) via v(z) = Zfil Ii(z)v; and w(z) = Zf\il I'(z)w;. For
arbitrary nodal velocities, this has resulted in the nodal balance gl = q1 + g, = 0 at any node

1=1,..., N with the nodal internal and inertial force vectors q1 and q}, as
q = / I T~ v dzx and a, = / I k dx. (1)

o |—rr 1’1 o &
The system of non-linear equations g! = ¢! + qi, =0 (for i = 1,..., N) may now be solved

for the kinematic unknowns r(z) and A(x) using the Newton-Raphson solution procedure in
which the linear part of the changes in these unknowns Ar and Ad (emerging from AA = @A)
may be interpolated in the same manner as v(z) and w(z) [2].

Note that this interpolation (along with a suitable time-stepping procedure) is sufficient to
completely define the dynamic problem, too, even though in [15] additional interpolations are
also provided for the incremental rotations, angular velocities and accelerations, in conjunction
with the Newmark time-integration scheme. In any case, however, this approach, as well as
a variety of related approaches, turn out to be incapable of algorithmic preservation of the
important mechanical property of objectivity of the solution with respect to the choice of the
observer, also implying a solution which ceases to be strain-invariant with respect to a rigid-body
motion.

Objective finite-element interpolation of 3D rotations

In the objective formulation for geometrically exact higher—order beam elements [7] the posi-
tion vector of the beam reference axis is taken to coincide with the line of centroids and has
been interpolated in a standard Lagrangian manner. The rotations, in contrast, have been
interpolated very differently: the rotation matrix A(z) has been multiplicatively decomposed
into a part constant for the whole beam and rigidly attached to a node I (Ay) and the part

Ny
due to a local rotation W' with respect to that orientation as A(z) = Ajexp ¥ (z), where
exp ¥ = I+a\ill +ﬁ(\ill)2, a =sin W /U and B = (1 —cos U")/(¥")2. The local rotation ¥'(z)
is next interpolated in the standard Lagrangian way, where the local nodal rotations \I'i are

extracted from exp \ili = ATA;. '
The Newton—-Raphson increment A has been found in the form AY¥ = ZZJ\L 1 N*(A)AY; with

N N
ZZ ]Af{élk [I— H(¥) ZI HY(P!)| + H(®)[,H- (\Ifg.)}A? (2)
j=1k=1

! Ul — gin @!

and H(W!) =1+ 5\ill + ’y(\il )2,y = O Aﬁj =1fori=j=kand Aﬁj = 0 otherwise.

Helicoidal interpolation

The helicoidal interpolation [10] follows from a requirement that the finite-element solution
should be invariant to the choice of the beam reference axis and consistent with the configuration
space, in particular with SO(3) and its core properties of orthogonality and unimodularity.
The FE solution will be invariant to the choice of the beam reference axis if the position
vector and the rotation tensor are interpolated using the same interpolation functions [10, 11].
The simplest example of this, of course, is the standard Lagrangian interpolation for both fields



(ie. r(z) = Zf\il Ii(z)r; and A(z) = Zf\;l I;(z)A;) but, in the case of the rotation tensor,
this interpolation is clearly inconsistent with the rotation group, since such a A(z) is neither
orthogonal nor unimodular. To satisfy group consistence, Borri and Bottasso [10] have assumed
a deformed configuration in a form of spatial helix originating from a constant distribution of
the translational and the rotational strain measures along the beam and in this way derived an
alternative interpolation of the type

2 2 2
I‘(:L'l) = ZNiri and A(l’l) = ZI\IZIXZ = Aﬁ(ml) = ZNIAT%, (3)
i=1 i=1 i=1
with the generalised interpolation functions N; identical to those given earlier. 1t is important to
emphasise, however, that the proposed helicoidal interpolation makes sense only for two—noded
elements. For the cases of (uncoupled) constant bending and shearing (as well as, of course,
constant axial force and torsional moment) this interpolation provides exact solution irrespective

of the amount of loading and deformation.

If we attempted to apply this result to a higher—order element by simply substituting N for
2 in (3)1, we would realise that the exact result, even in the limit case of the analysis becoming
linear, cannot be achieved anymore. Still, such a solution is quite legitimate and in [11] it
has been analysed numerically. To analyse the linear solution, it is instructive to isolate the
linear part of the generalised interpolation N* = I;(I + 'lp/—\'l,bl /2) [11] and compare it to the
interpolation representing the exact linear solution N* = I;(T + zp/—TpZ /N) [12].

The very close similarity between these results suggests that the original helicoidal interpo-
lation may be generalised to higher order elements by applying a modification to the generalised
interpolation IN; used for the interpolation of the positions. This avenue has been also pursued
n [11]. It has to be noted that in this way the interpolation for the position vector again be-
comes different from the interpolation for the rotations thus spoiling the original requirement
which the interpolation sought should provide, i.e. invariance of the solution with respect to the
choice of the beam reference axis.

Fixed-pole approach

In [5] Bottasso and Borri thoroughly investigated the idea of replacing the stress-couple resultant
m and the specific angular momentum 7 at the beam reference axis with another stress-couple
resultant m and specific angular momentum 7, defined with respect to a unique point for the
whole structure - the fixed pole, i.e. m =r xn+m and 7 = r x k+ 7 if the origin of the spatial
co-ordiante system is taken for the fixed pole. Substituting this into the earlier power-balance
equation results in fOL (V' n+w' -m]dz + fOL (\7 k+w- 7ir> dr =0, where v=v+r X W is
the velocity vector as seen by an observer rigidly attached to the frame rotating with the cross-
section. Further, they defined six-dimensional fixed-pole velocity, stress-resultant and specific

momentum vectors as
v n k
o={o} ot e ) 2

Choosing to interpolate w(z), an alternative nodal balance g' = q§ + @', = 0 is obtained with
the following corresponding six-dimensional nodal internal and inertial force vectors

L L
q; = / I'sdz  and @i, = / I'pdax. (5)
0 0

This result is interesting in its own right as it obviously by-passes the anomalous presence of
shape-functions in the internal force vector, which are known to be responsible for shear locking.
Additional consequence is that this set-up leads to a relatively simple satisfaction of the energy

10



and momentum conservation properties in discrete non-linear 3D beam dynamics without the
need to re-parametrise the rotation field using tangent-scaled rotations as in [16].

The most striking of all, however, is the relationship between w and w, which are not
only the elements of a three-dimensional and a six-dimensional vector space, but are in fact
elements of the vector spaces which are topologically equivalent to the three-dimensional Lie
algebra of skew-symmetric tensors so(3) and the six-dimensional Lie algebra of tensors of the

~ o~

form w = V(;] :/\\7 , which in [5] Bottasso in Borri have named sr(6). Exponentiation of the
elements of these algebras, of course, results in the corresponding elements of Lie groups, the
Lie group SO(3) of rotation tensors A and SR(6), the so-called Lie group of rigid motions
C= [‘3 rjs . The system of non-linear equations may now be solved for the complete motion
C using the Newton-Raphson solution procedure in which the linear part of the change in
this unknown Ag (emerging from AC = A¢C) may be interpolated in the same manner as w
[14]. The parallels between the elements of SO(3) and the elements of SR(6) were investigated
thoroughly in [5] where it was shown that the complete problem of motion of a 3D beam may
be made mathematically equivalent to the problem of rotational motion of the 3D beam.
These results have been re-derived in detail in [14], where special emphasis has been placed
onto objectivity of the formulations defined on SR(6) which, owing to the parallels with the
non-linear manifold SO(3), naturally must suffer from the same short-comings. A remarkably
similar result is obtained for the generalised interpolation that should be applied to Ag to provide
the objective finite-element solution. The configuration tensor C(z) has been multiplicatively
decomposed into a part constant for the whole beam and defined at a node I (Cy) and the

part due to a local configurational change ®' with respect to that configuration as C(z) =
=1

Crexp® (z) (see [5, 14] for details on exponentiation in SR(6)). The local configurational

change <I>l(a:) (which consists of the upper part P! and the lower part \Ill) is next interpolated

in the standard Lagrangian way, where the local nodal configurational changes <I>§ are extracted

from exp @i = C;'C;. Tt follows that Ag = SN J(C)As; with

N N N
=> ) A ]C’I{(Sm !I - X(®) > L,X N (@) | + X(<I>Z)IkX‘1(<I>§.)}Cll. (6)
j=1 k=1 m=1
H(¥') BP, ¥ am oy o’
where X(®!) = 0 \111) )} ,B(P!, ¥!) = ﬁPl+ 2 (pl. @) \Iﬂ+ﬁw§” (Pl o)Wl
v (WP 4 P,

Conclusions

The so-called objective, helicoidal and fixed-pole interpolations are reviewed and shown to pos-
sess many interesting similarities despite the fact that they have been developed with quite
different demands in mind. The well-known equivalence between the rotational part of the me-
chanical problem of motion of a 3D flexible beam defined on SO(3) and the complete motion
defined on SR(6) is shown to extend to the issue of objectivity of the finite-element solution with
respect to the position of an observer allowing for a completely corresponding solution process.
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Introduction

Strongly coupled fluid/solid interaction (FSI) problems arise in many important applications
of Engineering. For example, in biomechanics, blood exerts a pressure on the wall of the heart
which, reciprocally, distorts the flow. Also, aerodynamical forces bend and twist rotating blades
in wind generators, and the later generate vortices behind the generators. In manufacturing, for
instance, it is important to assess the interaction forces between a molten polymer and the molt
employed for shaping it. In all these cases, the coupling between solid and fluid parts goes in
both directions, and when studied numerically, the motions of the fluid and solid parts cannot
be decoupled if accurate predictions are to be obtained.

Numerical methods for strongly coupled fluid and solids are fairly complex. A common
approach consists in using standard solid and fluid solvers, independently, and define an interface
that transfers forces between them (see, e.g., [1]). This kind of staggered solutions have the
advantage of re-using existing, optimized codes for each of the parts, but are not guaranteed to
be stable. These considerations have motivated the development of monolithic solutions to FSI
problems. There is a fundamental difficulty in this approach, and it is based on the kinematic
descriptions employed to approximate solid and fluid problems. In the first case, Lagrangian
methods are required to trace the history of each material particle; in the latter, Eulerian method
are more appropriate because they avoid the mesh distortions that would inevitably would result
if the motion of each individual fluid particle had to be followed.

Although Arbitrary Lagrangian-Eulerian (ALE) formulations alleviate some of the problems
associated with mesh distortion [2], we present next a novel formulation base on a purely
Lagrangian description of both the solid and the fluid domain. This choice makes trivial the
solution of the solid part, and addresses the problems derived from the mesh distortion in the
fluid by avoiding it altogether, employing a meshless Galerkin method. More specifically, we use
a Galerkin method with local mazimum entropy functions [3] and improve its stability, for the
incompressible fluid, by using a stabilization technique introduced by Douglas and Wang [4].
The outcome is a method that addresses all the major difficulties of simulating strongly coupled
FSI problems, and shows promise to solve very complex situations.

Numerical method

We summarize the main ingredients of the numerical method proposed, starting from the initial
boundary value problem we aim to solve, and outlying the choices made for its approximation
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Problem description

The balance equations that describe the motion of fluids and solids are identical. For any
body occupying a set By € R? in its reference configuration, a motion taking place on a time
interval [0, 7] is a map ¢ : By x [0, T] — R3, with ¢,(-) = ¢(-, ), defining the current placement
¢ (By) = By, and with tangent map F = D¢ of determinant J = det(F'). The balance of linear
momentum, or equilibrium equation, is

dive + f = pa , (1)

where o is Cauchy’s stress, f is the body force, p the density, and a = { o ¢o~! the spatial
acceleration. The only difference between solids and fluids is the constitutive law. Whereas solids
might have complex relations between o and the history of F', incompressible newtonian fluids,
the only type we consider, satisfy

o =2u grad®v — pl | divv =0, (2)

with 1, the dynamic viscosity, v = ¢ o@™!, the spatial velocity, and p, the pressure. The problem
we are interested in solving is finding the deformation ¢ of all interacting solids and fluids, for
all time, given an initial value ¢, initial velocity ¢, and known external forces.

Approximation spaces

For all solids and fluids analyzed, we propose to employ a Galerkin discretization. In it, the main
unknown field, the motion is approximated with a linear combination of known functions. In our
case, we select a finite nodal set N' = {X,} of points in By and functions ¢* : By — R built only
from the information of the nodal set. These meshless approximation functions are chosen to be
optimal in the sense of locality and information entropy as defined in [3], and we approximate

P(X,t) = (X 1) =Y o"(X)pa(t) ,

(3)
o(X,1) ~ (X, 1) = (3 " (X)Valt) o (¢ (X)) .

Local maximum entropy entropy (maz-ent) functions do not have an analytic expression. They
can be computed, as well as their derivatives, at any point of the domain as the solution of
a convex optimization problem. This makes them more expensive to calculate than other
meshless functions, but they possess very attractive numerical properties, like for example a weak
Kronecker-delta property on the boundary which greatly simplifies the imposition of essential
boundary conditions.

Numerical method

The numerical method employed to approximate the dynamic equilibrium of any solid is completely
standard (except for the choice of approximation space). Indeed, max-ent approximation functions
seem to be locking-free and a standard Galerkin discretization of the governing equations suffices
to obtain accurate solutions of elastic and inelastic models.

For fluids, however, the incompressibility constraint makes standard formulations unstable
and some kind of stabilization must be employed. We advocate the use of the absolutely stabilized
formulation of [1]. In this formulation, for a given time increment At = t,1 — t,, we seek
for ¢, and PP, such that, with p,41 = P o (¢l )7 vasr = VI o (o )7 and

(Pl —@h) /At =V,
/ pw cawdv + / 2u grad® v,41 - wdv — / Pnt1divw dv
B At Bt Bi

(4)
+/ qdivo,1do + ST = (f,411, W)t
Bt
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Figure 1. Fluid splashing on elastic plate
for all W" = w o (") and Q" = g o (¢"). The the stabilization term is
ST = / 7(—2pdiv grad® v,41 + grad ppy1 — frp1)(—2pdivgrad® w + gradq) dv,  (5)
By

where the stabilization parameter 7 has dimensions of time and is chosen to be identical to that
in stabilized finite elements (cf, e.g., [1]).

Simulations

The method outline heretofore allows to simulate in a unified way interactions between solids
and fluids. For example, figure 1 shows four instants of the impact calculation between a fluid
sphere of radius 1, density p = 1000 and dynamic viscosity p = 10 against a hyperelastic plate of
dimensions 3 x 1 x 0.3 with a Neohookean constitutive model of constants A = 0, u = 5 - 105. To
model the contact between the two media, a simple point-to-point repulsion algorithm has been
implemented.

The figures of this purely academic example illustrate that the method can encompass very
large distortions in both the fluid and the solid, without any special modification. Even though
in this simple example the solid material is purely elastic, no modification would have to be
made in order to include inelastic effects in its behavior.

In a second example, depicted in figure 2, a dam breaks releasing all the contained fluid.
This well-documented benchmark has been studied both numerically and experimentally [5], and
serves as a testbed to assess the ability of a method to simulate fluids with large distortions.

Closure

A unified approach to solve complex fluid/solid interaction problems has been presented. The
formulation is purely Lagrangian, so the interaction and the treatment of free surfaces is trivial.
To avoid all the issues associated with using mesh-based methods when the mesh reaches high
distortions, a meshless approach has been followed. In particular, local maz-ent functions have
been chosen due to the ease with which essential boundary conditions can be imposed. A final
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Figure 2. Dam breaking

ingredient of the framework is the stabilization of the fluid equations to deal with the instabilities
arising from the incompressibility constraint. An absolutely stabilized formulation was employed
that guaranteed the stability of the method even in the nonlinear range.
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Summary. This lecture will focus on recently identified changes in wind and wave properties
over the Baltic Sea basin that may considerably affect processes of all kind in the nearshore,
coastal floodings etc., and also impact inland constructions. Along with common parameters
character_lsmﬁ climatic changes (such as air or water temperature, extension in the ice cover,
changes in the precipitation etc.), many dynamical features are strongly determined by wind
direction. The related changes to the extreme water levels and associated coastal floodings,
wave properties and the level of exposure of the nearshore area to various hydrodynamic loads
may have substantial consequences for the course of coastal processes, safety issues and
engineering activities. The changes that involve alteration of the wind properties may lead to
drastic impact on the entire ecosystem. For example, irregular inflows of oxygen-rich North Sea
water (that support life in the dee;ﬁer layers of the Baltic Sea) have almost stopped since 1980s
eventually because of changes in the air pressure and wind patterns.

I make an attempt to consolidate results of recent studies into wave properties and the course
of coastal processes in the Baltic Sea in the light of the resulting challenges for various coastal
engineering issues. The existing instrumental measurements since the 1970s, several numerical
reconstructions of wave field and re-analysis of the longest visually observed wave data since
the 1940s reveal rich patterns of spatio-temporal variations, mostly on a decadal scale, in the
wave heights and prom?ation directions in various part of the Baltic Sea. The consequences of
these variations include modifications in the pattern of alongshore sediment transport,
alterations of the locations of substantial wave-induced set-up (and potential extreme water
levels), and the loss of stability of certain sedimentary coastal segments. A likely reason behind
many of these changes may be a major shift in the atmospheric forcing: an abrupt turn in the
geostrophic air flow over the southern Baltic Sea by about 40 degrees since the 1980s. The
implications of this turn extend to the latitudes of the Gulf of Finland where the sea-level air
flow also exhibits extensive fluctuations.
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The effects of initial moisture on damp problems
of a timber framed wall construction - a numerical
approach
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Summary. The presented study deals with simulation of thermal and moisture transfer in
timber element located above foundation of a timber-framed family house. The bottom location
of a building represents sensitive component for damp problem. Providing careful attention to
each structural element, especially at the initiation of the construction, to protect it against
redundant moisture to ensure sustainability of the structure and health indoor environment form
integral part of the design. Moisture content at any element of the building might significantly
effects the life-span of the structure.

Key words: heat and mass transfer, numerical simulation, mould index, foundation

Introduction

Effort towards energy efficiency in building engineering supports a creativity of designers to
provide new construction techniques and procedures to ensure maximal thermal resistance of
the structures and health indoor environment [4]. The present policy is to promote low-energy
high-closure housing [12]. Building practises attempts to control structural contamination by
mould spores, preventing of moisture build-up and absorption, or design guidelines. The
excellent thermal performance of current buildings brings another phenomena along that should
be considered in the design. High air tightness causes less heat outflow which leads to the
lowering energy costs but it might effect moisture conditions in the envelope and cause
favourable environment for mould growth initiation. One of the most threatened locations for
moisture problems is at the bottom of the buildings, especially between foundations and the
envelope [7]. In the case, the structural elements are not carefully protected against ambient
moisture the saturation level might significantly influence properties of the subjected materials
and effect future behaviour of the structural elements and reduce the life-span of the building.
Especially in the case of timber-framed houses the damp problem increases considering
sensitivity of wooden materials from the point of view of suitable bio-base for mould growth.
This is why it might be beneficial to control the physical conditions of the structural elements
before and while constructing the building [1].
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The presented study simulates thermal and moisture conditions of a bottom timber plate
installed above foundation in the cases where the timber is initially fully saturated and dry. For
achieving limits of the humidity conditions in the timber the analysis is performed in its radial
and longitudinal direction. The analysed structure is illustrated at the Figure 1. The temperature
and relative humidity data are taken at corners of the bottom timber plate (points 1-4 at Figure
1.) and in its entire cross-section. Then, the obtained results are applied in a mould growth risk
model [5-6, 9-11].

Figure 1. Structure of foundation and location of analysed points

Numerical model and boundary conditions

Two-dimensional numerical models were created in Wufi®2D representing structure of a
foundation of a single family timber-framed house. The Wufi program uses finite volumes
method for realistic calculation of the transient coupled one- and two-dimensional heat and
mass transfer problems [3]. Wufi material library is used for material properties definition of
each applied element. The simulations suggest outdoor conditions without effect of standing
water and/or snow. The indoor conditions within the model that simulates foundation of the
complex structure are defined according to EN 13788.

The presented study analyses effect of weather conditions on initially fully saturated and dry
bottom timber plate in the foundation model. The simulation was performed for a time period
from 1.1.2014 to 11.1.2015. The weather data, representing the outdoor conditions for the
numerical model, were measured by weather station located in Hiukkavaara/Oulu/Finland. The
temperature and relative humidity conditions in the period are illustrated at the Figure 2 below:
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Figure 2. Weather conditions during analysed period
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Mould growth

Specific combinations of temperature and relative humidity promote mould growing which may
lead to allergic reactions and other health issues of the inhabitants [5], and which may also
influence the behaviour and properties of the structural elements [8]. Numerous studies present
mathematical models expressing the risk of mould growth based on environmental factors [9].
The boundary between favourable and unfavourable conditions for mould growth initiation was
defined [2, 5, 6, 9-11]. Its graphical expression is illustrated at the Figure 3:
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Figure 3. Graphical expression of critical relative humidity for mould growth initiation

The mathematical models defining the mould growth risk are based on the relation between
temperature and relative humidity in an exposed time. It is based on long-term laboratory tests
or on-site measurements [5, 6].

The following figure (Figure 4) illustrates mutual relation between temperature and relative
humidity at each time-step of the solution of outdoor conditions. It can be seen that
inconsiderable amount of the conditions are in the favourable area for mould growth initiation.
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Figure 4. Favourable and unfavourable conditions for mould growth initiation

Results and discussion

The relative humidity conditions in the bottom horizontal timber plate is shown at the Figure 5.
In the case the timber is initially fully saturated the drying process progresses very slowly.
Hence, the relative humidity might lead to the favourable conditions for mould growth. The
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humidity in the initially dried timber copies the trend of the outdoor humidity. If the
characteristics for the longitudinal moisture diffusion in the timber is applied the relative
humidity trend achieves larger differences. This is caused by ability of quicker drying and
absorption of the humidity in the material.
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Figure 5. Relative humidity in timber during analysed period

Statistical expression of the conditions in the favourable environment for mould growth at
the corners of the timber are shown in the Table 1. The initially fully saturated cases achieve
high percentage of the favourable conditions for mould growth during the analysed period.
Although, there is an assumption the higher water vapour diffusion resistance factor of cross
grain (radial) direction of the timber would cause slowing-down the drying process it achieves
slightly less conditions in the favourable area for mould growth. However, the full saturation at
the beginning of the analysis, regardless direction of grains causes high water content in the
timber that might lead to the mould growing and significant reducing of the life-span of the
structure. The least amount of conditions in the favourable environment for mould growth is in
the case of the initially dried timber. This is caused by lower relative humidity in ambient and
inside of the timber which leads to the conditions located outside the favourable conditions for
mould growth initiation.

Table 1 Environmental conditions promoting mould growth in corners of timber

ocation left-up left-down right-up right-down
case [%0] [%0] [%0] [%6]

longitudinal (80%) 9.57 10.01 1.28 7.99
longitudinal (100%0) 26.75 30.39 80.98 73.54
radial (80%b) 12.48 14.34 0.14 15.85
radial (100%o) 20.03 23.03 71.09 70.83

Preliminary estimation for mould growth initiation represented by the mould index is shown
at the Figure 6. It can be seen the lowest risk for mould growth initiation is on the left (exterior)
side of the timber. This is caused by negative temperature values during the simulation period
which prevents the biological processes to initiate. On the other hand, the right side of the
timber is subjected to an extended drying process of the material, which might be critical from
the point of view of the mould growth initiation.
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Figure 6. Mould index at corners of timber

In the case of the initially fully saturated timber the mould index achieves values which
might estimate high risk for mould growth initiation. It might be beneficial being cautious and
provide substantial care of the structural material during the entire construction and the life-span
of the structure to prevent water and vapour content in the material.

Conclusion

The presented study shows advantages of the numerical analysis in practical problems, i.e.
building physics problems. The Wufi®2D software was applied to simulate heat and mass
transfer of multi-layer structure representing foundation of timber-framed house. Effect of the
initial saturation of the bottom timber plate located above foundation was analysed depending
on grain direction. The initial water content in the building material might lead to a damp
problem and significantly effect durability and life-span of the structural elements or the
building. It is important to provide careful attention to each structural element at any time of the
construction to protect it against redundant moisture to ensure sustainability of the structure and
health indoor environment.
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Numeerisen virtauslaskennan kaytto tuulikuormien
maarittamisessa
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Tiivistelma. Artikkelissa esitellddn numeerisen virtauslaskennan kayttémahdollisuuksia
rakennusten tuulikuormien maérittdmisessa. Aluksi on kéayty lapi tuulikuormiin vaikuttavia
tekijoita. Artikkelissa sovelluskohteina ovat olleet Silsoen kuutio ja Helsingin Olympiastadionin
paatykatsomoiden katokset.

Avainsanat: tuulikuormat, CFD, tuulitekniikka

Johdanto

Tuulikuormat ovat merkittdvassd roolissa etenkin rakennuksen jaykistysjarjestelméan
suunnittelussa ja mitoituksessa. Tavallisesti tuulikuormat mééritetddn normeissa esitetyilld
erilaisiin kokeellisesti méadritettyihin ja taulukoituihin arvoihin perustuvilla menetelmilld, jotka
patevédt ainoastaan rajoitetulle joukolle perustapauksia. Monimutkaisemmissa tapauksissa
tuulikuormia ei voi maarittaa suoraan normeissa esitetyilla menetelmilla.

Tuulikuormien tutkimus ja tuulitekniikka (wind engineering) on perustunut lahes taysin
tuulitunneleissa  pienoismalleille  tehtyihin ~ mittauksiin.  Viime wvuosina tapahtunut
laskentamenetelmien ja tietokoneiden laskentakapasiteetin kehitys on laajentanut numeerisen
virtauslaskennan (computational fluid dynamics, CFD) kéyttdmahdollisuuksia yleisesti
virtaustekniikan sovellutuksissa ja siten myos tuulikuormien analysoinnissa.

TyoOssa keskitytddn osa-alueisiin, joiden vaikutusten arviointiin CFD-laskentaa voidaan
hyodynt&d. Kokonaiskuvan hahmottamiseksi tehddén myos lyhyt katsaus koko prosessiin, jonka
mukaan tuulikuormat maardytyvat. Davenportin tuulikuormitusketjun (Kuva 1) mukaisesti
tuulikuormien maérittdmisesséd on térke&a kiinnittdd huomiota kaikkiin prosessin vaiheisiin.
Yksittaisen osa-alueen tarkempi analysointi ei tavallisesti johda oleellisesti tarkempaan
lopputulokseen. Kaiken kaikkiaan aihealue on poikkitieteellinen ja haastava.

Tuulikuormista

Rakenteen suunnittelussa kéytettava tuulikuorma tulisi valita siten, ettd sen ylittymisen
todennakoisyys rakennuksen suunniteltuna kéyttGaikana on riittdvan pieni. Suomessakin
suunnitteluohjeena kéytettdvdan eurokoodin mukaan suunnittelussa lahtékohtana oleva
tuulikuorma ylittyy keskimaéarin kerran 50 vuodessa, [3]. Rakenteen kestavyyden nakdkulmasta
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ollaan siis kiinnostuneita hyvin harvoin toistuvista kovista myrskyistd. Tuulikuormitusnormeissa
esitetyt menetelmét mallintavat laaja-alaisiin ja melko pitkékestoisiin myrskyihin liittyvia
tuulikuormia. Paikallisten meteorologisten ilmididen kuten ukkosmyrskyjen aiheuttamien
tuulikuormien laskentaan ei anneta tuulikuormitusnormeissa erillisia ohjeita.

Rakenteen
mekaaninen
vaste

Aero-
dynamiikka

Paikalliset
vaikutukset

Globaalit
vaikutukset

Kuva 1. Davenportin tuulikuormitusketju, johon on korostettu lenkit, joiden vaikutuksien
arviointiin voidaan hyddyntéé virtauslaskentaa.

Tuulikuorman suuruuteen vaikuttavat seuraavat tekijat: (i) rakennuspaikan globaali tuulisuus,
(i) maanpinnanmuodot, (iii) ympéardivat rakennukset, (iv) maaston pinnankarheus, (V)
kuormitusalueen pinta-ala ja (vi) rakennuksen dynaamiset ominaisuudet. Rakennuspaikan
maantieteellisestd sijainnista riippuva globaali tuulisuus siséltdd alueen pitkan aikavalin
sééatilastoihin perustuvan ns. tuulennopeuden perusarvon (Suomessa 21 m/s). Maan
pinnanmuodot, kuten maet, vaikuttavat tuulen nopeusprofiiliin. Ympéroivét rakennukset toisaalta
suojaavat tuulelta, mutta l&helld sijaitseva ymparistéaan selvasti korkeampi rakennus voi myds
kasvattaa viereisten rakennusten tuulikuormaa. Maanpinnan rosoisuudella on merkittava vaikutus
tuulikuormaan. Siledssa maastossa (esim. meren laheisyydessd) tuulen nopeus maanpinnan
lahelld on suurempi kuin rosoisemmassa maastossa (esim. kaupungeissa). Toisaalta maanpinnan
rosoisuus kasvattaa turbulenssin intensiteettia eli tekee tuulesta puuskaisempaa. Kuormitetun
pinta-alan kasvaessa siihen kohdistuva tuulikuorma ei kasva yht& nopeasti, koska suuren pinnan
eri osissa pintapaineen dériarvot eivat esiinny yhta aikaa.

Mitoituksessa kaytettdva tuulikuorman arvo perustuu tuulenpuuskan aiheuttamaan
pintapaineeseen. Tuulenpuuskassa vaikuttava tuulen nopeus maéaritetddn korottamalla 10
minuutin  keskimadraistda  tarkasteltavalla korkeudella vaikuttavaa tuulen nopeutta
puuskakertoimella. Puuskakerroin méaritetddn huippuarvokertoimen ja tuulen turbulenssin
intensiteetin perusteella. Puuskakerroin on maaston pinnankarheudesta riippuen noin 1,4 - 2,0.

Rakenteita mitoitettaessa kéasitellddn tyypillisesti suurinta tuulenpainetta. Taman liséksi
hoikilla rakenteilla on Kiinnitettdvd huomiota aeroelastisiin ilmidihin ja tuulen herattamaan
vardhtelyyn. Nama ilmiot voivat tulla mitoittaviksi alhaisillakin tuulennopeuksilla.

Virtauslaskenta tuulitekniikassa

Virtausta hallitsevien epélineaaristen osittaisdifferentiaaliyhtaldiden eli ns. Navier-Stokes —
yhtéloiden advektiotermit kayttaytyvat hyvin epélineaarisesti ja tekevdt numeerisesta ratkaisusta
hankalaa. Laskentatyon véhentdmiseksi virtauksen turbulenttisuus voidaan huomioida
keskiarvottamalla yhtdlot (Reynolds-averaged Navier-Stokes, RANS), jolloin yhtéldihin tulee
kuitenkin uusia tuntemattomia (Reynoldsin jannitykset). Ongelman ratkaisemiseksi tarvitaan
turbulenssimalli  eli  lisdyhtalot, jotka ovat kytkoksissa RANS-yhtéldiden kanssa.
Turbulenssimallit perustuvat osittain kokeisiin, eikd ole olemassa yht4 turbulenssimallia, joka
antaisi hyvid tuloksia kaikissa virtaustapauksissa.

Vaihtoehtoinen turbulentin virtauksen laskentatapa on suurten pydrteiden simulointi (large
eddy simulation, LES). Siind kontrollitilavuutta suuremmat pyorteet lasketaan tarkasti ja
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pienemmille pyorteille kdytetddn turbulenssimallia. Menetelmall& todellista virtausta pystytadn
kuvaamaan yleensd selvasti tarkemmin kuin RANS-laskennalla, mutta se vaatii aina
kolmiulotteisen ja transientin analyysin ollen siten hyvin laskentaintensiivinen. LES ei ole viela
nykyéan realistinen vaihtoehto useimmissa kéytannon virtaustehtavissa.

Tuulitekniikan virtaustehtavissa on seuraavia erityispiirteita: i) rakenteen kohtaava virtaus on
valmiiksi voimakkaasti turbulenttia ja siséltdd paljon erikokoisia pyorteitd, ii) Reynoldsin luku on
hyvin suuri ja virtaus voidaan olettaa yleensa aina turbulentiksi, iii) ilmakehan rajakerros voidaan
olettaa termisesti neutraaliksi, koska kovissa tuulissa mekaaninen turbulenssi dominoi, iv)
maaston pinnankarheus on mittakaavaltaan hyvin suurta verrattuna moniin muihin
virtaustehtaviin, v) rakennukset ovat massiivisia (bluff body) ja sisaltavat terdvia nurkkia.
Tyypillisia tuulitekniikassa ilmenevia virtaustilanteita ovat puolestaan: vi) virtauksen
torm&aminen seindan, vii) virtauksen irtoaminen ja viii) uudelleen kiinnittyminen.

Virtauslaskentaohjelmistoissa pinnankarheus mallinnetaan ekvivalenttisena
hiekanjyvékarheutena, mika aiheuttaa ongelmia tuulitekniikan sovelluskohteissa. Tyypillisen
kaupunkialueen maanpinnan rosoisuus z, = 0,3 m on ekvivalenttiseksi hiekanjyvéakarheudeksi
muutettuna yli 8 m. Ensimmaisen laskentapisteen etdisyys maanpinnasta tulisi olla vahintdén
hiekanjyvékarheuden suuruinen, mutta toisaalta hyvien tulosten saavuttamiseksi laskentaverkon
pitéé olla huomattavasti tata tinedmpi. Lisaksi valitun turbulenssimallin tulisi kyeta sdilyttdméaan
haluttu nopeusprofiili seka turbulenssisuureiden (turbulenssin Kineettinen energia ja sen
dissipaatio)  profiilit  virtaussuunnassa muuttumattomina  tyhjéssé laskenta-alueessa.
Pinnankarheuden mallintamista ja profiilien sailymista on késitelty tarkemmin lahteessa [1].

Silsoen kuution painekertoimien maadrittaminen

Numeerisen virtauslaskennan kayttokelpoisuuden selvittdmiseksi sitd on aluksi sovellettu
yksinkertaiseen ja hyvin dokumentoituun Silsoen kuutioon, [4]. Tayden mittakaavan kokeita
varten rakennettu sivumitaltaan 6 metrinen kuutio on sijoitettu k&&nnettavalle alustalle. Maasto
rakennuksen ymparill& on suhteellisen tasaista vastaten parhaiten eurokoodin maastoluokkaa 1.
Vaikka kuutio vaikuttaakin geometrialtaan varsin yksinkertaiselta todellisiin rakennuksiin
verrattuna, ilmenee siina olennaisimmat tuulitekniikan virtaustekniset erityispiirteet.

Stationaarissa RANS-laskennassa turbulenssimallina on kédytetty SST k-o —mallia lahteen [6]
mukaan muokatuilla paremmin tuulitekniikkaan soveltuvilla parametreilla. Advektiotermin
diskretointiin on k&ytetty tarkkuudeltaan toisen kertaluvun menetelmé4 ja seindmankasittelyksi
on valittu automaattinen seindmafunktio. Laskentaohjelmistona kéytettiin Ansys CFX 15.0 ja
rakenteellisessa laskentaverkossa oli 1,8 miljoonaa kontrollitilavuutta. Laskenta on tehty myds
tihedmmalla (8,3 milj.) ja harvemmalla (0,8 milj.) verkolla. Tayttd riippumattomuutta
laskentaverkosta ei saavutettu, mutta tast4 aiheutuva virhe arvioitiin pieneksi verrattuna
turbulenssimallista aiheutuviin virheisiin.

Tulosten voidaan todeta vastaavan hyvin kirjallisuudessa esitettyja laskennallisia arvoja
(Kuva 2). Taulukossa 1 on vertailtu painekertoimia tuulieurokoodin [3] mukaisissa lohkoissa A-
I. Taulukossa asteluvut tarkoittavat tuulen suuntaa siten, ettd 0° vastaa kohtisuoraan kuution
seinddn puhaltavaa tuulta. Tuloksista n&hdaan, ettd eurokoodin arvot ovat itseisarvoltaan
suurempia tuulitunnelikokeiden [5] tuloksiin ja tdmén tutkimuksen CFD-analyysin tuloksiin
verrattuna lukuun ottamatta lohkoa | (katon alavirranpuoleinen puolikas), jossa eurokoodin
mukaan vaikuttaisi selvasti pienempi alipaine.

Tunnetusti virtauslaskennalla saadaan tarkimpia tuloksia tuulenpuoleiselle seinalle, katon ja
sivuseinien tulosten erotessa eniten kokeellisista arvoista. Eroavaisuudet esimerkiksi katon
tuloksissa johtunevat enimmékseen kaytetyn turbulenssimallin virheistd virtauksen irtoamis- ja
uudelleenkiinnittymisalueilla.
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Kuva 2. Silsoen kuution painekertoimet ja vertailu kirjallisuudesta esitettyihin tuloksiin [2].

Taulukko 1. Silsoen kuution painekertoimet tuulilohkoittain (negatiivinen arvo alipainetta).

Lohko A B D E F G H |
Lohkon suhteellinen ala [%] 20 80 100 100 2,5 5 40 50
CFD, SST k-w, 0° -0,76 -0,45 0,58 -0,21 -1,01 -0,94 -0,73 -0,35
TPU tuulitunneli [5], 0° -1,10 -0,69 0,70 -0,35 -1,51 -1,36 -1,14 -0,47
CFD, SST k-w, 45° -0,34 -0,38 0,34 -0,37 -1,70 -1,13 -0,47 -0,42
TPU tuulitunneli, 45° -0,47 -0,54 0,33 -0,52 -1,20 -1,28 -0,63 -0,50
EN 1991-1-4 [3] -1,20 -0,80 0,80 -0,50 -1,80 -1,20 -0,70 -0,20/+0,20
CFD, SST k-w, -45° - 45° -0,76 -0,45 0,58 -0,37 -1,70 -1,13 -0,73 -0,42
TPU tuulitunneli, -45° - 45° -1,10 -0,73 0,70 -0,52 -1,74 -1,43 -1,14 -0,50

Helsingin Olympiastadionin tuulikuormien arviointi

Varsinaisena sovelluskohteena tydssa on ollut Helsingin Olympiastadionin uudet teraskatokset.
Peruskorjauksen yhteydessd kaarteiden katsomot katetaan ja ndiden katoksien alustavassa
rakennesuunnittelussa on kaytetty virtauslaskennalla mééritettyja tuulikuormia. Lopullisia
rakennesuunnittelussa kdytettavid tuulikuormia varten tehd&an pienoismalleilla mittauksia Aalto-
yliopiston tuulitekniikkatunnelissa.

Katoksen geometria on melko virtaviivainen, jolloin ajan suhteen keskiméaéaraisen virtauksen
aiheuttamat pintapaineet ovat suhteellisen pienida ja tuulen puuskaisuudesta johtuvan
tuulikuorman merkitys on tavanomaista suurempi. Koko tutkittava rakenne on lisdksi kattoa,
missd tapahtuu virtauksen irtoamista. Siten Olympiastadionin katokset ovat lahtokohdiltaan
hankalia analysoitavia virtauslaskennan naktkulmasta.

Tarkasteltavia tuulen suuntia on kaikkiaan 12 kpl. Painekertoimen maarittdmisessa
referenssipaineena on kéytetty katoksen korkeudella vaikuttavan tuulen dynaamista painetta ja
referenssipinta-alana katoksen ala- ja ylapinnan vaakatasoon projisoitujen alojen keskiarvoa.
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Laskennassa kéytettiin samaa ohjelmaa, turbulenssimallia ja laskenta-asetuksia kuin Silsoen
kuutiolle. Rakenteettomassa laskentaverkossa oli 11,6 miljoonaa kontrollitilavuutta, joista noin
60 % katoksen rajakerrostihennyksessa. Laskentaverkon riippumattomuustarkastelua ei tehty
laskentakapasiteetista aiheutuneiden rajoitusten vuoksi. Taydellistd konvergenssia ei saavutettu,
vaan tuloksiin jéi pientd jaksottaista heiluntaa. Laskentaa jatkettiin transienttina muutama aika-
askel, jolloin residuaalit laskivat heti l&hes kahdella dekadilla. Todenndkdisesti jollakin alueella
on transientteja virtausilmioitd, eik& stationaari analyysi siksi konvergoi taysin. Stationaarin
analyysin pintapaineiden heilahtelun amplitudi oli kuitenkin suhteellisen pienta.

Kuvassa 3 on vertailtu tuulitunnelikokeilla ja virtauslaskennalla maéritettya pohjoiskaarteen
katoksen keskiméaardista nettopainekerrointa. Kuvaajista nahdaan, ettd kun tuuli kohdistuu kentén
puolelta pohjoiskatokseen (suunnat 79° - 259°), ovat kokeellisesti ja laskennallisesti saadut
keskimadraiset nettopainekertoimet l&helld toisiaan. Jos tuuli osuu katokseen suoraan (289° -
49°), on tulosten ero huomattavasti suurempi, virtauslaskennalla saatujen painekertoimien ollessa
selvasti suurempia.
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Kuva 3. Pohjoiskaarteen katoksen keskiméaréinen nettopainekerroin eri tuulen suunnilla.
Positiivinen arvo tarkoittaa ylospéin suuntautuvaa kuormaa. Suunta 0°on pohjoisesta etel&an.
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Kuva 4. Painekertoimen jakauma ja stadionin keskilinjalle piirretyt virtaviivat (tuuli 169°).
Katoksen lopullisen tuulikuorman maédrittdmiseen ei riitd pelkkien keskimadrdisten

pintapainekertoimien maérittdminen, vaan sen lisaksi tdytyy huomioida tuulen puuskaisuuden ja
rakenteen dynaamisuuden vaikutus. Puuskakertoimen maarittdmisessa voidaan hyoddyntaa
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normeissa annetun turbulenssin intensiteetin sijaan virtausanalyysilla laskettua arvoa, joka tulisi
ottaa laskentamallista alueelta, joka on ylavirran puolella analysoitavan kohdan l&histolla. Talla
tavalla tuulen puuskaisuuden vaikutukset saadaan huomioitua karkealla tasolla. Tama
yksinkertainen menetelma ei kuitenkaan huomio oikein esim. toisesta rakennuksesta jaksollisesti
irtoavien pyorteiden vanaan aiheutuvaa voimakasta turbulenttisuutta. Tallaisen vanavérahtelyn
tarkempi huomiointi vaatisi transientin analyysin.

Yhteenveto

Artikkelissa on esitelty rakennusten tuulikuormien suuruuteen vaikuttavat tekijat seké kasitelty
erityispiirteitd, jotka liittyvat virtauslaskennan soveltamiseen tuulikuormien méérittamisessa.
Virtauslaskenta tarjoaa pienoismalleilla tehtyjen tuulitunnelikokeiden rinnalle uusia
mielenkiintoisia mahdollisuuksia.

Nykyadn kéytettdvissa oleva laskentakapasiteetti rajoittaa yh& virtauslaskennan
kayttomahdollisuuksia. Vaikka tutkimuksissa LES-laskentaan perustuvilla ajasta riippuvilla
analyyseilld on saatu lupaavia tuloksia, tydssd havaittiin, ettd edelleen kéaytannon
suunnittelukaytossa stationaarit RANS-laskentaan perustuvat analyysit ovat realistinen
vaihtoehto tuulitekniikan sovellutuksissa. Virtauslaskentaa voidaan hyodyntda esimerkiksi
maanpinnanmuotojen vaikutuksen ja maaston pinnankarheuden muutoksen arvioinnissa tai
keskimadraisten pintapainekertoimien maéarittdmisesséd. Tuulen puuskaisuuden vaikutusta
voidaan huomioida karkeasti turbulenssin kineettisen energian perusteella.

Virtauslaskentaohjelmistot ovat kehittyneet yha helppokayttdisemmiksi. Virtauslaskennan
yhteydessa on kuitenkin erityisen voimakkaasti korostettava analysoijan omaa virtausteknistéa
osaamista ja tulosten luotettavuuden arvioinnin tarkeyttd. Analyyseja on helppo tehdd, mutta
todellisuuden kanssa yhté pitavien tulosten saaminen on jo paljon haastavampaa.

Viitteet

[1] Blocken, B., Stathopoulos, T., Carmeliet, J. CFD simulation of the atmospheric
boundary layer: wall function problems. Atmospheric Environment 41(2007), pp.
238-252. doi: http://dx.doi.org/10.1016/j.atmosenv.2006.08.019

[2] Dagnew, A. Computational Evaluation of Wind Loads on Low- and High-Rise
Buildings. Dissertation. Florida 2012. Florida International University. 226 p.
http://digitalcommons.fiu.edu/etd/802/

[3] EN 1991-1-4. Eurokoodi 1: Rakenteiden kuormat. Osa 1-4: Yleiset kuormat —
tuulikuormat. Brussels 2011. CEN. 157 s. + liitt. 96 s.

[4] Irtaza, H., Beale, R.G., Godley, M.H.R., Jameel, A. Comparison of wind pressure
measurements on Silsoe experimental building from full-scale observation, wind-
tunnel experiments and various CFD techniques. International Journal of
Engineering, Science and Technology 5(2013)1, pp. 28-41. doi:
http://dx.doi.org/10.4314/ijest.v5i1.3

[5] Wind pressure database of Tokyo Polytechnic University. [WWW]. [viitattu:
23.3.2015]. http://www.wind.arch.t-kougei.ac.jp/system/eng /contents/code/tpu

[6] Yang, W., Quan, Y., Jin, X., Tamura, Y., Gu, M. Influence of equilibrium
atmosphere boundary layer and turbulence parameter on wind loads of low-rise
buildings. Journal of Wind Engineering and Industrial Aerodynamics 96(2008)10-
11, pp. 2080-2092. doi: 10.1016/j.jweia.2008.02.014

29


http://dx.doi.org/10.1016/j.atmosenv.2006.08.019

Suomen XII mekaniikkapéivien esitelmét
R. Kouhia, J. Mé#kinen, S. Pajunen and T. Saksala (toim.)
(©Kirjoittajat, 2015. Vapaasti saatavilla CC BY-SA 4.0 lisensioitu.

Terasristikon paarteiden liitoksen vapaan valin leikkausvoi-
man arviointi
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teemu.tiainen@tut.fi, markku.heinisuo@tut.fi

Tiivistelma. Teriiksisten putkiristikoiden suunnittelussa kiytetisin tyypillisesti verrattain yksinkertai-
sia rakennemalleja, joista ei vilttdméttd saada kaikkea suunnittelustandardien laskentakaavojen edel-
lyttdmid voimasuureita. Ndin on laita esimerkiksi kéytettédessd klassista ristikkoteoriaa ja vapaavilisia
liitoksia. Kyseisen vapaan vélin leikkausvoima tulisi tuntea, jotta kaikki standardin edellyttamiét tar-
kastukset voidaan tehdi. Téatd voimaa ei valitettavasti kuitenkaan saada mallista suoraan. Téstd syysté
késilld olevassa artikkelissa esitellddn yksinkertainen tapa arvioida vapaan vélin leikkausvoimaa.

Awvainsanat: putkiristikko, liitosmitoitus

Johdanto

Er&iana osana terdksisen putkiristikon suunnittelua on liitosten kestdvyyden varmistaminen eri-
laisia vauriomuotoja vastaan. Liitoksen kestdvyyden arviointi on haastava tehtéva, joka kiytadnnossa
edellyttéisi jiredn 3D-elementtimenetelmémallin kayttod. Kuitenkin tavanomaisimpia vaurio-
muotoja silmélla pitden suunnittelustandardeihin on siséllytetty joitakin yksinkertaisia lasken-
takaavoja. Esimerkiksi Eurokoodien terédsrakenteiden liitoksia késittelevd osa EN 1993-1-8 [5]
esittédd putkiristikon vapaavéliselle liitokselle nelji murtumismuotoa, joita vastaavien kestavyyksien
riittdvyys suunnittelijan tulee tarkastaa.

Niistd muodoista paarteen normaalivoimakestdvyys vapaan vélin leikkausvoima huomioon
otettuna on nyt erityistarkastelun kohteena. Témé kestdvyys lasketaan kaavalla

(Ao — AvO) fyO + Avﬂfyo\/m ( )
1

YM5

NO,gap,Rd =

missd fyo on paarteen materiaalin myotéraja, yas5 osavarmuuskerroin, Ag paarteen poikkileik-
kauksen pinta-ala, A,¢ paarteen leikkausala, Vg4 paarteessa vapaassa vilissi vallitseva leikkaus-
voima, Vj rq paarteen vapaan vélin leikkauskestdvyys, joka puolestaan lasketaan kaavalla

= Ao fyo
’ V3yums

Kestdvyyden laskemiseksi on tarpeen tuntea vapaassa vélissd vallitseva leikkausvoima Vigg.
Useimmiten kéytetyistd sauva- tai palkkielementtejd hyddyntavistd elementtimentelmémalleista
(kuva 1) tétéd leikkausvoimaa ei kuitenkaan suoraan saada selville, vaan se pitdd laskea sauva-
voimien perusteella jalkikésittelynd [3].

Systemaattinen tapa saada vélin leikkausvoima selville on kédyttdd mallia, jossa mainitussa
vélissd on oma elementtinsi (kuva 2). Témén kaltaisia malleja voidaan muodostaa monin eri
tavoin ja niitd tapoja kisitelldén ldhteessd [1]. Syy, miksi kuvan 2 mallia ei juurikaan kiyteta,

Vo (2)
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Sauvamalli Sauvamalli, jossa Jatkuvat paarteet,
jatkuvat paarteet epdkeskisyyselementti

Kuva 1. Yleisesti kiytettyja tapoja muodostaa ristikon elementtimenetelméamalli.

Viilielementti
N / A Palkkielementti

o \\/

Epdkeskisyyselementti

Kuva 2. Liitosalueiden mallintaminen siten, ettd kullakin uumasauvalla on oma epikeskisyyselementtinsé
ja vapaassa vilissd oma elementtinsa.

lienee yksinkertaisesti se, ettd mallin kasaaminen manuaalisesti on jonkin verran tavanomai-
sia malleja tyolaampéd eikd analyysiohjelmissa ole tdhén tarkoitukseen valmiita automaattisia
toimintoja.

Toinen syy miksi monimutkaisempaa mallia ei aina voida tai haluta kéyttda on optimointi.
Optimoinnissa rakenneanalyysimallista halutaan saada mahdollisimman kevyt, ettei ongelma ja
siten laskenta-aika paisu tolkuttomaksi. Esimerkiksi Melan [2] esittdméssé ristikon topologiaop-
timoinnin sekalukuformuloinnissa tehtdvan muuttujien méird tuntuvasti kasvaa, jos yritetdén
kédyttdd muunlaista mallia kuin nivelpéisisistd sauvoista koostuvaa.

Leikkausvoima saadaan ratkaistua mainitusti myds uumasauvojen sauvavoimista [3], mut-
ta tdméikain tapa ei ole ongelmattomasti yhdistettévissid mainittuun optimointiformulointiin.
Muuta ratkaisua ylld kuvattuun leikkausvoimaongelmaan ei kirjoittajien késityksen mukaan ole
kirjallisuudessa esitetty, josta syysta téssi artikkelissa esitelldin verrattain yksinkertainen malli,
jolla ongelma voidaan tyydyttavilla tavalla ratkaista. Mallin toimintaa on liséksi havainnollis-
tettu ja varmennettu muutamin esimerkkilaskelmin.

Malli

Tarkastellaan kuvaa 3. Koko ristikko voidaan ajatella palkkina, jonka jdnnevéli on L, ja sille
voidaan médrittaéd leikkausvoimapinta Q(x).

Yksinkertaisen menettelyn idea on valita tédstd kuvitteellisen palkin leikkausvoimapinnasta
x;-koordinaatin kohdalta paarteessa liitoksessa ¢ vaikuttava leikkausvoima kaavan

Via = 1Q (1) (3)

ja kuvan 4 mukaisesti.

Etenkin ulkoisesti staattisesti médrattyihin ristikoihin, joita kattoristikot monesti tapaavat
olla, voidaan menettelyéd soveltaa helposti mielivaltaiselle kuormalle ¢(z). T&lloin kattoristikon
tapauksessa eri kuormitusyhdistelyille saadaan laskettua omat paarteen liitosten leikkausvoima-
arviot.

Esimerkkilaskelmat

Arvioidaksemme esitetyn menettelyn kelvollisuutta ja arvion paikkansa pitdvyytté tarkastellaan
kuvan 5 ristikkoa, joka on mallinnettu kuvan 2 periaatteen mukaisesti yleisesti kdytetyin Euler-

31



U A A A A A A A
AN N
VA A A A A A A A A

Kuva 3. Ristikko voidaan ajatella palkkina, jolle puolestaan voidaan laskea leikkausvoimapinta.

Kuva 4. Liitoksessa vallitseva leikkausvoima luetaan ”globaalista” leikkausvoimapinnasta.
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Kuva 5. Esimerkkiristikko kuormineen.

Bernoulli-palkkielementein siten, ettd epékeskisyyselementit ovat ldhes ideaalisen jaykkid ja
uumasauvat liittyvit epakeskisyyselementteihin nivelisesti. Koska liitoksen vilialueessa on oma
elementtinséd, saadaan kyseisen alueen leikkausvoima suoraan téstéd mallista.

Ristikon jénnevéli on 36 metrid, ensimmaéisessd kuormitusyhdistelysséd kuorma tasainen 25
kN/m ja toisessa kuormitusyhditelyssé toisella lappeella 25 kN/m ja toisella 15 kN/m. Ristik-
ko on tasan jaoteltu K-liitoksinen nelioputkista hitsaamalla koottu ristikko, jonka profiilivalin-
nat ndhdasin taulukossa 1. Elementtien leikkausvoimapinnat molemmissa kuormitusyhdistelyta-
pauksissa ndhdédén kuvassa 6. Huomataan, etté leikattaessa ristikko kahtia K-liitoksen kohdalta
enin osa leikkausvoimasta kulkeutuu liitoksessa olevan paarteen kautta ja verrattain pieni osa
vastakkaisen paarteen kautta.

Taulukko 1. Sauvojen poikkileikkaukset. Sauvanumerointi kuvan 5 mukaan.

Sauva Koko [mm]
Ylédpaarre 180x10
Alapaarre 160x6
Uumasauva 1 60x3
Uumasauva 2 70x3
Uumasauva 3 90x3
Uumasauva 4 70x3
Uumasauva 5 110x4
Uumasauva 6 80x3
Uumasauva 7 140x5
Uumasauva 8 140x5

Esitetyn arviointitekniikan k#yttdmiseksi tulee laskea leikkausvoimapinta Q(z). Tasaisen
kuormituksen tapauksessa kéyttéden ldhteen [4, sivu 183] merkkisaantod saadaan

qL
Qi) =2 —qa (@)
ja kahden kuormituksen tapauksessa
3 L L L
Q2(z) = qg +%—q1x—(q2—m)<x—§> (5)
missé kéarkisuljemerkinté tarkoittaa Macaulay-funktiota
L —L kmz-L>0
fla)=<z—Z>={" "2 THTT2=
2 0, muussa tapauksessa
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Shear force Gz (LC1)

Shear force Oz (LC2)

Kuva 6. Leikkausvoimapinnat koko ristikoille elementtimenetelmélla.

Taulukossa 2 ndhdédén vertailu arvioidun ja FEM-mallista saadun leikkausvoiman vélilla
ristikon K-liitoksissa virheineen, kun tarkkana ratkaisuna pidetd&in FEM-mallista saatua leik-
kausvoiman arvoa. Elementtimenetelmén tarjoamana ratkaisuna valitaan itseisarvoltaan suurin
elementisséd esiintyvé leikkausvoiman arvo ja esitetyn mallin mukaiseen arvioon tarvittavana
liitoksen z-koordinaattina liitoksen keskikohdan koordinaattia.

Taulukko 2. Vertailu. Leikkausvoiman itseisarvot K-liitosten vapaissa véleissé laskettuna elementtimene-
telmélla ja esitetylld mallilla.

Mitoitusleikkausvoima Vgy

Kuormitus 1 Kuormitus 2
Liitos FEM  Arvio Virhe %] FEM  Arvio Virhe [%)]
Liitos 1 4.01 56.25 1304.2 33.02 11.25 -65.9
Liitos 2 50.08 112.50 124.6 64.30 67.50 5.0

Liitos 3  108.04 168.75 56.2 99.54  123.75 24.3
Liitos 4  165.23 225.00 36.2 135.75 180.00 32.6
Liitos 5 227.90 281.25 23.4 175.25 236.25 34.8
Liitos 6  303.58 337.50 11.2 223.10 292.50 31.1
Liitos 7 375.17 393.75 5.0 266.73 348.75 30.7
Liitos 8 4.01 56.25 1304.2 39.43  78.75 99.7
Liitos 9 50.07 112.50 124.7 15.83  112.50 610.7
Liitos 10  108.04 168.75 56.2 73.32 146.25 99.5
Liitos 11 165.19 225.00 36.2 128.59 180.00 40.0
Liitos 12 227.90 281.25 23.4 189.39 213.75 12.9
Liitos 13 303.51 337.50 11.2 262.57 247.50 -5.7
Liitos 14  375.17 393.75 5.0 333.53 281.25 -15.7
Keskiarvo - - 223.0 - - 79.2

Ehdotetun menettelyn keskimé#rdinen virhe on melko suuri. Symmetrisessd kuormitusta-
pauksessa ristikon keskialueella (liitokset 1 ja 8) esiintyy jopa yli kymmenkertaisia leikkausvoi-
man arvoja verrokkiin ndhden. Kuitenkin on syytd huomata, etté paarteet ovat verrattain jéreité
profiileja ja yleensé koko ristikon matkalla samaa profiilia. Téll6in niiden leikkauskestévyys on
suuri, jolloin kaavan 1 perusteella normaalivoimakestdvyyden aleneminen leikkausvoiman takia
jad pieneksi, jos leikkausvoimakin on pieni. Uloimpien liitoksien (liitokset 6, 7, 13 ja 14), joissa
leikkausvoimalla ylipdénsd voidaan katsoa olevan mitoituksen kannalta merkitysta, osalta ar-
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vion voidaan katsoa olevan riittdvin tarkka liitoksen mitoitukseen. Néissa liitoksissa sauvojen
normaalivoima- ja taivutusmomenttitarkasteluissa kestévéksi osoittautuvan ristikon paarteen
leikkausvoimakestivyys saattaa jopa ylittyd. Huomattavaa on, ettd symmetrisessé kuormitus-
tilanteessa arvio oli aina suurempi kuin oikea leikkausvoima, kun taas epdsymmetrisessi tilan-
teessa virheen suuntaa ei voida paatella.

Paitelmat

Téssé esityksessd ehdotetaan yksinkertaista menettelyé leikkausvoiman méarittdmiseksi putki-
ristikon vapaavélisessd liitoksessa. Ristikolle lasketaan globaali leikkausvoimapinta, josta saata-
vaa leikkausvoiman arvoa tarkasteltavan liitoksen kohdalla kaytetéan liitoksen mitoitukseen. Me-
nettely vaikuttaisi esimerkkien perusteella olevan riittdvén tarkka liitosten mitoittamisen apuna
tavanomaisessa insinoorityossé ja se on sovellettavissa myos optimointimenettelyn yhteyteen.
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Tiivistelmd. Tassd artikkelissa késitellaan seismisessé rakennesuunnittelussa kaytettavid
analyysimenetelmia. Tarkastelun kohteena ovat korvausvoima-, vastespektri-, PushOver- ja
aikahistoriamenetelma. Naitda menetelmia on sovellettu terasrunkoiseen esimerkkirakenteeseen.

Avainsanat: Maanjéristys, korvausvoima, vastespektri, PushOver, aikahistoria

Johdanto

Maanjaristys on luonteeltaan selvasti erilainen kuormitus verrattuna tuuli- tai lumikuormaan, ja
siten maanjéaristysmitoituksen suunnittelukriteerit poikkeavat lahtékohdiltaan totutuista. Isoja
maanjéristyksia tapahtuu harvoin, mutta niissa rakenteiden kuormat kasvavat erittain suuriksi.
Taman seurauksena siirtymdat ovat suuria ja rakenteisiin syntyy pysyvid muodonmuutoksia.

Tassa esityksessa tarkastellut numeeriset analyysimenetelmét muodostavat vain yhden osan
maanjaristysmitoituksesta, silla muita vahintddn yhta tarkeitd osa-alueita ovat alkuvaiheen
konseptisuunnittelu ja detaljien suunnittelu. Myos oikea seismisyyden tason (seismic hazard)
madrittely on tarkeétd, mutta se ei kuulu rakennesuunnittelijan tehtaviin.

Maanjaristyksia tapahtuu jatkuvasti ympéri maapalloa tyypillisesti mannerlaattojen
seismisesti aktiivisilla reuna-alueilla. Suomessa maanjaristykset ovat pienid ja seismistd
mitoitusta tarvitaan lahinna sellaisissa erikoistapauksissa kuin ydinvoimalat. Monet kotimaiset
vientiyritykset myyvat kuitenkin tuotteitaan maanjaristysherkille seuduille ja taman takia
Suomessakin tarvitaan maanjaristysmitoituksen osaamista.

Maanjaristysmitoitus

Rakennusten seismisessé suunnittelussa voidaan erottaa kolme eri osa-aluetta, jotka yhdessa
muodostavat ~ varautumisen  maanjéristyksen  mahdollisuuteen:  Konseptisuunnittelu,
maanjaristysvoimien laskenta ja yksityiskohtien suunnittelu. Maanjéristysmitoitus ei siis késita
vain seismistd rakenneanalyysia ja rakenteen mitoittamista tasta tuleville rasituksille, vaan myos
tarkoituksenmukaisen rakennesysteemin valinnan, jotta rasitukset jaisivat lahtokohtaisesti
pieniksi, ja detaljien suunnittelun, jotta riittava sitkeys olisi mahdollista saavuttaa.
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Voimakkaassa maanjdristyksessa rakenteiden siirtymat kasvavat vaistiméatta hyvin suuriksi.
Talloin tavanomaisia rakenteita ei kannata suunnitella kestdmaén kimmoisena maanjaristyksia,
vaan on jarkevampaa sallia pysyvien muodonmuutosten syntyminen. Suunnittelunormien
taustalla olevan kapasiteettisuunnittelun periaatteiden mukaisesti rakenteen sallitaan muodostaa
ennalta valittu mydtémekanismi, jossa maanjaristyksen energia dissipoituu plastisoituvissa
osissa lammoksi. Talloin lahtokohtaisesti hyvaksytéan se, etta voimakkaassa maanjaristyksessé
rakennus vaurioituu pahoin, mutta se ei saa kuitenkaan sortua. Voi olla halvempaa purkaa
vaurioitunut rakennus pois ja rakentaa tilalle uusi kuin korjata vauriot.

Valtaosa maanjaristysmitoituksesta tehdaan kéyttéen lineaarisia analyysimenetelmid, vaikka
kyseessa on hyvin epdlineaarinen ilmid. Yksinkertaisissa tapauksissa kaytetaan
korvausvoimamenetelméd ja muissa vastespektrimenetelmad. Suunnittelustandardeissa esitetdan
keinot kiihtyvyysspektrin muokkaamiseksi muotoon, joka ottaa huomioon rakenteen
epélineaarisen kayttaytymisen (kuva 1).

fu 4
w s o

Vaakakiihtyvyys [m/fs?]

o 0,5 1 1,5 2 2,5 3 35 4
Jaksonalka [s]

— Kimmoinen spektri = = Suunnitteluspektri

Kuva 1. Artikkelin rakenteen EN 1998-1[1] mukainen vaakavastespektri, joka kuvaa
maanjéaristyksen rakenteelle aiheuttamia kiihtyvyyksia.

Seismiset analyysimenetelmat

Korvausvoimamenetelmd

Yksinkertaisin seisminen analyysimenetelmé on korvausvoimamenetelma. Tavoite on korvata

dynamiikan tehtava staattisella kuormitusjakaumalla, joka saa aikaan maanjéristyksen

aiheuttaman suurimman siirtymatilan. Jos rakenteen merkitsevin ominaismuoto kuvaisi tarkasti

rakenteen vastetta maanjaristyksessa, tuottaisi korvausvoimamenetelma tarkkoja tuloksia. Jos

useammat muodot osallistuvat oleellisesti vasteeseen, heikkenee tuloksien tarkkuus.
Ominaismuotoon ¢ liittyva staattinen korvausvoima saadaan kaavalla

Foi = ms Sa(M gL, 1)
J

missd mg on kokonaismassa, m; vapausasteen i massa ja S,(T) ominaisvardhdysaikaan T
liittyva kiihtyvyysspektrin arvo.

Vastespektrimenetelmdi

Vastespektrimenetelmda on nykyddn eniten kéytetty seisminen analyysimenetelmé
monimutkaisemmilla rakenteilla. Siind rakenteen ominaismuotoja ¢@; (@I Me; =1,V i)
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vastaavien ominaisvérahdysaikojen T; ja osallistumiskertoimien I; perusteella saadaan kutakin
ominaismuotoa vastaava staattinen voimajakauma F; kaavalla

Fy =TiM@;S.(Ty) , (2)
jossa M on massamatriisi. Osallistumiskertoimet voidaan puolestaan laskea kaavalla
I =@M, 3

jossa l on siirtymévektori, kun alusta saa ykkassiirtyméan maanjaristyksen suunnassa.

Menetelmén myotéd tulokset saadaan jokaiselle muodolle erikseen. Yleensd muodoilla on
vaihe-eroa, joten tulosten suora summaaminen yhteen tuottaisi liian suuria tuloksia. Yhdistelyyn
on kehitetty useita tilastollisia menetelmia, joista yleisimmin kéytetty on CQC (complete
gudratic combination). Yhdistelyn jélkeen rakenne ei ole enad tasapainossa, joten yhdistely
tulee suorittaa erikseen jokaiselle tarvittavalle suureelle erikseen. Yhdistelyn seurauksena
normaali- ja leikkausvoiman sekd taivutusmomentin rasituskuviot eivét endd vastaa sitd, mihin
on totuttu statiikan tehtavassa.

PushOver-menetelmdi

Epalineaarisen statiikan analyysin ja vastespektrin kéytt6 voidaan yhdistdd PushOver-
menetelméssa, jolloin  pystytddn ottamaan huomioon rakenneosien plastisoituminen
maanjéaristyksessa. Menetelmasta on kdytdssa useita eri variaatioita, mutta periaatteessa kaikissa
niissa méaritetddn rakenteelle ekvivalentti epalineaarinen yhden vapausasteen vérahtelija. Talla
mallilla ratkaistaan maanjaristyksesséd syntyva vaakasiirtymd, joka muunnetaan takaisin
alkuperdisen FE-mallin siirtymaétilaksi ja sitd vastaavaksi rasituksiksi.
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74,11 mm / 1736,14kN
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seeeees MDOF Ekvivalentti SDOF =g Idealisoitu SDOF @  Mitoituspiste

Kuva 2. Vaakakuormitus huipun  siirtyman  funktiona  PushOver-menetelméssa
esimerkkirakenteelle. MDOF-kéyra saadaan FE-mallin epalineaarisesta statiikan analyysista.
Ekvivalentti SDOF-kédyra saadaan eurokoodin [1] N2-menetelmdsséd skaalaamalla MDOF-
kayrésté. Bi-lineaarisen idealisoidun SDOF-kayra ja ekvivalentin SDOF-kayré vastaavat samaa
muodonmuutosenergiaa. Mitoituspiste méaraytyy kuvan 3 tavoitesiirtyman perusteella.
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Kiihtyvyys [mfs?]

~

o 0,02 0,04 0,06 0,08 01 0,12 0,14 0,16
Siirtyms d [m]
m— Kimmoinen kiihtyvyysspekiri = Ekvivalentti SDOF @ Mitoituspiste Tc T

Kuva 3. PushOver tavoitesiirtyman maaritys esimerkkirakenteelle. Kimmoinen spektri on
esitetty koordinaatistossa, missé jaksonaikaa vastaa origon kautta kulkeva suora. T* on yhden
vapausasteen vérdhtelijan jaksonaika, jonka perusteella l0ydetddn ekvivalentin mallin
tavoitesiirtyma.

Aluksi  PushOver-menetelmdsséd  kasvatetaan askeleittain  poikittaista ~ kuormitusta
epélineaarisessa statiikan analyysissdé kunnes rakenne saavuttaa —mydtodmekanismin.
Rakennuksen huipulta valitun tarkkailusolmun siirtymén ja kuorman vélistd epélineaarista
yhteyttd sanotaan PushOver-kayréksi (kuva 2). Tehdyn analyysin perusteella tiedetdan kutakin
siirtymdarvoa vastaava rasitusjakauma. Tassa esityksessda on kaytetty eurokoodin [1] N2-
menetelméa ja sen mukaisesti kahta eri kuormitusta: vakio kiihtyvyyttd sekd lineaarisesti
ylospdin kasvavaa kiihtyvyyttd. Muita yleisesti kdytettyja menetelmia ovat siirtymakerroin ja
kapasiteettispektri menetelma [3]. Kiihtyvyys-siirtyma —spektrin (kuva 3) avulla maaritetaan
rakenteelle siirtymd, jonka taysin kimmoisena séilyva idealisoitu rakenne kokisi.

Monimuotoisissa  epasdannollisissd  rakenteissa  PushOver-menetelméssd  tehtyjen
yksinkertaistuksien myo6ta rakenteeseen kohdistuva véaantd ei vastaa todellisuutta. Naiden
rakenteiden analysointiin on kehitetty parempia menetelmié.[2]

Aikahistoriamenetelmd

Aikahistoriamenetelméan idea on ratkaista sopivaa aikaintegrointimenetelmaa kéyttaen rakenteen
vaste, kun maaperdn Kiihtyvyyshistoria tunnetaan. Kiihtyvyyshistoriaksi voidaan valita
rakennuksen sijaintipaikan ldheltd mitattu todellinen tai keinotekoinen Kkiihtyvyys ajan
funktiona. Herétteiden taajuussisaltd sovitetaan vastaamaan suunnittelustandardissa vaadittua
kimmoista spektrid. Sovitetun heratteen lisdksi voidaan kayttdd keinotekoisia heratteita.
Suoraviivaisin ja todenmukaisin menetelma on epélineaarinen dynamiikan analyysi, mutta se on
samalla myos laskennallisesti kaikkein raskain.

Aikahistoriamenetelméssé ei synny samanlaista eri muotojen tulosten yhdistelyongelmaa
kuin vastespektrimenetelman yhteydessd. Toisaalta tulokseksi saadaan iso joukko eri aika-
askelien tuloksia, eika yksiselitteistd yhta voimajakaumaa. Aikahistoriamenetelméssa tulee
kayttaa riittdvan pienté aika-askelta, mika nostaa sen laskennallista hintaa. Kiihtyvyyshistorioita
tarvitaan useita, jotta mahdollisesti tulevaisuudessa sattuvan maanjaristyksen vaikutukset
tulisivat varmuudella otetuksi huomioon. Néiden haasteiden takia aikahistoriamenetelmd ei ole
rakenteiden kdytannén maanjaristysmitoituksessa vield yleisesti k&ytdssa, mutta mahdollisuudet
sen soveltamiseen paranevat tietokoneiden laskentakapasiteetin parantuessa.
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Esimerkkirakenne

Seismisten analyysimenetelmien ominaisuuksia on vertailtu kuvan 4 mukaisella symmetrisell&
terasrakenteella. Kuvitteellinen rakennus sijaitsee Luoteis-Turkissa, missd kallioperén
vaakakiihtyvyys (PGA-arvo) on 0,167g. Kiihtyvyysspektri (kuva 1) on muodostettu standardin
EN 1998-1-1:2005 perusteella olettaen spektrin tyypiksi 1, maaperédluokaksi C,
tarkeyskertoimeksi 7, =10 ja kdyttaytymiskertoimeksi keskeisia vinositeita vastaava 0 =4.

\ 8 kN/m” |

51 kN/m?

/ 8 kN/m’

N

Kuva 4. Teréasrakenteen mitat ja tasojen kuormat (oma paino + hydtykuorma).

Ominaisarvotehtavdn perusteella saadut jaksonajat ja seismisen massan osallistuminen eri
ominaismuotoihin on esitetty taulukossa 1. Symmetriselld rakennuksella on selkeat erilliset
paamuodot X- ja Y-suuntaan.

Korvausvoima- ja vastespektrimenetelmissa oli mukana X-suunnassa vain puristussiteet ja
Y-suunnassa seka puristus- etté vetositeet. Tutkitussa kuormitustapauksessa on otettu huomioon
maanjaristysvoimien lisaksi oma paino ja hyotykuorma 1,0D + 1,0L + 1,0E, + 0,3Ey.

Taulukko 1. Rakenteen jaksonajat ja massan osallistuminen eri muotoihin.

Muoto | Jaksonaika [s] Ux[%] Uy[%] Uz [%]
1 0,904 1,2 96,0 0,0
2 0,778 95,8 1,3 0,0
3 0,536 0,1 0,0 0,0
4 0,333 0,0 0,6 0,0
97,0 97,4 0,0

PushOver- ja aikahistoriamenetelmissa on kéytossd epélineaarinen rakennemalli, missa
huomioidaan suuret siirtymat ja myo6tolujittumaton  kimmoplastinen  materiaalimalli.
Epélineaarisen mallin ty6tad lisd&d huomattavasti siteille mallinnettavan alkuhairiét, jotka
mahdollistavat siteiden todellisen kayttaytymisen syklisesséd kuormituksessa. Lineaarisessa
mallissa siteiden nurjahtaminen otetaan huomioon kéyttamélla vain vetositeita.

Aikahistoriamenetelméassa on valittu viisi Turkista mitattua todellista aikahistoriaa, jotka on
sovitettu vastaamaan kuvan 1 mukaista spektria valilla 0,5 s — 1,3 s. Sovitus on suoritettu
SeismoSoftin SeismoMatch ohjelmalla ja rakenneanalyysit SeismoStruct ohjelmalla.
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Lineaaristen analyysien tulokset ovat merkittdvasti pienempid kuin tarkempien
epalineaaristen menetelmien (kuva 5). Eurokoodin [1] suosittelema kayttaytymiskertoimen g
arvo 4 nayttaisi olevan liian optimistinen esimerkkitapauksessa, silld rakenteen vaste
aikahistoriamenetelméassé on ldhes kimmoinen. Kuvasta 3 nahdaan, ettd kimmoisen ja todellisen
rakenteen suhde on 1,8. Jos téata kerrointa sovellettaisiin vasteenmuokkaustekijana q, saataisiin
lineaarisilla analyyseilla yhtendisempié tuloksia.
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Kuva 5. Rakenteelle kohdistuva perustusleikkaus eri analyysimenetelmilla.

Yhteenveto

Seisminen rakennesuunnittelu on monivaiheinen prosessi aina esisuunnittelusta detaljeihin asti.
Vaikka analyysimenetelmat ovat vain yksi vaihe seismistd rakennesuunnittelua, niiden oikea
soveltaminen luo perustan onnistuneelle lopputulokselle.

Tassd tydssa on esitelty nelja yleistd seismistd analyysimenetelmdd sekd sovellettu niitd
symmetriseen keskeisilla vinositeilla jaykistettyyn terasrakenteeseen.
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Summary. Dislocations can be used as macro elements to achieve the elastic model of material weakened
by cracks. Here, the dislocation-based fracture mechanics will be introduced and applied for the analysis
of materials within generalized continuum mechanics. The motivation for this study is the fact that the
singularity of the dislocation is regularized within generalized frameworks such as nonlocal and gradient
elasticity. Consequently, it is expected that the crack which is modelled through the convolution of the
dislocations will also have nonsingular stress fields.

Key words: Dislocation, fracture, generalized continua, nonsingular

Introduction on generalized continua

In classical continuum mechanics, the particles are idealized as point masses and the elastic
continuum is understood as a collection of particles with only three translational degrees of
freedom. Due to the lack of intrinsic length scale in classical elasticity theories, such as linear
or nonlinear elasticity and plasticity, they represent scale-free continuum theories. In order to
analyse the behaviour of structures with different sizes from micro to macro, a more general
theory is needed to account for scale effects. The generalized continuum theories enrich the
classical theories with additional material characteristic lengths in order to describe the scale
effects resulting from the microstructures. The generalized continuum elasticity theory, namely
Cosserat or micropolar, were introduced at the beginning of the nineteenth century first by the
Cosserat brothers in which a particle is identified by its position vector and its micro-rotation
vector (six degrees of freedom). Nonlocal elasticity is one of the extensions of the classical one
which was introduced to explain the material behaviour at nanoscale. This theory considers the
inner structure of materials and takes into account long-range (nonlocal) interactions. Another
simplified extension of the classical theory of elasticity is called gradient elasticity, which can be
related to nonlocal elasticity.

Gradient elasticity

Gradient elasticity is a generalization of linear elasticity which includes higher-order terms to
account for microstructural effects. Within strain gradient elasticity, the strain energy depends
on the elastic strain, and higher order strain tensors defined as spatial gradients either of the
displacement field, or of the strain field [3]. Due to the gradient terms, it contains additional
coefficients with the dimension of a length, which are called gradient coefficients. To study
dislocations, an incompatible strain gradient elasticity should be employed.
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Nonlocal elasticity

In this Section, we briefly present the basic ideas and equations of nonlocal elasticity of Helmholtz
type. In the theory of nonlocal elasticity (e.g., [1, 2]), the so-called nonlocal stress tensor ¢;; is
defined at any point ® of the analyzed domain of volume V as

by () = /V alz - yl)oy(y) dV(y), 1)

where o]z — y|) is a nonlocal kernel and o;; is the stress tensor of classical isotropic elasticity
defined at the point y € V as

0ii(y) = Adijerr(y) + 2uei;(y) (2)

where A, p1 are the Lamé constants, d;; is the Kronecker delta and e;; denotes the classical elastic
strain tensor, which is the symmetric part of the classical elastic distortion tensor

1
eij = 5(5@' + Bji) - (3)

We employ a comma to indicate partial derivative with respect to rectangular coordinates x;,
. Oty
l1.e. tij,j = (9:13;'

Dislocation-based fracture mechanics within generalized continua: A nonsingular theory

A dislocation is a line defect which give rise to elastic and plastic distortion. The dislocation
density of a single dislocation can be convolved with a so-called distribution function, so that
the boundary conditions of the crack-faces are satisfied. The unknown distribution function is
to be determined using the appropriate boundary conditions. Using such distribution of the
dislocations, the stress field of the cracked material is derived.

The dislocation-based fracture or distributed dislocation technique (DDT) is rather well /known
in classical elasticity. Here, we will focus on its application to present nonsingular models of
cracks in generalized continuum mechanics.

Mousavi and Lazar [6] applied DDT for nonlocal elasticity and derived nonsingular nonlocal
stress fields for cracks, while this theory does not give any nonlocal strain. In other words, within
this framework, the strain is still singular and the crack opening is identical to the classical one.
The nonlocal elasticity has also been applied to anisotropic materials. A nonlocal dislocation-
based fracture mechanics of anisotropic materials results in a nonsingular fracture theory [5].
It is to be noted that the boundary conditions in nonlocal elasticity are as simple as classical
elasticity.

In contrast to nonlocal elasticity, gradient elasticity includes non-classical boundary condi-
tions. Consequently, it is more complicated to establish a nonsingular gradient elastic fracture
theory. Once the non-classical boundary conditions are neglected, an approximate solution is
obtained which results in nonsingular stress and strain fields [7, 8]. Recently, an exact gradient
elastic formulation considering the non-classical boundary conditions are presented by Mousavi
and Aifantis [4]. This study deals with the cracks of mode III. It is noticed that higher or-
der gradient theories contribute to regularization of stress and higher-order stress (hyper-stress)
tensors.

An interesting aspect of the dislocation-based fracture mechanics is its ability to model crack
tip plasticity. The dislocations are source of incompatibility and give rise to plastic distortion.
Accordingly, it is possible to model cracks with dislocation and capture the crack tip plasticity,
without any assumption of cohesive fracture zone (Such as Barenblatt’s fracture theory).
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Conclusion

Dislocations play a key role in fracture and plasticity of crystalline materials. In line with this ob-
servation, within continuum mechanics of crystalline materials, the dislocations are interpreted
as the building blocks of cracks in fracture mechanics and also are denoted as the carriers of
plasticity. In this regard, a unified dislocation-based theory for plasticity and fracture is an ambi-
tious long-standing goal. Special forms of generalized continua, including nonlocal and gradient
elasticity, success in the regularization of classical singularities of the dislocations. Consequently,
by convolution of nonsingular dislocations, a nonsingular fracture theory is developed.
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Continuum damage mechanics without the variable
damage D
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Summary. Based on Eshelby’s inclusion problem a constitutive equation is derived for
spherical voids in a matrix material also showing Hookean deformation iIs derived. A modified
postulate of strain equivalence with the effective stress concept is used to introduce the effective
stress tensor. The relation between the effective stress tensor and the stress tensor is derived. A
simple tube example is applied to show, that the effective stress tensor describes the stress state
between the voids and is therefore the driving force for the dislocation glide, for example. The
specific Gibbs energy for a 2D material having rectilinear non-interacting microcracks is given.

Keywords: damage, effective stress, damage effect tensor, specific Gibbs free energy for
a microcracked medium

Introduction

For commercial reasons the capability of structures to carry loads is being exploited ever more
effectively. Thus it is becoming increasingly important to understand how materials behave
under high loading.

Damage mechanics describes the weakening of materials due to the formation of distributed
flaws in the material. It is therefore a potential tool for fulfilling the requirement to predict the
response of materials under high loadings. Despite the huge amount of progress made in
damage mechanics since the pioneering work by Kachanov [4] in 1958, the toolset for engineers
still does not include this approach because of the limited quality of models for damage. The
reason for this is that too often damage is described by a variable D (scalar or tensor) without
linking it to the micro-mechanisms of materials.

The present paper focuses on micro mechanisms of materials and derives material models
for damaged materials that are strongly based on events in nature. As a special case, materials
containing voids or microcracks are studied. The derived constitutive equations do not have a
variable damage D but they are built on physics based quantities such as the void volume
fraction f and the microcrack densities Q".
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Spherical voids in the Hookean matrix material

Eshelby [3] studied the elastic field in a Hookean material containing an ellipsoidal inclusion.
As a special case he determined the value for the complementary strain-energy density w® of a
material containing "a volume fraction f " of inhomogeneous spheres. For

o the purpose of this work the inhomogeneous spheres are "replaced” by
spherical cavities, as shown in Figure 1. This is done by assuming that the
- values for the elastic constants for the cavities vanish. Based on the work by

v Eshelby [3], the specific Gibbs energy for a Hookean material with spherical
< '® voids g (e, f) takes the following appearance [5, Eq. (26.6)]:

o 9%(o, )= ! L (1+Af)[1:c]2+i(1+5f)s:s 1)
Y 2p0,13BA+2u) 2.u

) where ¢ is the stress tensor, f is the void volume fraction, p, is the density,
=" v~ ) 1 is the second-order identity tensor [5, Def. (2.26)], s is the deviatoric
\i-/ stress tensor and where [5, Defs (26.2)]

_ o A= 6u+32 and B = Ba-v) )
Figure. 1. Porous 4pu 7-5v

material. In Expressions (1) and (2) the notations A and u are the Lamé elastic

constants [5, Def. (21.3)].
For the present study the material model is written in the following format:

9(o, f...,T) = g%(o, f) + g™'(..,T) . (3)
The specific Gibbs free energy g™*'(...,T) is out of the scope of the present study.
According to [5, Egs (26.7)] the state equations take the following appearances:
o9(s, f,....T) 09%(o, ) 9% (o, f)
= H - . 4
P o de of )

where ¢ is the strain tensor, €' is the inelastic strain tensor, T is the absolute temperature and

e is the internal force related to the void volume fraction f . Substitution of Expression (1) into

State Equation (4), gives

P 1
3(BA+2u)

where I° is the fourth-order symmetric identity tensor [5, Def. (2.37)]. Expression (5) can be

written in the form

g-¢ = and e = p,

e—¢ (1+/_Af)11:c+2i(1+5f)(15—%11):6. (5)
U

g—¢ =8(f)e=[S+SH]o , (6)
where S(f) is the effective compliance tensor, S is the compliance tensor for a Hookean
material and S°(f) is the compliance tensor due to damage. The latter two tensors are

1 1

— S 1
and
SU(f) =Lll:c+ﬂ(ls—%ll) , (8)
3B+ 2u) 2u
Based on Expressions (6), the following can be written:
g =S and =S = ge—¢ =¢ +¢° . 9)

In Expressions (9) the notations & and &’ stand for the elastic strain tensor and the damage
strain tensor, respectively. The effective compliance tensor S(f) may not be separable into two
terms and therefore the damage-elastic strain tensor £° is defined to be
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£°:= §(f):o, which with Eq. (6) gives £ =g-g . (10)

Damage description by the postulate of strain equivalence with the
effective stress concept

The postulate of damage-elastic strain equivalence with the effective stress concept was

introduced by Chaboche [2, p. 19]. Here the definition of the effective stress tensor 6 by
Chaboche is extended for a non-linear material response as

IZ"C; """ 5'::’, follows: If the virgin (undamaged) material obeys the
cd o 5, 0 | E,: o following constitutive equation:
d o o Sk o = f,(*, Virgin) , (11)
(@) —Ee========d mi then the effective stress tensor & is defined by
- £ 6 = f,(*, Damaged) . (12)
b ::; The message of this postulate is given in Figure 2. It is
6 ::; & important to note that Material Models (11) and (12) have an
(h) Theeoooooo . = identical functional appearance. Determination of the
function f, may be difficult in practice, since damage can

Figure. 2. Postulate of strain occur immediately after loading and no loaded virgin state,
equivalence with the effective \yithin which to determine the function f,, exists. Such
stress concept. . 2

problems are not studied here.

Here the elastic response of the virgin (un-voided / uncracked / undamaged) material is
assumed to obey Hooke's law. Thus, the constitutive equation for a (undamaged) Hookean
material corresponding to Material Model (11) takes the following appearance:

6=Cxs’ or 6 = Ce” for a virgin material . (13)
Equation (13), can be written, since in a virgin material no damage exists and therefore the
damage-elastic strain tensor £ equals the elastic strain tensor €°. The fourth-order tensor C is
~ the constitutive tensor for a Hookean material. Comparison of
o Expressions (11) and (12) with Material Model (13) gives
6 =Cxe" —fora-damaged-material— . (14)

Comparison of Expressions (11) and (12) with the Expressions

(13) and (14) shows that in the definition of for the effective stress
tensor 6 the term "for a damaged material” is struck out. The reason
to struck out the term "for a damaged material™ is that Definition (14)
also holds for a case where the amount of damage is negligible, i.e. for
Figure. 3. Stress ¢ @ virgin material. In such a case the value of the effective stress tensor
and the effective stress 6 equals that of the stress tensor ¢ .
6 vs. damage-elastic According to Expression (14), the relationship between the
strain &7 curves. effective stress & and the damage-elastic strain &% is linear. This is
shown in Figure 3. It is important to note that the relationship between the effective stress &
and the damage-elastic strain &% is also linear in the case of damage evolution. Figure 3 allows
to compare the behaviour of the effective stress & with the stress o .

Q Q

Role of the effective stress tensor 6

A rod under tensile load N, shown in Figure 4(a), is studied. The rod is assumed to have
non-interacting voids. The material between the voids is linear elastic. The material of the rod is
simplified by concentrating all the voids around the centre line of the rod. This means that the
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rod is modelled as a tube sketched in Figure 4(b). Thus, in the model the wall is continuous
matter where no voids exist.

The area of the wall of the cross section of the tube is denoted by A™ (where the "m" refers
to the matrix material). Figure 4(b) gives
N de
Ao Ec&™ . (15)
In the uniaxial case the definition for the effective
stress & is assumed to take the following form:
N
A"
Substituting of Definition (16) into Equation (15)
yields

(16)

.=

G=Eg&"™. a7

Expression (17) equals the uniaxial form of
Definition (14). Thus, the effective stress tensor 6
I:i ure. 4b (a)bRod_ \r/]Vith voids is model-  can be interpreted to be a measure of the stress state
ed as a (b) tube with continuous matter. in the matrix material between the voids. It is
important to notice that the effective stress tensor ¢ does not describe the microscopic local
variation of the stress state between the voids instead, it deals with an averaged microscopic

quantity.

Relation between the effective stress tensor 6 and the stress tensor ¢

The postulate of strain equivalence with the effective stress concept gave Expression (14) which
with Equation (10), takes the following appearance:

6=Ci(s—¢). (18)
Equation (6) is recalled. It is
ge—-¢ =S(f)o . (19)
Substitution of Equation (19) into Equation (18) gives
6 =CS:o = é = M:o, M:=C:S . (20)

The quantity f is dropped out in Equations (20) to show that Equations (20) are also valid for a
microcracked material, for example. The notation M stands for the damage effect tensor.
Equation (6),i.e. S = S + S°, allows Definition (20); to take the following appearances:

M:=C:S=C:i(S+S")=1°+C:S, (21)
where the fact that C:S = I° is exploited.

Specific Gibbs free energy g* for a two-dimensional microcracked medium

Based on stress intensity factors K,, K, and K, , Basista [1] derived an expression of the
specific Gibbs free energy g° for a Hookean material with rectilinear non-interacting
microcracks in a two-dimensional body. The author [4] enhanced this expression and gave it in
the following appearance for the plane stress:
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de ry _ 1 1 . 2 i .
g (c,Q") = 20 [3(3“2/1) [1:6]° + Zys.s}

N (22)
+ %h > Qr (af)zx{ i"-6-6-i" —[1-H(i"-6-A")](i" -0-A")? }

where h is the thickness of the two-dimensional body and M is the number of microcrack

groups. In each group the sizes and orientations of the microcracks are equal. The quantity a" is

the length of the microcrack and the unit normal vector for the microcrack surface is denoted by
f", as shown in Figure 5. The microcrack densities are defined to be

Qi=m"/(p V™), (23)
2" 7;/ where m" is the number of microcracks within the r‘th microcrack
_ group and V"¢ is the volume of the representative volume element.
n ) Eqg. (22) has three major enhancements to the original one proposed
Z, mICI’OCEéf.Ck by Basista [1].
I%(‘E First, microcracks are collected into groups containing microcracks
AR of the same size and orientation. The introduction of microcrack

k ; L - X
5 s groups is of course only an approximation given that the size and

orientation of microcracks can be randomly distributed. However,
microcrack groups make computation faster and the approximation
error can be neglected by increasing the number of microcrack groups.
The second enhancement involves the introduction of microcrack
densities Q", which enter into the formulation of continuum
thermodynamics as internal variables. The strong physical foundation
of these internal variables makes them more attractive quantities for
Figure 5. Microcracks  damage mechanics than variable damage D (scalar, vector or tensor),
in a 2D body. the physical background of which is sometimes unclear.
The third enhancement involves the Heaviside function
H(n'-6-n"). Basista [1] wrote his expression for the specific Gibbs free energy only for
tension. The author introduced the Heaviside function H(in"-6-n") for extending the work by
Basista [1] for compression. The Heaviside function H(ii'-6-n") prevents the microcrack
surfaces from penetrating each other under compression, as sketched in Figure 6.

(a) “{ (b)

Figure. 6. (a) Surfaces of a microcrack penetrate each other. (b) Penetration is prevented by the
Heaviside function H (A" -6-1").

Substituting Model (22) into Equation (4); and taking Expression (9)s into account yields
g—¢ =g +¢, where g =S (24)
and

M
g = %h > Q@) {fe-i" + A -of" —[1-H(i-c-A")][2A" i (1" -6-[") }.(25)
r=1
Expressions (24), and (25) show that the effective compliance tensor S can be derived. Thus,

based on Equations (6) and (20) the effective stress tensor 6 can be obtained for a Hookean
material with rectilinear non-interacting microcracks in a two-dimensional body.
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Discussion and conclusions

Based on Eshelby’s inclusion problem [3], a Hookean material with spherical non-interacting
voids was investigated. A stress-strain relation and the necessary compliance tensors as a
function of the material porosity f and the elasticity constants of the matrix material were
derived. The standard notation, which expresses the stress-strain relation for brittle damaging
materials by the elastic strain tensor &°, was replaced by the damage-elastic strain tensor £°°.
Hookean material with non-interacting spherical voids was shown to support this concept.

A modified postulate of strain equivalence with the effective stress 6 concept was expressed.
The different relations of the stress tensor ¢ and the effective stress tensor 6 in terms of the
damage-elastic strain tensor £ were shown. The role of the effective stress tensor & was
evaluated by a simple uniaxial tube example. The example showed that the effective stress
tensor & can be interpreted to be related to the averaged stress between the voids.

The expressions obtained from the problem of non-interacting voids in the Hookean materials
were used for derivation of an analytical expression between the damage effect tensor ¢ and the
stress tensor o . This expression reads: 6 =M:c, where M is the damage effect tensor.

Evaluation of the non-interacting rectilinear microcracks embedded by a Hookean matrix
material is based on the work by Basista [1]. The expression for the specific Gibbs free energy
g“ for a Hookean body with non-interacting rectilinear microcracks by Basista was enhanced
in three different ways:

First, microcracks were collected into groups containing microcracks of the same size and
orientation. Microcrack groups make computation faster.

The second enhancement involved the introduction of microcrack densities Q", which
entered into the formulation of continuum thermodynamics as internal variables. The strong
physical foundation of these internal variables makes them more attractive quantities for
damage mechanics than variable damage D (scalar, vector or tensor), the physical background
of which is sometimes unclear.

The third enhancement involved the Heaviside function H (A" -6-f"). Basista [1] wrote his
expression for the specific Gibbs free energy only for tension. The author introduced the
Heaviside function H (A" -6-n") to extend the work by Basista [1] for compression.
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Summary. In this paper, a thermodynamic formulation for modelling anisotropic damage of elastic-
brittle materials based on Ottosen’s 4-parameter failure surface is proposed. The model is developed by
using proper expressions for Gibb’s free energy and the complementary form of the dissipation potential.
The formulation predicts the basic characteristic behaviour of concrete well and results in a realistic
shape for the damage surface.

Key words: damage, elastic-brittle material, the spesific Gibb’s free energy, dissipation potential,
Ottosen’s 4-parameter criterion

Introduction

Concrete is a composite material composed mainly of water, aggregate and cement. It has
relatively high compressive strength, but it has a low tensile strength, which is usually between
5-10% of the compressive strength.

A myriad of models have been proposed to model the mechanical behaviour of concrete.
Earlier investigations have mainly focused in formulating the form of the ultimate failure surface
in a way similar to the yield function of plasticity (e.g. [12], [21],[3], [11], [6], [17]). These models
did not always take a proper account of the gradual degradation process prior to failure.

Recently, continuum damage mechanics is videly used for modelling the brittle behaviour
of materials. The scalar damage variable which was first introduced by Kachanov [8] has been
applied by several authors due to the simplicity of application together with plasticity, e.g. [10],
[7],[13], [19]. Studies such as [5], [2] and [20] have proposed a mixed plasticity anisotropic damage
model for concrete using higher order damage tensors.

Ottosen’s four parameter criterion

In 1977, Ottosen proposed a failure surface for concrete which contains the three stress invariants
and is capable of capturing the essential features of concrete’s behaviour [14, 15, 16]. The failure
criterion has four adjustable parameters and has the form

J.
AU—2+A\/J2—|—BA—JC:O, (1)

where o, is the uniaxial compressive strength, I = tro the first invariant of the stress tensor
and Jy = %s : s the second invariant of the deviatoric stress tensor s = o — o, I, where oy, is
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Figure 1. Ottosen’s 4-parameter failure surface: (a) compressive and tensile meridian lines and (b) shape
on the deviatoric plane when oy, = 0,0, = —0. and o, = —2.8870, strength ratios are oy/o. = 0.1,
and opc/o. = 1.16. 0, = +/3J3 is the effective stress.

the mean normal stress o, = %I 1. Furthermore, the shape of the failure surface in the deviatoric
plane is determined by the function A = A(0) as

A ky cos[% arccos (ks cos 30)] if cos30 >0 (2)
~ | kicos[im — §arccos(—kgcos36)] if cos30 <0

The Lode angle 0 in the deviatoric plane can be expressed in terms of the deviatoric invariants

as
_3V3 J3

cos 360 — (3)
3/27
2 J2/

where J3 = dets is the third invariant of the deviatoric stress tensor. Determination of the
dimensionless parameters A and B, the size factor k1 and the shape factor ko requires four tests,
see [14, 16]. Shape of the failure surface is illustrated in Figure 1 in the meridian and deviatoric
planes.

Present model

Constitutive theory

The constitutive equations of the model are derived by using the second principle of thermo-
dynamics and associated thermodynamic potentials. Considering isothermal elastic damaging
material with small deformations the reversible behaviour of material is captured by the specific
Gibb’s free energy

YO = @Z}C(O',D,K,) (4)

which is defined by the stress tensor o, the second order damage tensor D and the scalar variable
k that characterises the internal state of the material.

The second principle of thermodynamics is represented by the Clausius-Duhem inequality in
the form

N >0, 7:p0¢c_d;s:<p080—s>:&+Y:b—K&, (5)
where v is the power of dissipation and
oY° oY°©
Y = d K=- 6
pogis am oo @
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are thermodynamic forces dual to the rates D and &, respectively [18]. Density of the material
is denoted by pg.
The irreversible material behaviour is described through the dissipation potential

p=9(Y,K;0) (7)

as a function of the dissipation variables Y and K. The dissipation potential is a non-smooth
monotonic and subdifferentiable function from a linear space into R = RU{+4o0}. It determines
the power of dissipation such that

,YEBYY“FBKK’ (By,BK)GagD(Y,K,O'), (8)

where By and By are the components of the subgradient of (Y, K;0) and 0p(Y, K; o) is the
subdifferential set of all subgradients [4].
Combining definition of v in equations (5) and (8) results in equation

<p06f—s>:&+(D—By):Y+(—/%—BK)K:0. (9)

If the bracketed coefficients in equation (9) tend to zero, the equation holds for arbitrary &, Y
and K, and the following general constitutive equations are obtained

0 : .
g = o 81(6'7 D:By, /i:—BK. (10)

Specific model

The specific Gibb’s free energy function is formulated by using the representation theory of
tensorial functions, which states that a scalar isotropic function depending on two symmetric
second order tensors can be expressed by a combination of the invariants belonging to the integity
basis

{tro,tr(0?), tr(0®), tr D, tr(D?), tr(D?), tr(o D), tr(o D?), tr(0* D), tr(6* D?) } . (11)

Assuming no crack interaction, only the linear terms in D are retained [1]. Furthermore, restrict-
ing to linear elasticity, only the linear and quadratic invariants of the stress tensor are included.
Hence, the specific Gibb’s free energy function describing the isothermal elastic behaviour of
material with a reduction effect due to damage can be formulated as

1+v

2F

14

[tr o’ + tr(0'2D] 5E

pov(o, D, k) = (1+ Ltr D)(ir o)+ 4% (r),  (12)
where v and E stand for Poisson’s ratio and elastic modulus, respectively. The function " (k)
denotes the damage hardening part of the specific Gibb’s free energy. It should be noticed that
in the case of isotropic damage, D = DI, where D is a scalar damage variable, and the model
reduces into the form
1
ot = (14 D) % tro? — ;E(tm)?] SR (k). (13)
The dissipation potential is defined by the non-smooth indicator function Iy, = In(Y, K; o)
[4] such that

0 if(Y,K)ex

(p(YvK;U):IE(YaK;O-)v IE(YaK;O-):{ ) (14)

53



where

Y ={Y,K)|f(Y,K;0) <0} (15)

is a convex set of admissible thermodynamic force Y and hardening variable K defined by the
damage surface 3
AJs

0c0

f(Y,K;o) = +A\/Jo+ BI} — (0 + K) = 0, (16)
where oo denotes the initial elastic limit in uniaxial compression. The damage surface (16) is
obtained by reformulating the deviatoric invariants of the Ottosen’s 4-parameter failure surface
in terms of the thermodynamic force Y, hardening variable K, and stress o as

Jo = 141FV [EtrY — L(1-2v)(tro)?], (17)
s = 3(12+V) (Etr(cY) — trotrY] + 1(1 - 2)(tro)?}. (18)

The subdifferential of ¢ is defined by the set

{(By,Bx)}, if (Y,K)ex,

0, if (Y,K) ¢, (19)

890(Y7K50') = {

where By and Bk are the components of the subgradient which is zero in the interior of the
damage surface and equals to the the normal of the damage surface at point (Y, K) such that

(0,0), if (Y, Ka;0) <0,
By, Bg) = T . _ 20
(By, Br) ()\a{/,Aa[‘];»/\ZO, if f(Y,Ka0)=0. (20)

The multiplier A above can be calculated by use of the consistency condition f = 0.
Finally, the specific constitutive equations can be obtained from equations (6), (10) and (20).
In this work, the hardening variable K has the expression

a¢c _ a; (H/Hmax) + as (lﬁ/l‘ﬁmaux)27 (21)

K=-—
Po Ok 1+5b (I{//imax)2

where Kpax corresponds to the value of kK when K reaches its maximum value Ky, and a1, as,b
are material parameters to be determined. The expression (21) differs from the choice in [18].

Numerical example

The present model is used in analysis of a concrete specimen with the ultimate compressive
strength of 0. = 32.8 MPa. Parameters in the inital failure surface have been determined
assuming the initial tensile strength oy = 1 MPa and compressive strength o,p = 18 MPa,
equibiaxial compressive strengh 1.16 oo and the point on the compressive meridian (I1,v/J2) =
(=5v/30¢0,40.0/v/2). Resulting values are A = 2.6943, B = 5.4975, k; = 19.0829, ks = 0.9982.
The hardening parameters have the values a; = 85.30 MPa,as = —12.65MPa, b = 0.7032,
Kax = 42.65 MPa and fpax = 4.41 x 1076,

Fig.2a shows the results obtained by the numerical model when the material is subjected to
uniaxial compression. The result is compared to the available experimental data [9]. As can be
seen in the figure, the results are in good agreement with the experiments. Damage evolution is
shown in Fig.2b and the typical behaviour of concrete like materials in compression can be seen,
i.e. damage in the planes parallel to the loading directions is dominating. The result shows the
potential of the model to simulate the splitting failure of brittle materials.
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Figure 2. (a) Stress-strain diagram in uniaxial compression. Experimental data from Ref. [9]. (b)
Damage evolution in uniaxial compression. Notice that damage is larger in the planes parallel to the
loading direction indicating splitting failure mode.
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Summary. This paper considers two different damage formulations for modelling high-cycle fatigue
of materials. The underlying fatigue model is formulated within continuum mechanics framework with
the concept of a moving endurance surface. Such a model has a unique feature that it allows for the
concepts of fatigue limits and damage accumulation during the load history thus avoiding cycle-counting
techniques. A Scalar and tensor type of damage variables are utilized with an essentially similar type of
damage evolution law. The tensor damage model capable of accounting for damage induced anisotropy
is based on the gradient of the endurance surface. The performance of the scalar and tensor damage
formulations are compared with different multidimensional stress histories.

Key words: high-cycle fatigue modelling, isotropic damage, anisotropic damage, endurance surface, evo-
lution equations

Introduction

Fatigue of materials under variable loads is a complicated physical process which can even result
in catastrophic failure of engineering components. It is characterized by nucleation, coalescence
and stable growth of cracks. Nucleation of cracks starts from stress concentrations near persistent
slip bands, grain interfaces and inclusions [1, 2, 3].

In high-cycle fatigue, the macroscopic behavior of the material is primarily elastic, while in
the low-cycle fatigue regime considerable macroscopic plastic deformations take place. Transition
between low- and high-cycle fatigue occurs between 103 —10% cycles. In recent years, it has been
observed that fatigue failures can occur at very high fatigue lives 10 —10'°, below the previously
assumed fatigue limits.

In this paper only high-cycle fatigue modelling is considered. Many different approaches
have been proposed to model the high-cycle fatigue behaviour which can roughly be classified
into stress invariant, or average stress based and critical plane approaches. In those approaches
damage accumulation is usually based on cycle-counting, which makes their use questionable
under complex load histories [4, 5].

A different strategy for high-cycle fatigue modelling was proposed by Ottosen et al. [4]. In
their approach, which could be classified as evolutionary, the concept of a moving endurance
surface in the stress space is postulated together with a damage evolution equation. The en-
durance surface is expressend in terms of the second invariant of the reduced deviatoric stress
tensor where the center of the surface is defined by a deviatoric back stress tensor, as is done
similarly in kinematic plasticity models. Therefore, the load history is memorized by the back-
stress tensor. In this model arbitrary stress states are treated in a unified manner for different
loading histories, thus avoiding cycle-counting techniques.
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In the present paper, different damage formulations to be used with the fatigue model by Ot-
tosen et al. [4] are considered. Particularly, the original scalar damage formulation is compared
with the proposed tensor damage model capable of accounting for damage induced anisotropy.
Evolution of the tensorial damage variable is based on the normality condition for the endurance
surface. Performance of the damage formulations are compared with some multidimensional
stress histories.

Model formulation

Endurance surface

The continuum fatigue model developed in [4] is briefly described in the following. It is based
on the assumption that a material exhibit loading condition dependent endurance limits within
which no damage results under cyclic loading. Ottosen et al. [4] proposed a moving endurance
surface in stress stress space to account for these limits. The endurance surface is of Drucker-
Prager type as

ﬁzi(ﬁ—i—AIl—O’oe):O, (1)

00e

where oge is the endurance limit corresponding to zero mean stress, A is a positive non-
dimensional parameter, and I; = tr(o). In a constant amplitude cyclic, the endurance surface
reduces to the linear relation in the Haigh diagram, i.e. relation between the mean stress and
the stress amplitude, see Figure 1c. Moreover, & in (1) is the effective stress defined in terms of
the second invariant of the reduced deviatoric stress s — a, with a being the back stress tensor,
as

o=1/3(s—): (s —a), 2)
1

where s = o — 3 tr(o)I is the deviatoric stress tensor, I stands for the identity tensor, and

(s—a):(s—a):=tr((s —a)(s — a)) (3)

is the double dot-product. The endurance surface, 5 = 0, moves in the stress space driven by the
back stress which memorizes the load history. Contrarily to plasticity theory, the stress states
out of the endurance surface, § > 0, are allowed. Moreover, the invariant I; in (1) accounts for
the influence of the hydrostatic stress. The final model component needed before specifying the
damage formulations is the evolution law for the back stress tensor. For this end, a hardening
rule similar to Ziegler’s kinematic hardening rule in plasticity theory is adopted, i.e.

a=C(s—a)b, (4)

where C is a non-dimensional material parameter, and the dot denotes time rate.

Damage evolution

In the original formulation by Ottosen et al. [4] a scalar damage variable is chosen to descibe
the material deterioration. Evolution equation for the damage D used in [4] is

D = K exp(LB), (5)

where K and L are parameters to be calibrated by experiments. From the evolution equation
(5) it can be concluded that damage only develops when the stress state is moving away from
the endurance surface, that is

8>0, and B>O. (6)

It is also postulated that evolution for the back stress a, see (4), takes place when the conditions
(6) are satisfied. The conditions for evolution of damage and back stress in loading and unloading
are illustrated in Figure 1a and b.
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Figure 1. Illustration of damage evolution on the deviatoric plane. (a) Damage evolves only when stress
moves away from the endurance surface. (b) Stress state outside the endurance surface, but damage
do not evolve. (c) Illustration of the endurance surface as Haigh-diagram for constant amplitude cyclic
loading.

In this paper damage is described by a second order tensor, and therefore the model can
account damage induced anisotropy. The evolution law for the proposed model is chosen to be
of similar form as (5):

ap
870' ’ (7)

where Kaniso and Laniso are model parameters. Since damage never decreases the absolute value
is taken of the gradient 03/0c.

In order to derive a stress-strain relationship, the spesific strain energy function is postulated
in the form

D = /BKaniso €xXp (Lanisoﬂ)

W =3A1- %tr(D)] tr(e)? + pltr(e?) — tr(eD)], (8)

where D is the symmetric damage tensor, and X, p are the Lamé parameters. The stress-strain
relationship is now obtained as a derivative of the spesific strain energy function with respect
to strain, i.e.

o= 8812/ = A1 - 1 tr(D)]tr(e)I + p(2€ — €D — De) = Ceq : €. (9)

The fourth-order material secant stiffness tensor has the form

Cea = A1 —3tr(D)I®I+p2l0I-T16D-DOI), (10)
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where ® denotes the standard tensor product, known as the Kronecker product, and the tensor
product © is defined as in Ref. [6]:

(A ®B)ijm = 5(AiwBji + AuBjy). (11)

A criterion for material failure is then provided by the requirement that the secant stiff-
ness Cqq should be positive definite. This can be checked e.g. by calculating its eigenvalues
(which must be positive). The components of damage tensor D can also be monitored but the
interpretation of final failure is then more ambiguous.

Numerical examples

Some representative numerical simulations highlighting the capabilities of the anisotropic dam-
age formulation above are presented in this section. The isotropic model calibration is the
same as in [4]. Accordingly, the parameter values (for AISI-SAE 4340 alloy steel) are: A =
0.025, e = 490 MPa, C = 1.25, K = 2.65 x 107°, L = 14.4. The anisotropic damage evolution
law is calibrated so that it matches the prediction of the isotropic model in the case of uniaxial
alternating load (of sinus form) when the mean stress is zero and stress amplitude is 600 MPa.
Due to the similarity of the damage evolution laws (5) and (7), the only change in parameter val-
ues needed is that K50 = 2.32K. Damage evolution for both damage formulations in uniaxial
loading with some values of the stress amplitude and means stress are illustrated in Figure 2. In
each case, the simulation is set to halt when secant stiffness C.q loses its positive definiteness.
This criterion is implemented as the first normalized eigenvalue criterion A1 (¢)/A1(t = 0) > 0
(this quantity behaves similarly as the integrity variable, i.e. 1 — D). The model comparisons

o =600 MPa,s_=0 o =T00MPa,o_=0
a m a m
,/
.
1 \ =
-
//
0.8 Dy g
(R D -
[@)] 22 o
2 0.6|-—Ps >
e B .
0 0.4 |—xr o] =

a N x 102 b N x 10°

o_ =600 MPa, o_ = 400 MPa
a m

1000 7

500 {ft}

g T
= o
E =
g X
-500
0 0.5 1
N x 10

Figure 2. Damage evolution in uniaxial loading when (a) o, = 600 MPa, o,, = 0, (b) 0, = 700 MPa,
om =0, (c) 0, = 600 MPa, o, = 400 MPa, (d) and a part of load histories.
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LC1, o, = 470 MPa LC2, o =550 MPa

0 50 100
C N x 10°%

Figure 3. Damage evolution in multiaxial loading (a) for LC1 with o, = 470 MPa, (b) for LC2 with
0a = 550 MPa, (c) for LC3 with o, = 550 MPa. The green LC2 curve is shown to facilitate comparison.

show that while a good agreement is obtained between the isotropic damage model and the
anisotropic one with the first eigenvalue criterion in the case the zero mean stress (Figures 2a
and b), a deviation of 6% occurs when o, = 400MPa. As for the first three diagonal components
of the damage tensor, components Dy, D33 evolve considerably despite the uni-axial loading.
However, the final value of the these components is only 1/3 of that of the first component so
that the model still accounts for the loading induced anisotropy. Moreover, the final value of
component D11 exceeds 1 in each case. Notwithstanding, the model could be calibrated so that
the evolution of Dq; is identical to the evolution of isotropic damage in these load cases.

Next, multiaxial loading is considered. Namely, three special load histories leading to identi-
cal principal stress histories are tested. The first load case (LC1) has bi-axial pulsating normal
stresses given by

0y = 0a[l + sin(wt)], (12a)
oy = Oa[sin(wt) — 1]. (12b)

The second load case (LLC2) has one pulsating normal stress and one pulsating shear stress as

Oy = O sin(wt), (13a)
Tay = 30asin(wt — m/2). (13b)

The third load case (LC3) has one pulsating normal stress and two pulsating shear stresses as

0y = oy sin(wt), (14a)
Toy = %aa cos(wt), (14b)
Tyz = —%O‘a cos(wt). (14c)
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Despite the identical principal stress histories load cases LC1 and LC2 result in different en-
durance limits. For example, in LC1 steel 34Cr4 has endurance limit o, = 240 MPa while in
LC2 the limit is 0, = 158 MPa [7]. In the first test, the loading amplitude is o, = 550 MPa.
With this amplitude, both damage formulations predicted immediate failure in LC1. Therefore,
the behavior of the models is demonstrated with a lowered amplitude of o, = 470 MPa in LC1.
The results are shown in Figure 3.

The results in Figure 3 display significant differences in the model predictions despite the
fact that the loading histories have identical principal stress histories (equalling to LC1). In
LC1 both models predict a huge initial jump in damage evolution after which the damage does
not grow at all. The model behavior was similar with other values of stress amplitude. As
for load cases LC2 and LC3, the isotropic damage model predicted identical damage evolution
in them as can be observed in Figures 3b and c. In contrast, the anisotropic model with the
eigenvalue criterion display a minor difference in the damage evolution so that the number cycles
corresponding to failure is 115000 in LC2 and 120000 in LC3.

Conclusions

Different damage formulations in the continuum fatigue model based on a moving endurance
surface by Ottosen et al. (2008) were very briefly considered in this study. The original scalar
damage model was compared to a tensor damage model based on the gradient of the moving
endurance surface. The latter model can account for loading induced anisotropy as was observed
in the numerical simulations. According to this preliminary study, it seems that the anisotropic
damage model with the eigenvalue criterion for final failure can - in contrast to the isotropic
model - account for the influence of multiaxiality in load histories with identical principal stress
histories. However, further studies are needed to state anything decisive on this issue.
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Summary. The use of modern multibody simulation techniques enables the description of complex
products such as mobile machinery with a high level of detail while still solving the equations of motion
in real-time. For product development, real-time simulation makes it possible to account for the machine
user early on in the concept development phase. Conventionally, the system can be modeled in full
matrices approach which did not consider the sparsity feature of the matrices. The numerical efficiency
will decrease when the matrices are sparse and numerical approach still treated as full matrices format.
In this study, the numerical procedure based on semi-recursive and augmented Lagrangian methods for
real-time dynamic simulation is described. The equation of motion is imposed with the sparse matrix
technique to enhance the computing efficiency. It is found that, for this specific system model using
velocity transformation matrix approach in sparse format, the computing efficiency increases compared
to the full matrices approach.

Key words: Multibody system dynamics, real-time simulation, sparse matrix technique, semi-recursive
method, augmented Lagrangian method

Introduction

System simulation has proved to be an effective tool that is being implemented increasingly in
machine development. Knowing how the dynamic behavior of a machine is affected by vari-
ations in the design variables is important and can readily be studied with a good computer
simulation model. Simulation can replace some physical prototyping, and consequently, acceler-
ate the product development cycle. To assess the performance of a machine using computerized
methods, the system dynamics must be solved.

Realistic operator behavior can be taken into account by employing sophisticated real-time
simulation models. In real-time simulations, the operator is actively engaged in the dynamic
performance of the machinery. A real-time simulator must feel and perform like a real machine to
the operator. This can be achieved only if the real-time simulation model is accurate and couples
the physics from all the relevant engineering disciplines. However, these real-time models are
usually case specific and tailored to specific applications. Consequently, the costs of developing
these real-time simulations are often high. The problem of high cost can be alleviated using a
real-time simulation approach based on the multibody system dynamics [10].

Knowing specifically type of matrices to deal with could give an advantage to write the
optimal program code for numerical analysis. Conventionally, the system can be modeled in full
matrices approach which did not consider the sparsity of the matrices. Increasing the number
of body in the system will increase the size of matrices. Accordingly, the numerical efficiency
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will decrease when the matrices are sparse and numerical approach still treated as full matrices
format.

In this study, the numerical procedure based on semi-recursive and augmented Lagrangian
methods for real-time dynamic simulation of multi-rigid body system is develop. The objec-
tive of this paper is to demonstrate that the sophisticated usage of sparse matrix computing
approach can improve the computational efficiency real-time dynamic simulation. To this end,
computer code based on the semi-recursive and augmented Lagrangian methods are written
using C programming with full and sparce matrices formats. The performance of the based on
full and sparce matrices formats are compared against each other.

Semi-recursive method

In the semi-recursive method, kinematic properties such as position, velocity and acceleration
are developed based on the relative coordinates between neighboring bodies connected by a joint
[10]. This algorithm has been used and extended by several researchers and has been generalized
to improve its implementation and efficiency [2, 8].

Kinematics

Relative motion between neighboring bodies and constraints are the two main aspects of recursive
kinematics used to generate the total system matrices and solve the equations of motion for the
multibody system. The method uses the global position and local rotational coordinates of the
center of the gravity as the generalized coordinates for formulating the equations of motion.
Multibody system of two bodies inteconnected by a joint is illustrated in Figure 1.

dn—ltn,

Figure 1. Description of the kinematics for recursive method.

The position of joint 7, for the body B, can be described using kinematic of the previous
body B,_1 in the global frame as follows

Tn=0p 1T Ap 1,1 + dn—l,n (1)

where g,,_; is position vector of the center of gravity of body B,,_1, A,—_1 is the rotation matrix
of the body B),_1, @,—1 is the constant position vector in the local coordinate system and d,,—1 ,
is relative displacement vector between bodies. The velocity vector of joint r,, for the body B,,
can be determined as follows

Tn = gn—l + Op1Up-1 + d'n—l,’n,v (2)

The rotation matrix and the skew-symmetric matrix of the angular velocity vector for body
B, can be computed as:

An :AnflAnfl,n (3)

‘:Jn :&nfl + ‘:)nfl,n (4)
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where A,_1, and @,_1 , are the relative rotation matrix and the skew-symmetric matrix of the
relative angular velocity vector.

Equations of motion

The equations of motion for the body ¢ can be presented with respect to the centre of gravity
as Newton-Euler equations as follows:

mI 0\ [§, 0 F;
0 Ji w; wiJiwi T.,;
M; d; Q; Q:

where I is an identity matrix, M is the mass matrix, g; is the vector of translationar and angular
accelerations, Q; accounts for the centrifugal terms and Qf is the vector of the external forces
F; and torques T';. The body properties with respect to the inertia, centrifugal and external
forces of the system of n bodies can be written as:

M =diag(M1,M>,...,M,) (6)

q=la" 4" .4, )" (7)
Q" =[QV",Qs",....Qu" " (8)
Q° =", Qs",....Q" " (9)

When velocity transformation in case of the sceleronomic system ¢ = RZ is taken account
and multiplying Newton-Euler equations by RT, the equations of motion can be presented as
follows

R'MRZ:=RY(Q°— Mc—- Q") (10)
M Q"

where in the case of sceleronomic constraints ¢ = R#. When the constraints @ due to the closed
loop are accounted for with the penalty method, the equations of motion as function of the
independet coordinates z can take form for the semi-recursive method as follows

(M*+ad’ )z = Q" — ad’ (D + 2Qud + D) (11)

where «, 2 and p are diagonal matrices including the penalty factors, and the vector of con-
straints @ = ®(z(t)).

Velocity transformation

The multibody system can be seen as an open loop system where bodies are connected via
components of the revolute and prismatic joints and/or their combinations. Figure 2 shows the
H8 Logset tree harvester that is analysed in this study. Each body of the system is labeled
based on the tree-structure multibody numbering. The main body of vehicle is labeled as body
0 (based body). The next bodies from based to the end are numbered in increasing order in
which should meet B,, > B,,_1. This numbering is also applied for the labeling of the joints.

In the HS8 logset tree harvester, each body has been numbered from 0 to 6 and each joint
is represent in transformation velocity matrix notation R. The values of joint variable R;
depending to the types of joints and the number of columns may vary depending to the number
of degree of freedom. Below are the two types of variable joints involve in this case as proposed
by Avello et al. [1] which are presented for revolute and prismatic joints as

rev __ éi(an - ri) . pris | €
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Body3 (By)

Body1(By)

Body 0 (By)

)

Figure 2. Description of the tree harvester

where e; is the unit vector of joint j which point the direction of the revolute axis, €; is the
skew-symmetric matrix of e; and (gg, — 7;) is the vector points from point ¢ in body i to the
center of gravity of designated body B,,.

To get the final expression of transformation velocity matrix R for the system, all dedicated
matrix R; need to be arranged into the system level matrix that represents all joints. The rows
of velocity matrix R represent the related body and the columns of velocity matrix R represent
the number of degrees of freedom found in the path from body j to ground. Therefore, the
system shown in Figure 2 can be arranged as

Ry i
R Ry O
Ry Ry Rs3

Ry Ry, R3 Ry (13)

Ry Ry R;3; R; R;
R, Ry R3 R, Rs; Rg |

where R € R35%6 and as an example to obtained matrix R which corresponding to the body
By, can be extracted from above equation as

Rp, = [ R, Ry, R3 Ry } (14)

where Rp, € R4, The mass matrix of the system M = diag(M1, M, ..., M) where mass
matrix M; € R6%6 for the body i is written as

m;I 0
M, = N 15
e w
where m; and J; describe mass and inertia properties of body i. It can be seen from the
equations of motion in section that coordinate transformation for mass matrix of the system
M is employed with RTMR. To increase the computational efficiency, the some operations

can be solved parallel as it is suggested by Jimenez et al. [7].

Augmented Lagrangian method

One possibility for solving constrained optimization problem is to use formulations based on the
augmented Lagrangian methods, that can be traced back to the mid-1940’s [6]. The augmented
Lagrangian methods can be seen as the penalty methods that include also the Lagrangian
multipliers as penalty terms to objective function. The widely used augmented Lagrangian
method in real time dynamic simulation of the multibody systems is carefully explained in [3].
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The method can be derived by introducing variational terms due to fictitious energies and the
Lagrange multipliers as follows

- = (Brad — Q28T ad) - iq (16)

Wiin = 4.571;044.577; - 0q
W5, = —2aﬂu¢gd.5 - 0q
SWy = A’ - 5q

where a, €2 and p are diagonal matrices including the penalty factors, and the vector of con-
straints @ = ®(q). When equations are taken into account in Hamilton’s principle, complete
form of the equations of motion can be written as

Mg =Q - adl($ +20ud + Q*®) + T\ (17)

where the force vector Q = Q. — Q, and the Lagrangian multipliers A can be found iteratively,
see more details in [3].

Sparse matrix technique

From the equations explained previously, it can be seen that the system matrices are sparse.
More than half of the matrices element for R and M are zeros. Therefore, by applying the
finite element method approach into the multibody system such as sparse solver, data storage
management and sparse procedure may increase the computing efficiency and optimize the
memory storage.

The main engine for simulation is written in C language to obtain computationally efficent
solution for real-time simulations. For sparse matrix operations, the libraries used for the engine
can be seen in Figure 3. The matrices are stored in Compressed Sparse Column format which
is the favorite storage format among sparse libraries. All three libraries are free libraries with
GPL compatible. CSPARSE is used for direct solution of sparse linear system [4] such as
matrix manipulation while UMFPACK is for solving the form of Ax = b using Unsymmetric
MutiFrontal method [5]. ARPACK is a numerical library for solving large eigenvalue problem
using Implicity Restarted Arnoldi Method which is fast and robust solver [9]. ARPACK need
two others libraries in order to work which are Blas and SuperLU.

‘ Blas

ARPACK . SuperLU

libraries

Figure 3. Included sparse libraries in the simulation engine

Numerical results and discussions

Numerical analyses introduced in this study are carried out using Mevea solver. The solver can
treat the matrices with a full or sparse format. To determine the efficiency of semi-recursive
and augmented Lagrangian formulation methods when using sparse matrix approach, mobile
working machine (H8 Logset) is analysed. The time integration for the equations of motion is
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obtained by using the explicit Runge-Kutta method of order four with a constant time step of
1.6 milliseconds.

4.5 1.9

H8 Lagrange HS8 Recursive

.40 H8 Lagrange sparse H8 Recursive sparse

35

3.0

Time step 1.6 ms

25 AW
I g
\W L ‘l,J' IL‘\ JF“"\"‘
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Loop duration at every time step, ms
//’
"
e
7
b
Loop duration at every time step, ms

2.0

Time step 1.6 ms

0 5 10 15 20 0 5 10 15 20
Simulation time, sec Simulation time, sec

Figure 4. Loop durations at time step of the augmented Lagrangian method vs. semi-recursive method
with and without sparse matrix technique. Continuous straight lines illustrate a constant step size of
fourth order Runge-Kutta with respect to loop durations.

The computational efficiency for the augmented Lagrangian and semi-recursive methods
with and without sparse matrix technique are illustrated in Figure 4. It can be concluded from
Figure that a significant reduction of loop duration with solving the equations of motion at every
time step can be reached from both methods when using the sparse matrix technique. During
simulation of twenty seconds, the augmented Lagrangian method uses from 2.62-3.6 milliseconds
and the semi-recursive method from 1.44 to 1.82 for the solving equations of motions at time
step. Therefore, the semi-recursive method is able to solve the step with less time as compared to
the augmented Lagrangian method for every loop. From the results, the implementation of the
sparse matrix technique into the augmented Lagrangian method has increased the computational
efficiency about 6% and decreased about 5% for the semi-recursive method. However when both
methods (with sparse implementation) are compared side by side, the semi-recursive method is
about 47% more efficient than the augmented Lagrangian method.

Summary and conclusion

It is shown that the implementation of the semi-recursive method with transformation velocity
matrix produced a significant improvement to the computing efficiency compare to the Aug-
mented Lagrangian method. By applying sparse matrix technique into the methods, the com-
puting efficiency slightly increases. It should be noted that the computational efficiency is
strongly case dependent. As it is known, the larger size of the system matrices increases the
sparsity and therefore, more computational benefit can be gained from the use of sparse matrix
technique in multibody applications. Further investigation should be done for sparse implemen-
tation in order to maximize the efficiency. In the same time, utilizing parallel computing may
also improve the simulation.
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Soft body impact against aeronautical structures

Alessia Prato’, Marco Anghileri, Andrea Milanese, Luigi M. L. Castelletti

Summary. Statistics show that impacts of soft body against aeronautical structure are not so
rare events. The damage caused by the impact of hailstones or of birds can sometimes be so
heavy to compromise the service life of the vehicle. Companies, research centers and
universities are interested in the evaluation of the effects of this kind of events and lots of
researching works have been recently developed in this field. In this paper, an overview of the
last studies performed at the Laboratory for the Safety in Transports (LaST — Crash Lab.) of
Politecnico of Milan are ﬁresented throughout experimental tests and numerical finite element
models. The validity of the correlation results method to prevent possible heavy consequence
caused by these events is shown.

Key words: crashworthiness, soft body impact, explicit finite element code, smoothed particle
hydrodynamics
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Two approaches for modeling hydraulic cylinder

Antti Ylinen

Summary. In this paper the author proposes models for linear hydraulic actuator, hydraulic cylinder.
The two models differ kinematically since the first model is rigid in bend whereas the second model
captures the bending flexibility of the hydraulic cylinder. The derivation of the first element, truss
element cylinder, is based on the equilibrium of the cylinder piston where the pressure forces are acting
on the different sides of the piston. The second element, bending flexible cylinder element, however is
constructed using beam elements and then deriving the coupling with the chamber pressures. Finally
numerical example concerning dynamical simulation is presented where the governing equations are solved
using Rosenbrock time stepping scheme.

Key words: Hydraulic cylinder, coupled problem, friction model, dynamical simulation

Introduction

Hydraulic driven working machines are a common sight in the industry today. The applications
can vary from very robust excavators to precise robots like the ITER fusion reactor maintenance
robot. In hydraulic systems the energy is transferred via pressurized fluid instead of using
mechanical components.

Hydraulic cylinder is a linear actuator where the length of the cylinder can be changed.
Using this length change we can produce movement to the mechanical system. Since the length
of the hydraulic cylinder is determined by the volumes of the hydraulic fluid in the cylinder
chambers we find, that the hydraulic cylinder is coupled to the hydraulic control system. This
coupling is included in the hydraulic cylinder element formulations. For the solution process we
utilize a monolithic approach where all state variables are solved at the same iteration.

In this work we propose two different models for the linear actuator, hydraulic cylinder. The
elements are formed using the finite element method thus they are compatible with the existing
framework.

Truss element cylinder

The first hydraulic cylinder is a element capable of capturing only axial effects. This current
element has been presented in [9] and it is closely related to the model proposed in [2]. The
element has 6 mechanical degrees of freedom, namely the translations at each end of the element.
In addition the element has 3 hydraulic variables related to the cylinder chamber pressures and
friction, which are now discussed.
The truss element cylinder is derived from the equilibrium equation of the cylinder piston
reading
Fe :PAAA—pBAB —Fua (1)

where the first two terms are due to the cylinder chamber pressures and the last term is the
friction force. For the friction force we utilize the LuGre model introduced in [1]. The friction
force introduces a new variable, bristle deflection z, to the system. The friction force is computed
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using
FN = koz + k12 + Fyuy, (2)

with the rate of bristle deflection written as

_ v
g(v)

Z:Ut

For the cylinder chamber pressures we write a simple evolution law

Qa Ay
=B—«——— 4
PA VA + xAp (4)
. — Q@B + 2. AB
g B—
PB VB — AR (5)

with the inward and outward flow rates from the cylinder chambers denoted with QA and @g,
respectively. Corresponding chamber areas are Ax and Ag and B is the bulk modulus for the
hydraulic fluid and finally x. is the cylinder piston position. This hydraulic cylinder element is
a coupled element, since the cylinder force in Eq. (1) is a function of the chamber pressures.
Equations (4),(5) and (3) are collected to a single vector denoting the rates of the hydraulic
state variables for the hydraulic cylinder element as

i BQA - icAA i
o VA + xcAp
7= |pg| = | g~ ¥t TcAB (6)
3 VB — x.AB
il
L ¢ g(-’tc) |

This equation defines the evolution law for the state variables regarding the hydraulic cylinder
variables as z = f..

The internal force vector for the truss element cylinder is written with aid of the cylinder
force in Eq. (1) as

n. | Fe
fint - Fc |:_nc:| - _Ln AXa (7)

where n. is the unit vector of the cylinder element and vector x collects the current nodal
coordinates of the element. Matrix A is a mapping given for instance in [5].

For the solution process, the given state equations are linearized according to [9]. In the
numerical example we however, consider the element to be frictionless.

Bending flexible hydraulic cylinder

The first hydraulic cylinder element is rigid in bend whereas the second hydraulic cylinder
element is able to capture also bening effects. Instead of writing the equilibrium equation for
the cylinder piston, we construct the cylinder lining and arm using beam elements, see Fig. 1.
The beam elements are introduced in [4]. The sliding between the two cylinder members is
modeled using slide-spring elements presented in [6]. The hydraulic fluid is now between nodes
1 and 2 for the A chamber and between nodes 2 and 3 for the B chamber in Fig. 1. Since the
forces f; are pressure induced forces, we account for the rotation of the nodes 1, 2 and 3 and
define the pressure forces as follower forces.

To start, we write the pressure force vector for the A-chamber acting on nodes 1 and 2 in

Fig. 1 as

fop =[f1 0 £ O]T, (8)
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Figure 1: A bending flexible hydraulic cylinder where the members are modeled as Reissner’s
geometrically exact beam elements. The element is attached to the mechanical system using
nodes N1 and N2.
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where the forces are written

fi = —paAsR,Ec (9)
fo = pa AARRE, (10)

where pp and A are the chamber A pressure and corresponding chamber area and E. is the
initial direction vector for the cylinder element. The rotation matrices R; are computed from the
rotations of nodes 1 and 2, see Fig. 1 and [4]. The pressure forces are follower forces since they
account for the rotations of the mechanical system. Similar equations follow for the B chamber
of the hydraulic cylinder element. The internal force vectors given here are identified as the
hydraulic state variables of the element. The state equation for the mechanical system follows
from the beam elements, see [4, 6]. For the solution process the internal forces are linearized.

Time stepping

For the time stepping we utilize a semi-implicit Rosenbrock scheme suitable for stiff differential
equations. Semi-implicit methods are shown to work properly for stiff differential equations and
here we give presentation for the Rosenbrock type integrator, see [3]. The Rosenbrock method
is based on an implicit form which is then linearized revealing the Jacobian of the system.
Instead of iterative solution of the linearized equations we only take one iteration and then
utilize Runge-Kutta type time stepping, see [7].

In order to utilize the Rosenbrock method, we write the equations of motion we transform
the second order differential equation with two first order differential equations by substituting
v = q thus giving for the coupled system

Z fcyl(zv q, q? t)
mlgl=| v | ()
\4 g<q7Q7Z7t)

where g is the exitation for the mechanical system and the matrix H is a coefficient matrix with
diagonal components
H = diag (I, I, M) (12)

with M as the mass matrix. The right hand side in Eq. (11) is the unbalance of the system. We
may rewrite the equation as
Hx = r(t, x), (13)

which is a suitable form for time integration using the Rosenbrock scheme.
The Rosenbrock scheme grounds from diagonal IRK method with basic formula for au-
tonomous problems, see [3]

i—1

ki:Atr Xn—f-ZOéijkj-f-Oéiiki iZl,...,S, (14)
J=1
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where s defines how many stages are used. Advancing, or time stepping is then written for
Runge-Kutta methods as

S
Xni1 =Xn+ »_bik;. (15)
i=1
The form given in Eq. (14) is however, an implicit form. For the Rosenbrock method this
equation is linearized and only one iteration is performed for solving the vectors k;, see more
from [7, 3]. For this reaseon the Rosenbrock method is called semi-implicit method. The
linearization process then reveals the Jacobian matrix which is computed only at the beginning
of the time step, when x = x,,. Therefore only one LU-decomposition is needed for advancing
one time step.
For non-autonomous systems an additional term is added to the basic form in Eq. (14) to
account for the time dependency, see [3]. After the linearization the form for solving vectors k;
is written

i—1
(H — yAtd) k; =Atr | 6+ it x, + ALY agik;
. (16)
or(tn, xy,) <
2 ny N
=+ ’)/Z‘At T + AtJ ;7ijkj>

where J is the system Jacobian. This matrix is assembled from the subsystem Jacobians and
coupling matrices as
JCC Jcm Ccm
J= 0 0 I ) (17)

where
of.1
Com =2 18
m =~ (18)
Ofcy
cm - 1
J e (19)
Jg
Jmc - _E- (20)

are the coupling matrices between the hydraulic cylinder and the mechanical system. K, and
Cum are the mechanical system stiffness and damping matrices and J. is the Jacobian matrix
for the hydraulic cylinder element written as

ey

Jee = 0z

In the solution process, it is possible to use the symmetric properties of the system matrices
by solving the above equations in blocks, see [5]. Coefficients «;; and ~;; are model parameters
for two stage Rosenbrock scheme along with b; and «; and are given in Table 1 and as follows

Wl el
with v =1 —1/v/2, see [5, 8].

Since the Rosenbrock method does not involve iteration to reach equilibrium, it is computa-
tionally more efficient compared to Newmark scheme for instance.
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Table 1: Coefficients «; and b; for the Rosenbrock scheme.

7 (073 bi
1 0 1/4
2 1/2 3/4

Numerical example

As a numerical example we introduce a lifting boom shown in Fig. 2. We set the boom initial
angle to 70° and simulate an accident situation, where the boom is allowed to be in free fall for
0.5 s. The mass at the end of the boom is set to 600 kg and the structure is under gravitational
load. To draw comparison, we record the boom stresses at the top edge at point D.

0.5 1 05 1.0 1.0 1.0

h, /
2By

Figure 2: Boom system with an external load at the tip of the boom.

As a result we present the boom stresses at point B and they are now plotted in Fig. 3
for the truss element cylinder (TC) and for the bending flexible cylinder (BF). When the two
cylinder formulations are compared with each other we find, that the bending flexible cylinder
element results to lower stresses than the truss element cylinder. This is explained by the
bending flexibility of the BF model. The BF model bends under the load thus allowing the mass
to decelerate in longer distance. The example demonstrates that the bending accounting for
the bending flexibility of the hydraulic cylinder can have and impact on the system response.
In addition, in this simulation the attachment between the hydraulic cylinder and the boom
system is frictionless and no moment is applied on the cylinder which would increase the bending
deformations of the cylinder.
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Figure 3: Boom bending stresses at the top edge of point B with the two cylinder formulation.
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Conclusion

Modeling the bending flexibility of the hydraulic cylinder is not particularly useful when normal
use of the cylinder is considered. However, in accident simulations, as presented in this paper,
the bending flexibility changes the system response drastically. The bending flexibility is an
important factor when the cylinder is long and slender and it can be susceptible for bending
moments. In applications where the cylinder is not under bending the truss element cylinder
is sufficient for modeling the linear actuator since it captures the coupling with the hydraulic
system and is computationally more efficient.
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On the effect of damping on stability of non-conservative
systems
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Summary. Anomalous damping-induced destabilization is investigated in a simple, small system con-
sisting of a double pendulum with springs. Linearized and fully non-linear results are presented.

Key words: stability, follower force, damping, two-dof model, destabilization paradox

Introduction

In 1952 Hans Ziegler reported an anomaly observed in the stability analysis of a simple double
pendulum model consisting of linear springs and dampers, and loaded by a follower force at the
free end [1]. Addition of small dissipative forces in the system resulted in an destabilizing effect,
which is a counterintuitive result and is often called a paradox. For a system in equilibrium
under the action of potential forces, the addition of dissipative forces with complete dissipation
ensures asymptotic stability of the undisturbed equilibrium, as stated by the well known Kelvin’s
theorem [2, Page 75]. However, such a result does not exist for general non-conservative systems.

Even though the problem is more than 60 years old, and numerous investigations have been
carried out on the understanding of the eigenvalue behaviour near the discontinuity at zero
damping, it is not fully understood. Bolotin attributes the controversial result to the inability
of the linear approximation to assess the question of stability [2, Pages 99-100], [3]. An attempt
to a physical explanation is given in a rather recent paper by Sugiyama and Langthjem [4].

In this paper, behaviour of the Ziegler’s pendulum with vanishing dissipation is reinvestigated
by using the fully non-linear model.

Two degree-of-freedom model

A double pendulum subjected to a follower force is studied, see Fig. 1. The bars are connected
to each other, and to a fixed support with an elastic spring and a linear viscous damper. In the
seminal paper [1], Ziegler found that the critical load in the case of small damping can be smaller
than the critical load without damping. This result, a jump in the critical load at vanishinly
small damping is often called the paradoz of destabilization due to damping.

To obtain the equations of motion, the principle of virtual work is applied:

SWi + 6W, +6W,; =0, (1)
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PCOI’;S P

Figure 1. Problem setup.

where the internal, external and inertial parts of the virtual work have the expressions

Wi == (kiq1 + c1q1)0q1 — (kg2 + c242)dqz 2)

OW, = — PLsin(q2)0q1 , 3)

dW;j = —mL? [(§ + cos(q2))i1 + (5 + 5 cos(g2))d2 — sin(g2)d1d2 — 3 sin(g2)(42)?] 5
—mL® [(§ + § cos(2))d1 + gd2 + § sin(g2)(d1)*] dgz 4

where ki, ko are the spring stiffnesses, c1, co the damping coefficients, L the length of one rod
and P the magnitude of the follower force P. The virtual work equation (1) can be written, as
used in Ref. [6], in the form

L+Q+J)-0q=0, (5)
where the internal, external and inertial generalized forces are
kiqi + c1ga } [ sin go }
L=- o, = —PL )
[ kag2 + c2g2 Q 0
J— I3 (5 + cos(q2))i1 + ( + 3 cos(q2))G2 — sin(q2)d1g2 — 3 sin(ga)(g2)* . (6)
(3 4 3 cos(g2))i + 32 + & sin(ga)(41)*

For comparison, in the conservative dead-weight loading case with Pcons (refer to Fig. 1), the
corresponding external generalized force becomes (note the opposite sign)

sin g1 + sin(q1 + q2)

ns = PeonsL .
Qco S cons Sln(q1 + QQ)

Because the variation dq is arbitrary, the virtual work equation (5) results in the equations of
motion

L+Q+J=0. (7)

Equation (7) together with Eqgs. (6), and proper initial conditions for q and ¢, completes the
non-linear description for the dynamics of the considered two-rod system.

Linearization

Beside the original non-linear model, it will be useful to consider its linearization at some
particular point (Qe, Qe, Qe). Let us define the perturbations

(q*vq*’q*)z(q_qﬁ)q_qe’q_qe)7 (8)
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and choose the point of linearization as an arbitrary static equilibrium point (qe, e, qe) =
(Qe, 0,0). Developing a multivariate Taylor series at (qe,0,0) up to first order results in the
following expressions:

L(q", 4", q") = L(q.,0,0) + aq(qe,O,O)q + 8(.1(016,070)01 + a(.].l(qe,O,O)q , 9)
Ol e &) — 2Q ., 9Q .+, 0Q
Q(a", 9", q") = Q(q.,0,0) + a4 (9e,0,0)q" + 8q(qe,O,O)q + 94 (9e,0,0)G" , (10)
e aJ , 01 L I
J(q 7q 7q ) —J(qeuovo) + aq(q€7070)q + aq(q(ivO?O)q + 8q(q6)o)o)q . (11)

The hat denotes a first-order Taylor approximation. The linearized equations of motion (7) at
the specific point (g, 0,0) have the form

oJ .. oL ) oL 0Q
ae 87070 * a- 67070 * a_ 67070 a 67070 *:07 12
e 0.0 + 52 0.00d + (50,0 + 50,0 ) a 12)
which can be written in matrix form as
M§* +Cq" +Kq* =0, (13)

where the stiffness, damping and mass matrices are

0Q JOL 0J

OL
K=- (aq(qeaoao) + aq(Qe,0,0)> ’ C= _%(qeaoao) ) M= _%(qﬁo’o) ' (14)

Evaluating the differentiations gives

| kO 0 cosqo | ea 0
A Rl CE

5 1,1
M:mL3[13+cosq2 3 T 5 COSq2 (15)

1 1
3 T 5 €082 3
Solution of the linearized model

For simplicity the case where the two springs are identical is considered: ky = ko = k and
¢1 = ¢3 = c¢. In the linearization, a natural configuration of interest is the straight upright
trivial state of the system, q. = 0. The stiffness, damping and mass matrices are

o J1o0 0 1 [t o0 1 4[16 5
K_k[01]+PL[OO], c_c[01], M_6mL[5 2}. (16)

For comparison, the stiffness matrix for the conservative dead-weight case with Peopg is

K R p | cosa + cos(q1 + q2) cos(q1 + q2)
cons 0 ]{2 cons COS((]l +Q2) COS(Ql +Q2) ?

and on the trivial state q. = 0,

1 0 2 1
Kcons:k[o 1:|_Pc0nsL|:1 1] .

Let us divide both sides of equation (13) by mL3, and define the dimensionless quantities

cT B k2 PL
mL3 ' T L3 ko

t (17)

, B

t
-
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Figure 2. Solutions of the characteristic polynomial (21) for v = 1, 8 = 1073. In the large left subfigure,
the solid line represents Re(s) and the dashed line Im(s). The trivial equilibrium point (g1, ¢2) = (0,0)
loses stability at A** ~ 1.64 in a dynamic mode (a.k.a. flutter, Ims # 0). The bifurcation point of the
undamped case, at A* &~ 2.54, is no longer a bifurcation point.

Here t' is the dimensionless time coordinate, and 7 is a characteristic time (an arbitrary scaling
factor). Because we are dealing with moments, in the SI system we have [k] = Nm/rad = Nm
and [¢] = Nms. Note also that [m] = kg/m, the linear density of the rod material, and observe
that in (13), each 9/0t produces a factor of 1/7 when the equation is re-expressed using the
dimensionless time ¢’ (via the chain rule). The following forms are obtained for the dimensionless
stiffness, damping and mass matrices:

(3 2] e[t 3] emafd ). moi[E ]

The system has three remaining parameters: [ is a damping/mass ratio, 7 is a stiffness/mass
ratio, and A is the loading strength relative to the reference load k/L. Thus, essentially A\ may
vary continuously (as a parameter), while 8 and ~ play the role of material constants. We
will perform a parametric analysis, fixing 8 and 7 at some constant values, and examining the
solutions of this system as a function of A.

Equation (13) is a system of ordinary differential equations with constant coefficients. The
standard technique is to apply the time-harmonic trial function to determine its harmonic vi-
brations. Inserting the trial function

q* — est/y (19)

(where y is an eigenstate vector and s the dimensionless complex stability exponent) into the
dimensionless representation of (13) and discarding the common factor e® ¥ the result is

<R+86+52M>y20, (20)

which has nontrivial solutions y # 0 if and only if the determinant vanishes. Using (18) and
(20), we construct the characteristic polynomial, which is of the fourth order in the stability
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Nonlinear problem, follower load, 3=0.001, v=1, A=2.3, At =0.001, t,=10000
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Figure 3. A solution of the non-linear system. Phase space density plots for (¢1,41) and (ge, ¢2) for v = 1,
B =10"3, X\ = 2.3 with initial condition (g1, {1, g2, d2) = (1073,0,1073,0).

exponent s. The zeroes of this polynomial give the admissible values of the stability exponent
at each point (3,7, A) in the parameter space. Explicitly, for the non-conservative problem it is
obtained that

{7 +s(B+ is)] [7 +s(B+ ?1)5)] _ [M + 252} ESQ: ~0. (21)

For comparison, for the conservative (dead-weight) problem the characteristic polynomial is

[fy(l —2X\) +s(B8 + 23)] [fy(l —A) +s(B+ ;s)} - [—’y)\ + 282] —YA + 282] =0.
For a numerical example, let us choose v = 1 and the range A = [0,5]. The solutions of the
non-conservative case (21) are shown in Fig. 2. By the introduction of small damping into the
model, the critical value of the load parameter has jumped down from A\* & 2.54 to \** =~ 1.64;
this behaviour is retained for arbitrarily small positive 5. One pair of solutions crosses the
imaginary axis well before the undamped bifurcation load A\* is reached.

Solution of the non-linear model

To illustrate the behaviour of the original non-linear system, we perform direct time integration
up to a prescribed end time ¢; = 10000 (with trivial time scaling, 7 = 1s), choosing the load
A such that \** < A < A*. By introduction of auxiliary variables for ¢; and ¢o, the non-linear
system (7) with the definitions in Eqgs. (6) is reduced to the standard first-order form

w = f(W) 3 where w = ((Zla(jlaQZaCb) . (22)

The classical implicit midpoint rule (IMR) is used to integrate the equations of motion. The
integration is performed at a constant timestep, because in addition to simplicity, this leads to
a property that is very useful for visualization. Consider a projection of the trajectory, where
the time coordinate is projected away (discarded). The time-discretized solution forms a four-
dimensional point cloud in the state space (q1,q1,q2,¢2). With a constant timestep, the local
density of the point cloud is linearly proportional to the portion of total simulated time that
the time-discretized system spends in that local region of the state space.
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To visualize the results, the time coordinate is discarded, and the four-dimensional data is
projected into two dimensions. T'wo physically motivated, independent projections are used; the
first projection is (¢1,41) and the second is (g2, ¢2).

A simple kernel density estimator is applied to the resulting two-dimensional point clouds,
in order to extract a discrete (raster) representation of the state space density function. Kernel
density estimation is preferable over 2D histogramming, because it gives subpixel accuracy
(reducing moiré artifacts), and it is not sensitive to the placement of the bin edges.

The density function has a high dynamic range, far exceeding that which is representable
on a computer screen or in print. To visualize the density, a dynamic range compressor is
applied before plotting. We choose the data-adaptive histogram remapping method of Larson,
Rushmeier and Piatko [7], which preserves visual contrast. The resulting colour scale is neither
linear nor logarithmic; instead, the colours are allocated in a data-adaptive manner in order to
reveal as much structure in the data as possible. For details, see [8].

See Fig. 3 for the results. The parameters are 3 = 1073, v = 1 and A = 2.3. The shade is
a monotonic function of the state space density, with darker shades indicating higher densities.
The solution starts at the initial point (qi,d1,q2,42) = (1073,0,1073,0), spirals out at first
slowly (dark region near origin), and accelerates outward (shade becomes lighter). Then the
non-linearity starts to have a visible effect, slowing the outward motion (shade becomes darker
again) and deforming the trajectory into a more complicated shape. Eventually, the system
settles onto a limit cycle (dark outer border; in the right subfigure, including the outline and the
small ellipses) far away from the initial point. In this cycle, while the ranges of angles for both
springs are approximately the same, the second rod has a higher maximum angular velocity.

The non-linear simulation illustrates the global meaning of the local instability of the static
equilibrium at the origin for A = 2.3, indicated by the linear analysis in Fig. 2. As is common
for non-linear systems, the exponential growth of the solution norm eventually stops, and the
system settles onto an attractor, which in this particular case is a limit cycle. Studying the
non-linear problem parametrically, also strange attractors can be found for higher values of .
No further static equilibria exist; by requiring § = ¢ = 0 in (7) and solving for q, it is seen that
the origin is the only static equilibrium point for the non-linear system with the follower load.
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Tiivistelmd. FEriis suuri haaste laajennetun elementtimenetelméin soveltamisessa on tarkkojen numee-
risten integrointisdintdjen puuttuminen. Tassd tyodssd tarkastellaan perinteiseen elementtimenetelmiin
perustuvissa ohjelmistoissa yleisesti kiytettyjen kvadratuuripisteistdjen soveltuvuutta laajennettuun ele-
menttimenetelm&in.

Avainsanat: laajennettu elementtimenetelmé, numeerinen integrointi

Johdanto

Olkoon Q kuvan 1 (vas.) mukainen siardytynyt alue ja (r,0) kuvassa esitelty napakoordinaatisto.
Tarkastellaan seuraavaa malliongelmaa: etsi funktio u : 2 — R siten, ettd

—Au =0, alueessa 2, (1)
u = 4/rsin g, reunalla 9. (2)

Madritellddn funktioavaruus
V= {we H(9Q) |wlog = Visin )}, 3)

jonka avulla esitelty malliongelma voidaan kirjoittaa heikossa muodossa: etsi funktio u € V siten,
etta

/Vu-Vvda:zO, Yo € H}(Q). (4)
Q

Epésaannollisen reunan ja asetetun reunaehdon vuoksi tehtévén (4) ratkaisu ei kuulu funktio-
avaruuteen H2(€2) [5]. Téstd huolimatta ehto u € H?(2) on sééinnsllisyysvaatimus téiyden suppe-
nemisnopeuden saavuttamiseksi P;-elementtimenetelméssé [3]: etsi up € Vj :={w € V ’ w|g €
P (K)VK € Ty} siten, ettd

/ Vuy, - Vopdz =0, Vo € Vh,() = {w € H&(Q) ]wK S P1(K) VK € 7;L}, (5)
Q

jossa Ty, on alueen 2 kattava sédénnollinen kolmioverkko verkkoparametrilla h ja P;(K) on ele-
mentissd K maériteltyjen lineaaristen polynomien joukko. Tarkempi tarkastelu osoittaa, ettd
tehtfivin (4) ratkaisu kuuluu Sobolevin avaruuteen H3/2~¢(Q), Ve > 0, miki rajoittaa tarkan ja
diskreetin ratkaisun erotuksen H'-normin kertaluokkaan O(h'/2).

Laajennetussa elementtimenetelméssé |1, 2| diskreettejé funktioavaruuksia V3, ja V}, o laajen-
netaan lausekkeen (2) kaltaisilla kantafunktioilla. Yleisesti sérdjen laheisyydessd tehtavin (4)
ratkaisujen tiedetddn olevan muotoa /rsinf/2 kun taas tdssid tyossi reunaehto (2) valittiin,
koska t&lloin tarkka ratkaisu tunnetaan. Laajentamalla diskreetteja funktioavaruuksia sopivilla
kantafunktioilla saadaan H!-virheen suppenemisnopeutta parannettua [6].
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Kuva 1. (Vasen.) Tarkasteltava sidrOytynyt alue Q ja napakoordinaatisto (r,6). Paksumpi viiva kuvaa
laskenta-alueen reunaa. (Oikea.) Integrointipisteiden méérin N vaikutus H!-virheen suppenemisnopeu-
teen.

Integrointivirhe

Muodostettaessa laajennettuun elementtimenetelméaén liittyvad matriisiyhtdl6d on tarpeen las-
kea lisdttyjen kantafunktioiden energiasisdtulot itsensé ja muiden avaruuden V}, ¢ kantafunktioi-
den kanssa [6]. Koska lisétyt kantafunktiot eivét ole polynomeja, on tarkkojen integrointisdénto-
jen muodostaminen haastavaa. Elementtimenetelmén toiminnan takaamiseksi tulee numeerinen
integrointi lahtokohtaisesti tehdd mahdollisimman tarkasti. Koska téysin tarkka integrointi ei laa-
jennetussa elementtimenetelmaissé ole yleisessa tapauksessa mahdollista, on varmistettava, etté
integrointivirhe on hévidvin pieni ja etteivit menetelman ominaisuudet kuten suppenemisnopeus
ja syntyvan matriisitehtavan stabiilisuus kérsi.

Kuvassa 1 (oik.) on esitelty integrointipisteiden méérin vaikutus laajennetun elementtimene-
telmin H'-virheen suppenemisnopeuteen verkkoparametrin h funktiona ratkaistaessa tehtivii
(4) ja kiytettdessd ns. Dunavantin integrointipisteitd [4]. Kuvasta voidaan havaita suppenemis-
nopeuden hidastuvan kullakin integrointipisteiden mé&arallad verkkoparametrin ollessa riittdvan
pieni.
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steel shaft
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Summary. Large electric machines need internal cooling circuit. Fans mounted on the rotor are
used to circulate the cooling air inside the motor. Aluminium is an attractive material due to low
specific weight and casting an inviting manufacturing method for these fans. Internal fans must
endure fatigue loading generated by the centrifugal forces and thermal cycles. The latter is
articularly critical with shrink-fitted fans. This results from the different thermal exfpansion
actors of aluminium and steel. The aim of this paper is to present the fatigue analysis of typical
aluminium fan based on EN 1999-1-3.

Key words: centrifugal fan, fatigue design, thermal load

Introduction

Large electric machines need internal cooling circuit. Internal fans mounted on the rotor are
often used to circulate the cooling air inside the motor enclosure. Aluminium is an attractive fan
material due to the low specific weight and casting an inviting manufacturing method due to the
relatively complicated fan geometry determined by the aerodynamic requirements. Figure 1
shows an example of an internal fan.

Figure 1. Assembled rotor of an electric motor with its internal fan.
The dimensioning of fans is based mainly on fatigue strenght. The fatigue loading of a fan is

determined by the operation cycles including the rotational speed and temperature. There are
generally two simple mounting methods for these fans: key-fitting and shrink-fitting. The
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shrink-fitting has many advantages, but it leads to a more demanding fatigue design. Particu-
larly, the thermal cycle is critical due to the different thermal expansion factors of aluminium
and steel.

The aim of this paper is to present a fatigue design approach of cast aluminium fans based
on EN 1999-1 [3, 4]. This approach is discussed with respect to calculation procedures and
application requirements.

The paper describes first the calculation procedure based on the standards. After that, this
procedure is applied for a typical fan with a key- or shrink-fitted joint. Finally, the calculation
results are evaluated and the applied procedure discussed.

Calculation procedure

Design load

The design lifetime of a motor and its fan is typically 20 years. The fatigue load is generated by
the cycles of centrifugal loads and thermal loads. A full load cycle of a fan for constant speed
motor includes the following steps (Figure 2):

1. Zero speed in cold condition (as after mounting of the fan)

2. Rated speed in cold condition

3. Rated speed in hot condition

4. Zerospeed in hot condition

5. Zero speed in cold condition
In principle, the fatigue design is based on the number of load cycles during the design lifetime.
It can be assumed for instance that there are 1000 starts per year. However, it is remarkable that
the full cooling down of a motor may take several days. Thus, the number of full load cycles is
usually much smaller than the number of reduced load cycles (Figure 2).

Temperature [K]

Ambient —|

|
Rated
speed

Figure 2. Schematic diagram of full load cycle (P1-P2-P3-P4-P1) and reduced load cycle (P6-
P7-P3-P4).

Fatigue strength

The fatigue design relationship for aluminium constructions in the range 10° to 5x10° cycles
(with partial factors equal to 1.0) is defined by the equation [4]

N; =2 % 106 (2%)™ (1)

O
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where N; is the predicted number of cycles to failure, Ag, is the reference value of fatigue
strength at 2 x 10° cycles, Ag; is the stress range for the principal geometric stresses at the con-
structional detail, and m; is the inverse slope of the o. — N curve. For cast aluminium m; =7
and the design category is determined by the maximum diameter of the pores [4, 5]. Table 1
shows the corresponding allowable stress range for selected number of cycles. According to EN
1999-1-3 [4] Eq. (1) may by unnecessary conservative for stress cycles less than 10° times.

Standard EN 1999-1 [3, 4] covers six cast aluminium alloys with two casting processes:
sand cast and permanent mould. It is remarkable that the fatigue strenght of these alloys is
dependent only on the maximum diameter of the pores [5]. This means that the fatigue strength
of aluminium casts is strongly related to the casting and quality assurance processes.

Table 1. Fatigue strenght of cast aluminium.

Detail Maximum

category pore Allowable stress range

diameter T\ 9000 N=20000  N=10°  N=2x10°
71 0.2 (1905  (137.1) 1089 710
50 0,5 (134.1) 96,5 767 50,0
40 0,9 107,3 77.2 61,4 40,0
32 1,2 85,8 618 49,1 32,0
25 2.0 67.1 483 384 25,0

Values in parentheses are above the yield strength of assumed base material

Stress calculations

According to EN 1999 [4] the principal geometric stress should be used for the fatigue design.
In principle, the stress range between two loading conditions can be determined by calculating
the difference of stress tensors and transforming this difference tensor in principal coordinates.
The largest absolute value of the principal stresses of this difference tensor gives the largest
stress range.

The largest stress range is not necessarily enough, because the fatigue strenght is dependent
also on the stress ratio R = opmin/0max [4]. In order to get the stress ratio for critical stress
ranges the principal stresses of both load conditions in critical locations must be calculated and
corresponding stress ratio determined. In this paper, the critical stress ranges with stress ratios
are searched as follows:

1. Critical locations are defined by the maximum and minimum principal stresses of the

difference tensor of two load conditions.

2. Principal stresses with directions are determined in these locations for both load cases.

3. Algebraic differences of principal stresses are calculated by using the directional infor-
mation. The largest absolute value is related to the max/min stress range. (This may
induce a small error due to the alignment deviation of principal stresses)

4. Stress ratio related to the max/min stress range is calculated by using the corresponding
principal stresses.

The largest stresses are usually on the surface of the structure with two non-zero principal
stresses. This facilitates the “manual” procedure for finding of stress ratios. However, it must be
mentioned that this approach does not necessarily yield the most critical locations due to the
effect of stress ratio.
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Calculation example

The example fan is designed for a 1500 kW electric motor. The fan is mounted on the shaft and
is located inside the motor frame circulating the air inside the enclosure. The maximum contin-
uous rotational speed is 3600 rpm and the maximum change of the internal air temperature is
110 K. The inner diameter of the fan hub is 210 mm. The fan material was cast aluminium with
E =70 GN/m?, v=0.3, p= 2700 kg/m®, and o = 23-10° K™,

Key-fitted fan

The fan is fitted to the shaft with a keyway. The applied interference fit H7/m6 was chosen to
balance between the stress range and the residual unbalance due to the opening interference fit.
All the numerical analyses were performed by ANSYS software [1]. The material model was
linear elastic. The modelling was carried out by 10 node tetra elements and the mesh density in
the critical corner was modelled by 6 elements for 90 degrees [2]. Figure 3 shows the stresses in
the keyway corner due to the centrifugal forces. The forces due to temperature cycle are small
due to the light interference fit.

It can be mentioned that the opening of the fit due to the thermal expansion induces an
unbalance of quality grade G57 for a separate fan with unpredicted direction. This is the main
drawback of key-fitted fan together with the additional parts and assembly requirements.

Figure 3. Maximum principal stress (54.9 MPa) in the keyway corner at 3600 rpm.

Shrink-fitted fan

The fan is fitted to the shaft with a shrink fit. A much larger interference N7/v6 is required to fix
the fan to the shaft with the maximum temperature difference and rotational speed. The sym-
metric sector model included the slice of shaft section and fan with one radial support wing. The
contact between the shaft and fan is modelled by the contact elements with friction. Figure 4
shows the maximum principal stress of then fan in the mounted condition (P1 in Figure 2)

Figure 5 shows, as an example, the maximum principal stresses for two load conditions
leading to the maximum stress range (88.2 MPa) with tensile stresses.

Comparison

The maximum stress ranges were calculated between all the load conditions of full load cycle (6
in total) presented in Figure 2. Table 2 shows the stress ranges for some of the calculated cases.
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Figure 4. Maximum principal stress (134 MPa) due to shrink-fit.

Figure 5. Maximum principal stress at 3600 rpm in cold condition (142.1 MPa) and zero speed
in hot condition (53.9 MPa) in the same location and direction.

For the key-fitted case the effect of small interference fit is neglected and the stress ranges are
generated purely by the centrifugal forces. The max value is obtained by choosing the location
of maximum principal stress (of the stress tensor difference) and the min value by choosing the
location of minimum principal stress. Some of the compressive stress ranges are unrealistically
large due to the modelling details (e.g. unnecessary small fillet radius), but can be used here as
qualitative values. The stress values can be compared to the yield strenght 133 MPa and the
ultimate tensile strength 161 MPa of a typical material for cast parts [3].

Table 2. Maximum stress ranges of key-fitted and shrink-fitted fans between some of the load
conditions presented in Figure 2.

Variable Unit Key fit Shrink fit
P3-P4 P1-P3 P2 -P4 P3-P4
max min max min max min max min

Ao MPa 54,9 438 71,5 170,1 88,2 1040 84 39,8
omx MPa 54,9 0,0 133,7 -48,2 142,1 -76,3 62,2 -48,2
O min MPa 00 -438 62,2 -2183 539 -180,3 53,9 -88,0
R - 0 - 0,47 4,53 0,38 2,36 0,87 1,82

As Table 2 shows the maximum tensile values for the shrink fitted fan are obtained in the
load cycle P2-P4 and compressive values for the load cycle P1-P3. However, it is remarkable
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that the load cycle P3-P4 gives relatively small stress cycles compared to the fatigue strength
values of different detail categories (Table 1). It is assumed that most of the load cycles of
actual fans are cumulated from the cycle P3-P4-P6-P7, which is assumed to be in most of the
applications close to the load cycle P3-P4.

Discussion and conclusions

The shrink-fitted fan has several advantages compared to the key-fitted fan, e.g. the sim-
plicity of the design and assembly with reduced residual unbalance in hot condition. The fatigue
strength requirement seems to be the main challenge of shrink-fitted fan. This paper presented
the calculation procedure based on EN 1999-1-3 [4].

The critical location of key-fitted fan is the corner of the key-way. A standard keyway has a
rounding of the corner with a small radius. A small radius is a natural stress-raiser similar than
an initial crack. The applied standard EN 1999 is based on the principal geometric stress of the
actual geometry. It is open to authors how to handle the keyway corners according to this
standard.

In general, it is significant that a tighter interference fit increases quickly the stresses in the
keyway corner of a cold stationary motor (P1) preventing the intermediate form of the key-fitted
and shrink-fitted connection. Thus, there are two qualitatively different and separate alterna-
tives.

The shrink-fitted fan has large stress ranges in compressive side. The applied standard EN
1999 gives enhanced fatigue strength based on the stress ratio for values less than R = +0.5.
However, as Table 2 shows, the stress ratio is positive when the maximum and minimum stress
are compressive and often larger than 0.5. The authors assume that they have misunderstood the
definition of stress ratio in this context.

The number of design cycles of a typical fan is order of 10 000. In addition, most of these
cycles are for a hot motor (P3-P4) with clearly lower stress ranges. Thus, the dimensioning is
clearly on the low-cycle fatigue range. Standard EN 1999 notes that the application of Equation
(1) may be unnecessary conservative for low-cycle fatigue range and gives some alternatives for
enhanced fatigue strength but not for aluminium castings.

As Table 1 shows, the fatigue strenght of aluminium castings is dependent on maximum
pore size. The size of the pores is dependent on the casting methods and procedures. Small pore
sizes are difficult to achieve and quality assurance and inspections are expensive procedures.
Thus, the fatigue design of a simple shrink-fitted fan seems to be a very complicated task in-
volving numerical models, expected load cycles, manufacturing practices and quality assurance.
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Tiivistelmd. Tassa artikkelissa kasitelladan lyhyesti betonin vaurioitumisen laskennallista
kayttaytymista. Artikkelissa esitellaan laskentojen ldhtokohdat ja mallintamisen periaate
lyhyesti, sekd analysoidaan Ipz’iéaltulokset ja niistd havaittavissa olevat 1lmi6t. Tarkempia tuloksia,
anall()l/(ytlt_ista laskentaa ja halkeilua on kasitelty diplomity0ssé [4], mutta niitd ei kasitelld tassa
artikkelissa.

Avainsanat: betoni, Ansys, Solid65, taivutus, raudoitus, murtumisenergia

Johdanto

Alun perin tutkimus liittyi aiheesta suoritettuun diplomityéhon [4], jonka l&htdkohtia,
laskentaa ja tuloksia selitetddn artikkelissa. Tydssa mallinnettiin  raudoitetun
betonilaatan taivutusta murtoon asti. Laskentaohjelman tuloksista pyrittiin 16ytaméaan
yhtenevaisyyksid suoritettuun kokeeseen ja aiemmin suoritettuihin tutkimuksiin, seka
selittdmadn tuloksista havaittavissa olevia ilmigita.

Laskentaohjelman betonimallin toiminta

Betonin kuvaamiseen tarkoitettujen materiaalimallien triaksiaalisille
vaurioitumispinnoille on olemassa nelja teoreettista vaatimusta, joiden tayttyessé mallia
voidaan pitaa luotettavana. Namé vaatimukset ovat:

1. Mallin toiminta vastaa kokeellisia tuloksia.

2. Mallin parametrit ovat helposti maariteltavissa koetuloksista.

3. Vaurioitumispinnan suunta ei muutu akillisesti.

4. Vaurioitumispinnassa ei ole epéjatkuvuuskohtia.

Ansys 14.0 kéyttdd Solid65-elementeillda mallinnetun betonin  kuvaamiseen
konstitutiivista triaksiaalista mallia [1-2], jonka kehittivat K.J. Willam ja E.P. Warnke
1970-luvulla [6]. 8-solmuiseen Solid65-elementtiin on mahdollista lisat4 raudoitus, joka
muuttaa sen ominaisuuksia halutussa suunnassa.
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Kuva 1. Betonin jannitys-venymakayttaytyminen halkeilutilanteessa. [2]

Murtumishetked lukuun ottamatta taivutetun betonirakenteen kayttaytymiseen
vaikuttaa enemman sen veto- kuin puristusjannityksen alainen kayttaytyminen. Kun
kyseessa on yksinkertainen palkkirakenteen taivutus, voidaan ajatella vetojannitysté
syntyvan vain yhteen suuntaan rakenteen alapinnassa. Vetojannityksen rasittaman
betonin kayttaytyminen on esitetty kuvassa 1.

Kuvasta 1 n&hdaan, ettd materiaalin kayttdytyminen on lineaarista, kunnes se
saavuttaa kéayttajan asettaman vetolujuuden fi.. Tamén jalkeen jannitys laskee venymien
kasvamatta kayttajan asettaman kertoimen T, mukaisesti. Kertoimelle T, vaihteluvéli on
luonnollisesti [0,1]. T&mé&n jalkeen jannitys laskee lineaarisesti nollaan, niin ett4
jannitysté ei endd ole, kun materiaali on saavuttanut kuusinkertaisen murtovenyman.
Tama skalaarikerroin ei ole saddettavissd, mutta murtovenymé&é voidaan séatda Hooken
lain mukaisesti vetolujuuden ja kimmokertoimen avulla.

Materiaalin murtumisenergia voidaan maarittdd kuvan 1 halkeamisen jélkeen
kuvaajan alle jd&van pinta-alan ja karakteristisen elementtikoon tulona [5]. Koska tdssé
venymaa syntyy vain yhteen suuntaan, voidaan karakteristinen mitta korvata elementin
sen suunnan sivumittana, jossa venymaa syntyy. Kun yhtald saatetaan muotoon, jossa
esiintyvét vain kayttajan syottdmat parametrit lausumalla my6s murtovenymé Hooken
lain mukaan, saadaan murtumisenergiaksi

5T-fi
6, ="2%, (1)
jossa T, on ké&yttdjan asettama kerroin, f; materiaalin vetolujuus, | elementin mitta
vetojannityksen suunnassa ja E lineaarisen alueen kimmokerroin. Jarkeva
murtumisenergian arvo normaaleille betoneille on noin 40 - 140 N/m. Oleellisinta
kuitenkin on, ettd eri FEM — malleja vertailtaessa murtumisenergian arvo tulisi olla
sama. On syytda sdatdd enimmakseen elementtikokoa ja Kkerrointa T., koska
kimmokertoimen ja vetolujuuden vaarédd suuruusluokkaa olevat arvot johtavat
epatodellisiin taipumiin ja toisaalta vaaranaikaiseen halkeiluun.
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Staattinen taivutuskoe

Ansys-laskennan laht6tietona toimi VTT:n suorittama kaytannon koe [3], josta mitattiin
nelipistetaivutetun betonilaatan siirtymid sek& materiaalien muodonmuutoksia.
Kuormituksen periaate on esitetty kuvassa 2.

A-A

A A ;AA

Kuva 2. Laatan mitat ja kuormitusjarjestelyt. [3]

Kuormitus tapahtui kahden kuormitussylinterin avulla. Kokonaisvoima F jakaantui
nain tasan kahdelle kuvan 2 mukaiselle kuormituslinjalle. Laatta oli paistdan vapaasti
tuettu, ja sen jannevali oli 2 m. Koe suoritettiin kaksi kertaa. Saadut voiman ja siirtymén
valiset yhteydet on esitetty kuvassa 3. [3]

Maximum force at each cycle
80 7

= Test 1
30 ,’:J’ o Test2

Maximum force [kN]
»

0 5 10 15 20 25 30 35 40

Driving displacement [mm]

Kuva 3. VTT:n kokeen voiman ja siirtyman véliset yhteydet kahdelle suoritetulle
taivutuskokeelle. [3]
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Kuvasta 3 erottuu hyvin terdsten myo0torajan ylittyminen, joka tapahtui
kokonaisvoiman F ollessa noin 66 kN. Talléin laatan kuormituspisteen siirtyma oli noin
12 mm.

VTT:n kokeen perusteella tehtiin Ansys-laskentamalli, jonka geometria oli kokeen
mukainen. Raudoituksiksi mallinnettiin taivutuksen kannalta oleelliset pd&raudoitukset
laatan yla- ja alapintaan. Mallissa kaytettiin 8-solmuisia Solid65-elementteja
kuvaamaan  betonia.  Raudoitus  kuvattiin  jatkuvana, jolloin  elementin
jaykkyysominaisuuksia muutettiin vain paaraudoituksen suunnassa raudoitetuksi
halutussa elementtikerroksessa.

Laskennassa l&hdettiin liikkeelle asettamalla tietty vaatimus murtumisenergialle.
Murtumisenergia laskettiin kaavalla (1). Rajoituksena toimi VTT:n kokeen yhteydessa
betonimateriaalista mitatut arvot vetolujuudelle f; =2.71 MPa ja kimmokertoimelle
E =23 000 MPa. Murtumisenergia uhkasi jaada liian pieneksi, mink& vuoksi kertoimen
T, arvona kéytettiin maksimia 1.0. Elementin mitta janteen suunnassa oli 50 mm. Betoni
yksiaksiaalinen puristuslujuus oli 41.5 MPa ja biaksiaalinen 48.1 MPa.

Kokeen raudoitus oli 5 T10 molemmissa pinnoissa. Raudoituksen keskidetdisyys
laatan pinnasta oli 25 mm. Raudoitusterdkset kuvattiin bilineaarisella jannitys-
venymayhteydelld, jonka todettiin vastaavan VTT:n kokeesta mitattua todellista
yhteyttd erittdin hyvin aina venymadarvoon 3 % saakka. Myo0torajaksi asetettiin
580 MPa. Murtorajaa ei asetettu, mutta laskennoissa todettiin, ettd rakenne murtui
lopulta muilla tavoin kuin terésten katkeamisen takia. Elementtiverkko, kuormitus ja
reunaehdot on esitetty kuvassa 4.

X

Kuva 4. Elementtiverkko, kuormitus ja reunaehdot. Uloimmat elementtikerrokset ovat
raudoittamattomia. Toisiksi uloimmat ovat raudoitettuja, ja niiden etdisyys laatan pinnasta on
sama kuin alkuperdisten terédsten keskioetéisyys. Elementtejd paksuuden yli oli yhteensa 12.

Laskentatulokset

Edelld esitellyn taivutuskokeen mukaista Ansys-ohjelmaan mallinnettua laattaa
kuormitettiin solmuille asetetuilla pistevoimilla. Kun symmetria ja solmujen lukumaaré
otettiin  huomioon, vastasi kokonaiskuormitus kuvan 3 kuvaajan mukaista
kokonaisvoiman arvoa. Ansyksella laskettu voiman ja siirtyman valinen yhteys seké
todellisesta kokeesta mitatut yksittaiset pisteet on esitetty kuvassa 5.

Kuvasta 5 erottuu selkedsti ensimmadaisen halkeaman syntyminen rakenteeseen
kuormituksen ollessa hieman yli 20 KN. Tam& saa aikaan akillisen siirtymén kasvun
halkeilun takia voimakkaasti redusoituvan taivutusvastuksen myota. Terasten myétoraja
ylittyi kuormituksen ollessa noin 72 kN, ja kuvaajan tasaantuessa 80 kN kohdalla koko
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Kuva 5. Ansyksella laskettu voima-siirtymékuvaaja, seké todellisesta kokeesta mitatut
yksittéiset arvot kummallekin laatalle.

teoreettisen maksimimomentin alueen terdkset olivat myo6taneet. Myo6torajan
ylittyminen tapahtui Ansyksella hieman myohemmin kuin todellisissa kokeissa, mutta
kuvaajan kulmakertoimet sekd ennen etta jalkeen tamén olivat samaa luokkaa.
Kuormitustapa luo vakio taivutusmomentin kuormituspisteiden véliselle alueelle.
Terésten venymaa mitattiin viidesta pisteestd, joista ensimméinen (MP1) sijaitsi
jannevalin puolivélissa. Seuraava piste (MP2) sijaitsi 100 mm etdisyydelld t&sta, ja
seuraava (MP3) taas samalla etaisyydelld edellisestd. Kuormituslinjan etéisyys janteen
puolivalista oli 250 mm, mika tarkoittaa, ettd ndma kolme mittauspistetta sijaitsivat
kuormituslinjojen valisella alueella. Kaksi mittauspistettd (MP4 ja MP5) sijaitsivat
kuormituslinjalta tuelle pdin. Ter&sten venymat edelld luetelluissa mittauspisteissa eri
laatan kuormituspisteiden siirtymien arvoilla on esitetty kuvassa 6.
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Kuva 6. Terdsvenymat eri mittauspisteissa eri siirtymien arvoilla.
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Mallista ja laatoista mitattiin my6s ylapinnan betonin puristumaa jénnevélin
keskelld. Sen arvo kuormituksen funktiona on esitetty kuvassa 7.
0 m
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Kuva 7. Ansyksella lasketut betonin ylapinnan muodonmuutokset jannevélin keskelld, seké
todellisesta kokeesta mitatut yksittéiset arvot kummallekin laatalle.

Johtopaatokset

Tuloksia vertailemalla havaitaan, ettd Ansys laskee sek&d siirtymida ettd
muodonmuutoksia varsin realisesti. Liséksi se pystyy laskemaan rakenteessa
tapahtuvien ilmididen, kuten betonin vetohalkeilun ja terdsten myotdadmisen, vaikutukset
oikein. Erot tuloksissa verrattuna todelliseen kéyttaytymiseen voivat johtua monesta
asiasta. Betoni on todellisuudessa epdhomogeeninen materiaali, jossa esiintyy monia
mikrotason ilmi6itd. Laskentaohjelman materiaali on kuitenkin homogeenista. T&llgin
se el pysty esimerkiksi mallintamaan yksittaistd halkeamaa, vaan kuvaa kokonaisen
elementin vaurioituneena. Tihentdmalla elementtiverkkoa ottaen kuitenkin huomioon
murtumisenergia, voidaan kuitenkin saada jonkinlainen kasitys my0ds tarkemmasta
halkeilun syntymisesté.

Viitteet

[1] Ansys 14.0 Theory Reference. 4.10. Concrete.

[2] Ansys 14.0 Theory Reference 14.65. Solid65.

[3] Calonius, K., Saarenheimo, A., Tuomala, M. 2013. Research Report VTT-R-
01653-13.

[4] Pietild, J. Raudoitetun betonilaatan taivutuksen mallintaminen Ansys-ohjelmalla.
Diplomityd. Tampereen teknillinen yliopisto, Rakennustekniikan laitos 2014.

[5] The International Federation for Structural Concrete. 2010. Model Code 2010.

[6] Willam, K.J., Warnke, E.P. 1974. Constitutive model for the triaxial behavior of
concrete.

96



Proceedings of the XII Finnish Mechanics Days
R. Kouhia, J. Mékinen, S. Pajunen and T. Saksala (Eds.)
(©The Authors, 2015. Open access under CC BY-SA 4.0 license.

Modelling of the web—air interaction in paper making using
the unified continuum model

Tytti Saksa!, and Johan Hoffman?

(Department of Mathematical Information Technology, University of Jyviiskyld, P. O. Box 35,
FIN-40014 University of Jyvéskyla, FINLAND, tytti.saksa@jyu.fi

(2)School of Computer Science and Communication, Royal Institute of Technology — KTH, 10044
Stockholm, SWEDEN;, jhoffman@kth.se

Summary. This presentation is concerned with dynamic behaviour of out-of-plane deformations of an
axially moving web interacting with surrounding air using the unified continuum (UC) model. In this
model case of fluid—structure interaction, structure is flowing instead of fluid. For a case with this type
of set-up, we here apply the UC model for the first time. When studying a structure with relatively low
bending stiffness, the flowing structure was found to undergo vibrations, as expected.

Key words: Modelling, Fluid-Structure Interaction, Unicorn, FEniCS

Introduction

Concerning axially moving materials, such as paper in paper making processes, the common
approach is to describe the moving structure behaviour by elastic beam [7] or plate [4] models.
Analysis of eigenfrequencies with respect to the structure velocity in such systems can be applied
to characterizing mechanical behaviour and predicting possible losses of stability. Comparison
of computational results and experimental frequencies have also been reported e.g. by Pramila
[6].

In this work, the unified continuum (UC) model introduced by Hoffman et al. [3] is applied
to the studied fluid-structure interaction problem. The UC model consists of conservation laws
of mass and momentum, equation of phase convection and constitutive laws of stress. Here, the
solid phase is described by imcompressible Neo-Hookean model and the fluid phase by Newtonian
model. To avoid diffusion of the phase interface, we set the mesh velocity equal to the structure
velocity in the y and z directions, assuming the structure flowing direction is aligned with the x
axis. That is, the mesh points track the phase interface (Figure 1). Updating the mesh velocity
in the z direction is neglected. (Compare with the general UC framework [1].)

fluid

structure

Figure 1. The mesh points track the fluid—structure interface.
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Numerical considerations

In the discretization, we used unstructured tedrahedra grid. The simulations were conducted
using open source tools Unicorn [1, 2], and a high performance branch of the finite element
problem solving environment DOLFIN [5], both parts of the FEniCS project.

As for the boundary conditions, we set as momentum boundary conditions the in-flow and
out-flow velocities for the solid phase, and pressure and density for fluid as a pinpoint at bottom
corner of the outer box. For the fluid at the inner surfaces of the box, we set no slip conditions.
The geometry and set-up of the problem is described in Figure 2.

Figure 2. Model geometry for a moving structure embedded in fluid. The structure (continuum) enters
the box running through the back surface (z = —0.5) and exits the box running through the front surface
(x =0.5).

In numerical simulations of accelerating the structure velocity from zero to some constant
velocity (30 m/s), the structure was detected to undergo vibrations. The fluid velocity was
initially zero and the velocity field for the fluid phase was generated solely from the interaction
with the solid phase. The frequency of the detected vibrations was the greater the greater
tension was generated by a velocity difference between the in-flow and out-flow edges.

Conclusions

Advantages of the UC approach in modelling are that we have a full three dimensional model,
and thus may target a more realistic simulation. Since the mesh moves for tracking the fluid-
structure interface as part of the discretization, this allows for simple and general formulation
and efficient computation. Since the size of the mesh is limited by computational costs, it is a
challenge to model a thin structure and keeping good quality of mesh. In this study, we have
exaggerated the thickness of flowing structure.
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Summary. The differences following from applying kinematically admissible and inadmissible
virtual displacements are demonstrated in connection with a simple stretched rod example case.
The reasons for using normally kinematically admissible virtual displacements become obvious.
The use of post-processing to obtain reaction or constraint forces on displacement boundaries is
commented on.
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Introduction

We refer to the authoritative continuum mechanics textbook by Malvern [1, p. 237]:

“A kinematically admissible displacement distribution is one satisfying any
prescribed displacement boundary conditions and possessing continuous first
partial derivatives in the interior of the body. Since virtual displacements to
be considered are additional displacements from the equilibrium
configuration, a virtual displacement component must be zero wherever the
actual displacement is prescribed by the boundary conditions.”

We refer additionally to the much cited mechanics textbook by Synge and Griffith [2, p.
56]:

“We note then that virtual displacements are of two types:
(@) virtual displacements satisfying the constraints,
(b) virtual displacements violating the constraints.”

Scanning further the literature, it seems that the mere term virtual displacement
means usually especially in continuum mechanics the kind of displacement referred to
in [1] and as (a) in [2]. In this article, we will call this kind of virtual displacement in
more detail as kinematically admissible virtual displacement. The kind of virtual
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displacement considered as (b) in [2] we will call here as kinematically inadmissible
virtual displacement.

To be more specific, a kinematically admissible virtual displacement can be
considered as the difference between two kinematically admissible displacement
distributions. As the kinematically admissible displacement distributions must satisfy
the displacement boundary conditions, it is seen immediately that the kinematically
admissble virtual displacement must satisfy these boundary conditions with zero
prescribed values. Further, the kinematically inadmissible virtual displacements will be
considered as continuous as the kinematically admissible virtual displacements. The
only difference is thus in continuum mechanics that the displacement boundary
conditions with zero values can be violated. However, in engineering mechanics
applications in general, especially in multibody dynamics, kinematical constraints other
than boundary conditions appear. For instance, the motions of the subbodies in a
mechanism may be constrained by pins etc. These constraints can be satisfied or not and
the division between kinematically admissible and inadmissible virtual displacements
must be enlarged in an obvious way.

As mentioned above, the use of kinematically admissible virtual displacements in
continuuum mechanics problems is taken usually as granted. However, nothing prevents
us from using alternatively kinematically inadmissible virtual displacements. This
theme is considered below in connection with an extremely simple demonstration
example.

A demonstration example
The problem

Let us consider a stretched uniform straight elastic rod along the x-axis in the interval
(0,1) under constant distributed loading per length g and by a point load P at the right-
hand end. The axial displacement along the rod is denoted u=u(x) and the normal
force T =T(x). Due to the assumed elasticity, T = EAdu/dx, where EA is the axial
stiffness of the rod. The left-hand end of the rod is a displacement boundary part and the
displacement boundary condition is u(0) =0, where U is given. The right-hand end of
the rod is a traction boundary part and the traction (force) boundary condition is
TH=P.

The problem is statically determinate and the exact analytical solution is easy to
find. The displacement expression is u(x) =[q(Ix—x?/2)+ Px]/ EA and the normal
force expression is T(x)=q(l—x)+P. The value of the reaction force (constraint
force) R at the rod left-hand end (positive when acting on the rod towards right) is
R=—ql-P.

We will solve below the present problem by the principle of virtual work to
demonstrate differences between the use of kinematically admissible and inadmissible
virtual displacements.

Use of kinematically admissible virtual displacements

The standard virtual work equation for the rod is
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du déu

—j EAdx .

T dx+ j gdudc+Pdu(l)=0, (1)

where &u is a kinematically admissible virtual displacement.

We will apply the displacement finite element method to solve approximately the
problem. A crude uniform two-node element mesh with the nodes 1, 2, 3 is taken. The
displacement approximation is thus

#(x)=N(x)u + Ny(x)uy + N3(x)us, 2)

where 1, uo, uz are the nodal displacements and Ny, N, N3 the (global) shape

functions (Figure 1).

wcb

Figure 1. (a) Shape function ;. (b) Shape function M, . (c) Shape function N5 . (d) Schematic

kinematically admissible finite element displacement approximation. (e) Kinematically
admissible virtual displacements.

Proceeding in the standard way, we introduce #z =# from the displacement
boundary condition so that (2) becomes a kinematically admissible displacement
distribution (Figure 1 (d)):

d(x)=Ny(x)u +Np(x)up + N3 (x)uy. @)

Variation of this (or considering the difference between two representations (3) with
nodal values &, u,, u3 and @, uy +8u, , u3+ dusz ) gives the kinematically admissible
virtual displacement (Figure 1 (e))

ot (x) = N (x) buy + N3 (x)duj . 4)
The discrete analogue of (1) is

du dou

—j EA— dxdx Iqﬁudx+P6u(l) 0, (5)

where # and &z are according to (3) and (4). As &u, and &u; are arbitrary, two
discrete system equations are obtained:
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ol EA(le 5. ON2 Uy + dN, ugdez dx+j(;q N,dx + PN, (1) =0, (6)

0 dx dx dx dx
I dN; _  dN, dN;  )dN; | B
- OEA( LT By ugJ ™ dx+IOqN3dx+PN3(I)_O. ©)

Performing the details, the equations become in matrix notation as

4E —2E —qI+2Eu
| | {UZ}_ 2 | ®)
_ZE 2& Us 1q|+p
I I 4
The solution is
I (3 1 I (1
Uy =T +— l+=P|, us=0+—|=ql+P|. 9
2 EA(8q 2 j 3 EA(Zq J ®)

These nodal values coincide with the exact solution. However, between the nodes the
solutions differ when q is non-zero. The approximate normal force evaluated applying
(3) and formula T = EAdu/dx is just elementwise constant and because of the crude
mesh inaccurate.

Use of kinematically inadmissible virtual displacements

Using a kinematically inadmissible virtual displacement 6u (meaning here that the
condition du (0) = 0 is violated), the virtual work equation becomes

du ddu

_I BA K dx dx

2 dx + _quudx+P6u(I)+R6u(0) 0. (10)

Compared to (1), the only difference is the last term on the left-hand side giving the
virtual work of the unknown reaction force (constraint force) R, which is here an
external force with respect to the rod.

In the finite element approximation we use the full kinematically inadmissible
approximation (we do not substitute yet at this phase the relation u; =)

0 (x) = Ny (x)ug + Np(x)up + Nz (x)us. (11)
Variation of this gives the kinematically inadmissible virtual displacement
O (X) = Np(Xx)duy + No(X)duy + N3(X)dus. (12)

These distributions are sketched in Figure 2.
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Figure 2. (a) Schematic kinematically inadmissible displacement. (b) Kinematically
inadmissible virtual displacement.

When (11) and (12) are applied in (10), three system equations emerge:

dN dN. dN; 1
_ 1, 2 3 1 _
I ( U, + u3J dx+IOqN1dx+PN1(l)+RN1(0) 0, (13)

v, dN, dN; \dA, ! ~
_I EA[ L P u3J » dx+j0qN2dx+PN2(1)+RN2(0)_0,(14)

dN, dn. dN. dnN. I
—| EA| L+ —Lu,+—u 3dx+ | qN;dx+PN;(I)+RN;(0)=0. (15
I[dxldxzdx3dx qu3 3() 3(0) (15)
Now we have, however, four unknowns: #;, u,, z3; and R. The missing system
equation is clearly simply the kinematical constraint 24 =# . Performing again the
details, the system equations are found to be in matrix notations as

JEA LEA 1
] I ” 4
EA EA EA ! 1
220 422 22 o |a, ~ gl
I ] ] =1 37 L (16)
F/ 4
EA _EA 31 |1
0 2 KBy Zgl+P
] ] R} |31
|1 0 0 o] | @

The solution is
I {3 1 I {1
w=u, y=U+—|=-ql+—P|, iy =u+—| —ql+P|, R=—qgl-P. (17
1 2 EA[Sq ) J 3 EA[2q J q (17)
All these values coincide with the exact solution.

Concluding remarks

In the light of the demonstration example, it is quite obvious why kinematically
admissible virtual displacements are in practice preferred in the finite element method
applied to continuum mechanics problems. Fewer unknowns appear and the coefficient
matrix in the system equations has some favourable properties: symmetry and positive
definiteness (in elasticity). Using kinematically inadmissible virtual displacements, the
system unknowns will be both displacement and force quantities; we have a so-called
mixed formulation. In spite of this, for instance in multibody dynamics often in practice
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it is found in overall more convenient to use a mixed formulation as the constraints can
be awkward to satisfy in advance. Further, if say Coulomb friction is included, we have
to have available the normal forces between the sliding parts of a mechanism to evaluate
the contributions from friction forces, [3].

We find using the kinematically inadmissible virtual displacement formulation from
the last formula (17) for the rod normal force at x=0 the exact result
T(O)=—R=ql+P. If T(0) is evaluated consistently in the kinematically admissible
virtual displacement formulation using expressions (3) and formula T = EAdu/dx, by
the present crude mesh a quite inaccurate value

~ dd u,—u; 9 3
T(0) EAdX(O) EA VE 8qI+2P (18)
IS obtained.

However, post-processing procedures can be employed in efforts to obtain more
accurate boundary traction values on the displacement boundary. In our example case
the appropriate post-processing virtual work equation would be the first equation (16)
giving

R=2Eul—2ﬁu2—£ql, (19)
I I 4
where u; and u, are known from the standard kinematically admissible formulation.
Introducing u; =T and u, from (9) gives here the exact value R=—-ql - P.

In two- and three-dimensional problems the post-processing procedures for
obtaining tractions at the displacement boundaries are, however, not necessarily very
practical especially if the boundaries have corners. This is obvious e.g. from [4] dealing
with a similar simpler case on flux determination on temperature type boundaries in
heat conduction type problems.

In multibody dynamics kinematical constraints are usually taken into account
systematically by the Lagrange multiplier method. This theme will not be considered
here.
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Summary. Surface parametrizations corresponding to lines of curvature coordinates provide many ben-
efits from the viewpoint of both analysis and implementation. Nevertheless, formulations in lines of
curvature coordinates are not utilized widely in practical finite element modelling, since ready repre-
sentations of surfaces in this form are not usually available. Here we devise a practical method for the
elementwise re-parametrization of standard surface representation in order to attain a lines of curvature
parametrization which is optimally accurate with respect to the initial data supposed.
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Introduction

Some applications naturally lead to handling partial differential equation (PDE) models which
are defined on surfaces. Perhaps the most well-known example in the field of elasticity theory is
the treatment of two-dimensional shell equations, which govern the deformation of a thin curved
body using a system of curvilinear coordinates associated with the middle surface of the body.
Other applications beyond the scope of traditional structural models are also described in the
literature.

From the viewpoint of both computation and analysis, PDE models on smooth surfaces
take usually the most appealing form when the surface is defined in terms of lines of curvature
coordinates (for the basic concepts relating to lines of curvature, see [1]). In such cases each point
on the surface can naturally be associated with an orthogonal system of basis vectors, providing
a convenient starting point for representing vector-valued fields over the surface. Since the basis
is orthogonal, the components of a vector field have then intuitive physical significance and
additional tensor calculations which relate to finding the physical components of tensors are
greatly simplified or even avoided [2]. Also the computations relating to the action of material
models are typically simplified.

In spite of the benefits of using lines of curvature coordinates, common finite element formu-
lations do not customarily employ such surface parametrizations, since a ready representation
of the surface in this form is not usually available. Currently the most popular finite element
methods utilize isoparametric formulations where the unknown field variables and geometric
data are approximated by using equal-order interpolation. Still we see that many benefits could
be attained if discretizations in lines of curvature coordinates were enabled by having practi-
cal methods to parameterize the model geometry in the desired way. Here we consider this
parametrization problem and devise an elementwise re-parametrization method which is shown
to be optimally accurate for fourth-order accurate initial data in Lo which is supposed in the
present treatment.
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A simple approximation to lines of curvature representation

Let us now suppose that data is available for approximating a smooth surface S C E3 via a
collection of invertible transformations f;, : K — E3 where K C R? is a simple reference domain
(the reference element in the context of finite elements), such as the unit square, equipped
with a system of rectangular Cartesian coordinates. In this paper, we also assume that each
transformation gives O(h*) approximation of the surface location with respect to the diameter
h of the coordinate patch in Ls. We note that ways to obtain these transformations are not
unique but we omit the discussion of additional details in this respect.

Any part S = fk(f( ) of the approximate surface can now be equipped with the coordinates
¢ of the points of K as its curvilinear coordinates. This treatment importantly enables us to
estimate the characteristics of the surface in terms of the fundamental forms. These necessary
notions of differential geometry will be introduced next, while we refer to [1] for a thorough
treatment of the subject.

By using the convention that Greek indices have the range {1,2} and denoting the partial
differentiation with respect to the curvilinear coordinates by 0., we define vector fields a : K —
R3 by

ao = Oaf%. (1)

These give the covariant basis vectors of the tangent plane to the approximate surface at p =
fi.(X) via their alternate descriptions defined by p + (@ o f D(p). We also note that the
contravariant basis vectors @’ of the tangent plane to the approximate surface are defined via
the conditions a® - ag = 05, with o5 the Kronecker’s symbol.

The covariant components of the metric surface tensor A (the first fundamental form) are
now given by A,3 = @q-ag. The unit normal vector to the approximate surface is then obtained
by

N a; X az
ag = —— 2 2
Va @)

with a the determinant of the metric surface tensor. We also define Bag : K - R by

~

Bug = @3- Onfip = —a, - Opas (3)

which give the covariant components of the second fundamental form B of the surface at p =
fi.(%). Usually the definition of a PDE model also depends on the Christoffel symbols which are
defined as X

cmﬁ = 0ga, - a’. (4)

The appeal of alternate surface parametrizations corresponding to lines of curvature coordi-
nates relates to the fact that then each point on the surface can naturally be associated with
an orthogonal system of surface basis vectors a,. In addition to orthogonality, the defining
condition for such parametrization is basically that the second fundamental form then takes a
diagonal form. While it is not possible in general to find a single lines of curvature parametriza-
tion for the entire surface S, a point on the surface generally has a neighbourhood where lines
of curvature parametrization can be given (although for umbilical and planar points the choice
is not unique). Here obvious candidates for such points and neighbourhoods are the mid-points
£,,(0) and the parts Sy, = fi.(K).

Given a part S = fj, (K ), the orientation of lines of curvature coordinate curves at a point
p € Sk can be determined by solving a simple eigenvalue problem as follows. If we describe
the metric surface tensor A and the second fundamental form B as matrices with components

~ ~ A A1 ~
Anp and B,g, respectively, the product BA  gives the mixed components B2 of the second
fundamental form. Then the principal directions é = £,a% which solve the eigenvalue problem

E= A€ (5)

BA
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give the orientation of lines of curvature coordinate curves at p = f;(%).

To proceed we assume that the eigenvalues A, are ordered such that |[A;| < |A2| and define
€, to be the normalized eigenvectors €, = £, /|€,|. If the vectors €, : K — R3 are used to
define an alternate set of covariant surface base vectors at p = fi(X), the matrix describing
the mixed components of the second fundamental form is diagonalized under the basis change.
That is, if we define the matrix Q = (Qq5) = (qg) with the components ¢ : K — R giving the
coefficients for the change of basis such that (the summation convention is used here)

€q = quﬁa (6)

the mixed components of the second fundamental form with respect to the basis €, are given
by
B =Q"BQ = diag(Ay, Ay). (7)

It is noted that the eigenvalues also have geometric interpretation as principal curvatures, so
that their reciprocals give the principal radii of curvature R, = 1/A,.

An alternate representation for the part S can now be given. To this end, we define a local
coordinate system z° by taking its origin to be at f;(0) and by letting the orthonormal vectors
i = €,(0) and i3 = 41 X i3 to be its covariant base vectors. The part of the approximate surface
may then be described by a chart ¢y, : K — E? defined as

Pr(%) = x! (X)i1 +x° (X)iz + 2(%)is, (8)
where the coordinate functions x* : K — R and 2 : K — R are given by

x*(x) = [fe(x) — £(0)] - 4a,

e . : (9)

(%) = [fe(x) — £(0)] - 43.
However, assuming that 9;x'0sx? — 09x'01x% # 0, we may alternatively use x® as curvilinear
coordinates by employing the inverse relations X = x~!(z!,2?), with x~!(-) known to be as
smooth as x(-). Thus, we may as well use a chart ¢g : S — E3 defined by

x = (21, 2%) = pg(x) = 21iy + 2%y + 2(2t, 2%)i3, (10)
where z(z!,2%) = (2 ox7!)(2!,2%) and S C R? is the projection of Sy on the (z!,z%)-plane. It
should be noted that S may have curved boundaries.

The chart defined by (10) can be shown to give a first-order accurate approximation to a lines
of curvature coordinates parametrization to describe the part Si. To show this, one may consider
replacing the function (z!, 2?) — (2!, #?) temporarily by its Taylor polynomial approximation
to see how well the defining conditions for lines of curvature coordinates are respected in the
neighbourhood of the local origin f},(0). We note that, by using the fact that the (x!, z?)-plane
is tangent to the surface Sy at the origin and (9122)(0) = Bi2(0) = 0, the Taylor polynomial
approximation up to the third-order terms must take the form

2(zt, 2%) =1/2A(2")? 4+ 1/2B(2*)* + 1/6D(z')3+ (1)
1/2B(z")%2% 4+ 1/2F2Y (2%) + 1/6G (2?) + O(h%),

with hg the diameter of S and A = (0112)(0), B = (0222)(0), etc. It should be noted that
although the approximation (8) and the version based on (10) and (11) are basically expected
to be as accurate, the latter is less useful as then the chartwise defined surface cannot be
enforced to be continuous. We therefore emphasize that our intention is not to employ the Taylor
polynomial approximation in the actual representation of the surface. Rather this approximation
is considered just to reveal important characteristics of the representation (10).
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We conclude that the simple representation of part Sy using the chart (10) does not corre-
spond to an optimal selection of approximation to a lines of curvature coordinate parametriza-
tion. We note in particular that the matrix representation of the mixed components of the
second fundamental form has then the expansion

[ A+ Da' + Ex? Eaz'+ Fa?

B = Exl + Fa? B+ Fz!' + Ga?

+ O(h%) (12)
which can be considered to be diagonal around the origin only when O(hg) truncation errors
are admitted. In the case of fourth-order accurate initial data in Lo, an optimal method should
instead lead to O(h%) truncation errors. We devise an optimally accurate alternate in the next
section.

A refined approximation to lines of curvature parametrization

A further examination of the chart (10) reveals a way to obtain a refined surface parametrization
which respects all attributes required by lines of curvature coordinates up to neglected terms of
second order. We shall describe this improved version in the following.

Let us now suppose that the domain S as defined in connection with (10) is obtained as the
image S = ¢(K) where K C R? and the mapping y + x = ¢(y) is of the form

1 1 1
y = (y' + 501(y2)2 + eoy'y® + 563(y1)2 - §C4yl(y2)27 "
13
1 1 1
v’ = 5ea(y')’ = ay'y’ + 5o ()’ + ey,

with ¢; constants. Assuming that qb_l(x) exists on S, we may then consider rewriting the
representation (10) by using the chart ¢g o ¢ : K — E? which is defined by

(ps 0 P)(y) =[i1 - (#(y) — 0)lir + [i2 - (¢(y) — 0)lia+

2lir - (@(y) — 0, iz - ((y) — 0)]is, 14)

with o the origin.

By employing the Taylor polynomial approximation (11), the surface basis vectors obtained
via differentiation of (14) with respect to y® are always seen to be orthogonal at least up to
second-order terms (our selection of parameters will actually lead to third-order accuracy). The
constants c¢; and co may now be adjusted such that the matrix representation of the second
fundamental form is diagonalized up to second-order terms. The constants c3, ¢4 and cs are
not important is this aspect, as they are introduced in order to have an opportunity to adjust
the behaviour of the Christoffel symbols. Using the constants in the Taylor polynomial (11), we
take

c3=—c1, c¢5=co, and ¢4y = —AB/2, (15)

while the constants ¢; and ¢y are defined by

F E

:73(1_14/3) and 02:73(1_14/3), (16)

C1

with B # 0 or A # B. The two exceptional cases excluded relate to cases where the surface
behaves locally like a plane (B = 0 and, hence, also A = 0) or like a sphere A = B # 0.

It follows that the fields a, : K — R3, which now give the covariant base vectors of the
surface at p = (g0 @)(y) viap — (an 0@ ' opg')(p), can be expanded over K as

ar =[1 — iy’ + ey + O(h?)]i1 — [eay' + c1y® + O(h?)]ia + [Ay* + O(h?)]is,

. ) . (17)
as :[Cle +cy? + O(h2)]zl +[1- iyt + ey + O(h2)]1.2 + [By2 + O(hQ)}zg,
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where h now characterizes the maximum of the diameters of S and K. As we have a1 - as =
0 + O(h?), the matrix representation of the metric surface tensor is again diagonalized so that
A = diag(Aj1, Age), with

A = Ay =1— 2Cly1 + 262y2 + O(hQ) (18)

That is, the surface basis vectors are orthogonal but do not have the unity as their lengths. On
the other hand, the unit normal vector is given by

as = [—Ay' + O(h?))i1 + [-By? + O(h*)]iz + [1 + O(h?)]is. (19)
The covariant components B,g : K — R of the second fundamental form are found to be
By = A(1 = 219t + 2c0y%) + Dy + Ey? + O(h?),
By = B(1 —2c1y" + 2¢09%) + Fy' + Gy* + O(h?), (20)
Bz = By =0+ O(h?),

so that, up to neglected terms of O(h?), the matrix of the mixed components of the second
fundamental form has the eigenvalues which can be evaluated by using (18) and (20) from

Ao = Boa/Asa- (21)

If we now define the geometric Lamé parameters by

Aa = \/Tm, (22)

in the case of lines of curvature parametrization the Lamé parameters give the lengths of the
surface basis vectors and are related to the Christoffel symbols via

ap = (1/A4)05Aa,
I5, = —(Aa/A3)0Aa, B #a.

The constants c3, ¢4 and c5 have here been adjusted such that the relations (23) are satisfied up
to truncation errors of O(h?). The relations (23) are thus satisfied with

(23)

I = —c1 + (A% = & + AB)y' + 2c1c00* + O(R?),
[l = —c2 = 2c102y' + (AB/2 = ¢f + 3)y* + O(h?),
Il =c1+ (AB/2+ 2 — )yt — 2c1e09” + O(h?),
[, = o + 2c1c0y' + (B? + & — 3)y? + O(h?),

o1 = 2+ 2c102y" + (] — 5 — AB/2)y” + O(h?),
2, = —c1 + (2 — & — AB/2)y! + 2c1c09 + O(h?).

(24)

Computational examples

To demonstrate the ability of the proposed method to produce accurate estimates of the principal
directions and curvatures, we consider the following simple test case. We first create a regular
N x N grid for the square domain ' = [—-7/3,7/3] x [-7/3,7/3]. We then apply a shear
deformation to ' and finally map the stretched mesh of rectangular elements to obtain an
approximation to a part of cylindrical surface defined by

S ={ (sin(z' +1/4y),y',1 — cos(z’ + 1/4y)) € E* | (/,9/) € ' }. (25)

We note that the surface S has now the principal radii of curvature By = 0 and Ry = 1.
Nevertheless, the element edges are not aligned with the principal directions, so every element
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Table 1. Computed errors for the test case.

N [2H-Ai—Ab| JA- A" Jler— e

3 2.3334E-01 1.0490E-01 4.2055E-02
6 6.0738E-02 2.6390E-02 1.0646E-02
12 1.5338E-02 6.6082E-03 2.6689E-03
24 3.8451E-03 1.6529E-03 6.6833E-04

in the mesh must be re-parameterized in order to obtain the desired geometry representation in
lines of curvature coordinates. Additional geometric input data was also provided so that the
original element data enabled an O(h*) approximation of the surface location in L.

The re-parametrization strategy considered in this paper has been implemented into the
open source finite element software Elmer [3]. The example results of this paper were computed
with this implementation. To demonstrate the accuracy of approximation to the mean curvature
H =1/2(1/R; + 1/R3), in Table 1 we show ||2H — A" — A%|| where || - || denotes L? norm and
the principal curvature approximations A" are computed elementwise by using the equations
(21), (20) and (18). We note that in this connection each domain K was approximated simply
as a quadrilateral with straight edges. For reference we also show the area error |A — A"| where
A = 4(n/3)? is the area of the exact surface S and the area A" is obtained by approximating
the domain K similarly and using (18) to approximate the determinant of the metric surface
tensor needed in the area computation. We observe that both the mean curvature and area
approximation converge quadratically as expected.

We finally demonstrate that also our computational estimates of the principal directions
converge quadratically towards the right solution. To this end we compute |le; — e’ where e; is
the first principal direction for the exact surface S and e? = a’/|a}| denotes the approximation
of the first principal direction computed elementwise by using (17). The results shown for the
error of the first principal direction in Table 1 are again in agreement with the quadratic rate of
convergence. It should be noted that our approximation of the second fundamental form is in
L? only, so that averaging is generally needed if unique curvature data or unique estimates for
the principal directions are wanted at the element nodes.

Concluding remarks

Due to space limitations we have not been able to describe all possibilities which relate to the
ideas presented here. We see interesting scenarios especially when these ideas are applied in
connection with the finite element approximation of shell equations. An account on these new
developments is under preparation.
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Summary. This article demonstrates how to compute all locally length minimizing curves between two
points on the Riemanninan fixed rank n — 1 matrix manifold embedded in the n x n matrix space. As a
byproduct, we obtain an algorithm that computes the numerical value of the Riemannian distance function
between those two points. The proposed algorithm is verified by comparing the length minimizing curve,
obtained through the minimization problem, with the corresponding geodesic, obtained through an initial
value problem. As we know from the Riemannian manifold theory, the length minimizing curve and the
geodesic coincide up to a re-parametrization.

Applications that could benefit from the Riemannian distance function computing algorithm are
plentiful in numerical computations. In particular, an acces to a numerical pointwise approximation of a
sphere with respect to the Riemannian distance function enables the extension of local sensitivity analysis
from Euclidean spaces to more general metric spaces, such as Riemannian manifolds.

Key words: Riemannian manifold, fixed rank matrix manifold, length minimizig curve, geodesic, Rieman-
nian distance function, Lie group actions, homogeneous spaces, covering map

Introduction

Continuous curves on topological spaces are mathematical objects central in many applications.
One of the most common applications is the computation of the distance between two points.
By definition, the distance is the minimum of the lengths of all possible continuous curves
connecting the starting and ending points. For example, on the two dimensional Euclidean
plane, two points A and B can be connected by an arbitrary continuous curve f € C°([0, 1]; R?)
such that f(0) = A and f(1) = B, as Figure la shows. Any of these curves can be smoothly
transformed to any other curve fulfilling the same properties, namely having A for starting point
and B for ending point. In particular, any continuous curve f can be smoothly transformed to
the length minimizing curve g. On the Euclidean plane, there is only one local minimum, which
is also the global minimum at the same time. However, looking at Figure 1b, one can see,
that on the Euclidean plane with a hole, denoted R?\{O}, there are two possibilities for locally
length minimizing curves: the continuous curve f , which is smoothly transformed to g, and
the continuous curve f’, which is smoothly transformed to ¢’. Both g and ¢’ are locally length
minimizing curves, but only ¢ is also a length minimizing curve in the global sense.

From the point of view of homotopy® theory, f and g “look the same” because they can be
smoothly transformed from one to the other. Likewise, f’ and ¢’ look homotopically the same.
Using the vocabulary of homotopy theory, [f] and [f'] are distinct homotopy equivalence classes
relative to the endpoints A and B. Homotopy equivalence classes are important objects, because
they enable the enumeration of all possible topologically distinct routes from A to B. In the

'From Greek words homos: same and topos: place. Homotopy theory is one of the main currents in algebraic
topology, [1].
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example [f] represents the routes that go around the point O clockwise and [f'] represents the
routes that go counter clockwise.

(a) A length minimizing curve on R? (b) A length minimizing curve on R?\{O}

Figure 1: Length minimizing curves from A to B

Homotopy theory tells us well how many of those equivalence classes one may expect on a
given topological space, but it certainly does not give a clue how to find an explicit expression for
a member of a given homotopy equivalence class. Nor does it give any algorithm to compute the
representative element that has the minimal length. This is why we have to include numerical
minimization algorithms in our considerations.

Notice, that one can formulate the minimization problem on the topological space X =
R2\{O} in the following way. Let {a1,...ax} C C*([0,1];R?) be a family of smooth loops
through the origin, i.e. «;(0) = «a;(1) = (0,0). By defining the perturbed curves f,, f, €
C*([0,1]; X) as follows:

fa(t) = f(8) + Z a'o;(t) , (1a)

1<i<k
L =re+ Y. dalt), (1b)

1<i<k
where a = (a',...,d") is a k-tuple of real coefficients, one can define as follows the length
functionals to be minimized: L(f,) = fol ||%|| dt and L(f)) = fol ||%|| dt. By taking as an
initial guess a(g) = (0,...,0), one can clearly see that the minimization problem is well posed.

By ensuring through an additional constraint that f,(¢) # O and f.(¢t) # O for any t € [0, 1],
we also ensure that an iterate of the constrained minimization algorithm does not “jump” on
the wrong side of the hole. Therefore we are also expecting the following convergences for the
constrained minimization problems:

fa(e) e%oo> g, (28,)
! /
fCL(e) e—00 g ° (2b)

On topological spaces more complex than the Euclidean plane, possibly with one or more
holes, one proceeds exactly in the same way. In the following sections of this presentation, we
shall see how one enumerates all homotopy equivalence classes of smooth curves on fixed rank
matrix manifolds relative to some chosen points on the manifold. Then, these smooth curves
will serve as an initial guess to numerical minimization problems that enable us to compute all
locally minimizing curves connecting two given points.

Fixed rank matrix manifolds as Riemannian manifolds

When thinking of a smooth manifold, one usually thinks of a two dimensional surface in the
ambient three dimensional space. Although general manifold theory give keys to cope with
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spaces much more complex than that, coming back, whenever applicable, to that simple image
of a “potato crisp” gives intuitive power to the reasoning.

The denomination fized rank matrix manifolds implies that the embedding space is a matrix
space of m x n real valued matrices, denoted M™*™. By considering the vectorization operator
vec : M™*™ — R™" which stacks the matrix columns one above the other, one can show that
since the vectorization operator is an isomorphism, the matrix space is, actually, a vector space,
[2]. Likewise, one can show that the set of symmetric square n x n matrices, denoted MSY™™ g
also a vector space isomorphic to R™™*+1/2 This is done by considering the half-vectorization
operator: hvec : MSYM™ —y R +1)/2 which stacks from each column vector only the portion
on or above the diagonal.

The set of all matrices in M™*" that have fixed rank, k, are denoted M["*". Recalling that
up to a permutation of rows and columns, any matrix M of rank at least k has an full rank k& x k
submatrix A, one can write the following block lower-diagonal-upper matrix decomposition:

M_(A B)_(ﬂ 0><A 0 )(1 A—IB>

~\¢ D) \CA' I™*]\0 D-CA'B 0o I+ )7

where A € M**, B € M¥*"9 C € M ®** and D € M"~®*("=% _ Clearly, the matrix M is
exactly of rank k if and only if the lower right submatrix in the block diagonal term vanishes, i.e.
if D—C A= B = 0. This leads us to the definition of the smooth map F : W — M(m-kx(n=k)
given by (é B)Y— D—CA'B, where W C MZ;" denotes the subset of all matrices of rank
at least k with full rank upper left £ x k submatrix. The map F' is full rank everywhere on the
domain of definition, which implies by the Submersion theorem, [3], that U = F~'({0}) C M;**".
By considering all possible permutations of rows and columns of matrices of rank at least k one
gets a smooth atlas for the set of fixed rank matrices M"*", and shows that it is a submanifold
embedded in the ambient space MZ;" of matrices of rank at least k.

Consider, for illustration purposes, the set of symmetric 2 x 2 matrices. This set is isomorphic
to the Euclidean space R3\{O} by the identification (¢ §) > (a,v/2b,d) € R3. Therefore, for any
a # 0, the set of rank 1 matrices is described by the parametrization ¢~ : (a,b) — (a,v/2b,b?/a),
as shown in Figure 2.

V2b

A~
—
—_
-
O
-

SYM(2)
Ml

Figure 2: Example of a chart on the manifold and of a geodesic 7y : [0, 1] — MM,

The map ¢ : U € M}"™® — R? defined by (§ b2b/a) — (a,b) is called the chart map, and it
is defined on the domain U, which is the set of symmetric 2 x 2 rank 1 matrices In the general
case, the chart map is defined as follows: (é o A]il g) + (vec A,vec B,vecC) and it is defined
on U ={MeM;" : (1+0)M(L)eM*}

Without going into the details, one can show how to compute the induced metric tensor
with respect to the chart (U, ¢), then the Riemann-Christoffel symbols, and finally, the geodesic

equations that enable the formulation of an initial value problem which has a geodesic as its
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solution. An illustration of a geodesic with initial point (§9) and an initial direction V has been
drawn in Figure 2.

Fixed rank matrix manifolds as homogeneous spaces

Considering the set of fixed rank matrices as smooth manifolds endowed with a specific smooth
atlas and a Riemannian metric tensor enables us to compute already a lot of things. We have
shown already in the previous paragraph how to compute geodesics, which are also locally length
minimizing curves, as we all know from Theorem 6.6, [4]. The theorem states, indeed, that every
minimizing curve is a geodesic when given a unit speed parametrization.

Taking, for example the geodesic shown in Figure 2, one might ask the following question: is
there any other length minimizing curve that connects the starting and end points? The answer
is positive, but in order to be able to justify that claim, one has to show first some symmetry
properties of fixed rank matrix manifolds. In [5], we have shown that the 2 X 2 symmetric rank
1 matrix manifold can be viewed as a cone of revolution around the axis (%, 0, %) € R3.

This important result found in a specific case can be generalized to arbitrary fixed rank
matrix manifolds using transitive Lie group actions on the fixed rank matrix manifold. Hence,
we have to find a Lie group G and a left action 6 : G x M;"*" — MJ™™" that happens to
be transitive. It can be shown that by using ingeniously Kronecker products and the matrix
equation rule vec B X AT = A ® Bvec X, we can come up with the following Lie group:

G={ (5,2 (5 20)) @ (30(n) ©S0(m)) : 5 € diag(®}) | . (3)

It follows, that the ideal candidate for a transitive Lie group action on the fixed rank matrix

manifold is
©: GxM™ " — MM

(X, M) — res™ " (res™ ™ (X vec I™ )vec M) (4)

The construction of the Lie group G and of the transitive action © is motiveted by the sin-
gular value decomposition of a fixed rank matrix. Let P(§ J)QT = M be a singular value
decomposition of M € M}**" for some rotation matrices P € SO(m) and @ € SO(n) and a
diagonal matrix ¥ € diag(R’i). Then we construct the element in the Lie group as follows:

X = ((\{)ilnqk) ® (‘/()EIW?%)) ® (Q ® P). The action of X on the einselement E = (Iok 9)

simplifies as follows: O(X,E) = P(§)QT = M. Because the quantities under consideration
were chosen arbitrarily, it follows that the orbit of the ection through the einselement is the
entire fixed rank matrix manifold, which shows that the action is transitive, in other words that
the fixed rank matrix manifold is a homogeneous G-space.

However, because the singular value decomposition is not unique, it implies that we have
to identify a closed Lie subgroup of GG, denoted Stabp C G that fixes the einselement, i.e.
O(Stabg, E) = E. It can be shown that the stability subgroup has the following shape:

Staby, = {(I” ® I’") ® ((]0j som—k)) ® (T SO(%—k))) : Dediag(il,...,il)CSO(k)} . (5)

The stability subgroup of the einselement enables us to define equivalence classes on G, called
left cosets, and defined as follows: [X] = X Staby, ={Y € G : Y = X L for some L € Staby}.
The collection of all left cosets is called the quotient space. It is denoted G /Staby, and according
to Theorem 7.5 in [3], the quotient space is a smooth manifold. In addition, it can be shown
that G//Staby, is diffeomorphic to the underlying fixed rank matrix manifold M},

Some computation results

A special case interests us above the others. Namely, the case of square n x n matrices of
rank n — 1. In that special case, the stability subgroup Staby is a finite discrete set containing
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Eg}/ 2) (an) elements. Therefore the Lie group G is called a covering space of G/Stabg, and

7w : G — G/Staby the covering map. The number of elements in Stab, equals the number of
sheets in G hovering above G/Staby.

Another interesting property of the special fixed rank matrix manifold M*" is that the Lie
algebra of G, denoted g is precisely the horizontal space of G/Staby, i.e. we have a zero dimen-
sional vertical space precisely because the stability subgroup is a discrete set. This consideration
enables us to use matrix exponentials on the quotient space, as well. Considering the following
composition of the matrix exponential by the covering map, we end up constructing a discrete
set of vectors in the Lie algebra that are all mapped to the same point in the quotient space.

mexp

{Vi} =mlogon™([X]) — ' ([X]) —»  [X]
Notice, that the corresponding one parameter subgroups I'y; : [0,1] — G/Staby defined through
the matrix exponential I'y; (t) = (7 o mexp)(¢V;) enumerate all possible homotopy equivalence
classes of curves connecting the identity [I] to the endpoint [X]. Figure 3 illustrates well this
concept.

G G /Stabg

Il—>X1 IQ-}XQ

%

Il—>X2 I, — X,

Figure 3: One parameter subgroups and minimizing curves

Coming back to our initial minimization problem, we may re-formulate our curve to be

minimized by introducing sinusoidal? basis functions sin(17t),...,sin(k7¢) and a set of matrix
valued coefficients Wy, ..., W} chosen from the Lie algebra g.
Ly,w(t) = (7 omexp)(tV + Z Wjsin(jnt)) , V emlogon '([X]). (7)
1<i<k

Hence the functional to minimize is given as the integral L(I'y. ) = fol [Tyl dt. By denoting
¢; = miny L(T'y, w), we get a distribution of minimizing curve lengths, ¢1, f2, . ... The smallest of
these values is the Riemannian distance between the starting point f([I]) and the ending point
f([X]). For reference, we denote ¢ = L(I'y.), which is the length of the one parameter subgroup
that serves as an initial guess in the minimization algorithm.

In Figure 4, we have drawn the output of a numerical algorithm that enumerates all one
parameter subgroups that connect two given points M and N on the fixed rank matrix man-
ifold M5**. The corresponding Lie group G is a covering space for G/Staby that has 8 sheets
hovering above the quotient space. As one can see from Figure 4, there is a very interesting
property concerning the list of curve lengths of the one parameter subgroups, {£J, ... ,Kg}, and

2Cosinus basis functions are ruled out because the variation must vanish at the extremities.
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the corresponding list of lengths of minimizing curves {¢1,...,¢s}, which is that length mini-
mization preserves the order. In other words, if we sort the one parameter subgroups suh that

E(l) < - < Eg, then we have ¢; < ... < fg. This property seems to hold for any numerical
simulation run so far.

6

o/ 2
04

[EERNEN
N

Figure 4: Enumeration of lengths of one parameter subgroups and corresponding minimizing
curves

Conclusions

In this conference paper we have shown an algorithm that enumerates all homotopically distinct
connecting paths between two given points on a fixed rank matrix manifold. Those connecting
paths, called one parameter subgroups, serve us then as initial guesses for a minimization al-
gorithm through which we obtain the corresponding homotopically distinct length minimizing
curves. A remarkable property, that has not yet been proven formally but has strong numerical
evidence, is that the minimization algorithm over a collection of one parameter subgroups is an
order preserving operation with respect to the length.
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Summary. In this study, a formulation for the membrane form-finding treatment is presented. The
treatment is based on the principle of virtual work, and it is an extension of the two-dimensional study
presented in [1] to three dimensions. The essential derivations for the three-dimensional case are pre-

sented in [2]. Finally, a discrete solution method is given. The working of the discrete formulation is
demonstrated by a form-finding example case.
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Introduction

The aim of the present study is to find a proper formulation for the design of lightweight
structures, especially structures having the shape of minimal surfaces. The nature produces
highly optimized designs in terms of minimum weight and maximum stability and strength.
Those natural designs are based on the minimization of the potential energy. Natural tension
structures, such as soap-films, translates into a constant surface stress and a minimum surface
area, and consequently the corresponding shapes are optimal for lightweight tension membranes.
The tension membranes can be divided into two categories: surface tensioned membranes with
zero pressure difference, and pneumatic structures with non-zero pressure difference.

According to the Laplace-Young equation, the surface tension o and the mean curvature H
depend on the pressure difference [2]:

Ap = —02H = —(7(};1 + é), (1)

where 1/R; and 1/Ry are the principal curvatures. From the Laplace-Young equation it follows
that in the case of zero pressure difference, also the mean curvature must vanish at every point
on the surface, and consequently the tension membrane forms a minimal surface with a ’saddle’
shape [3].

Problem statement

The task is to determine the position of the interface surface S bounded by s between two vapour
phases (Fig. 1). The position vector r on S is expressed in the form

r = r(u!, u?), (2)

where u! and u? are surface parameters or coordinates.
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Figure 1. Interface surface S and some notations.

Virtual work
The principle of virtual work is presented here in the same way as in [1]:
SW = oW + 5w = 0. (3)

Here oW ™ is the virtual work of the internal forces, and SW™ is the virtual work of the
external forces. The principle of virtual work states that (3) is valid for any virtual movement
of the interface. The principle of virtual work is not a variational principle in the sense that
a stationarity condition of a functional is not involved. The overbar is used to emphasize thus
that no variations of some quantities W are involved. Usually in the principle of virtual work
the variation of the position vector of material particles are involved and the variation is called
virtual displacement. Here the change in the position of the interface will be called virtual
movement to indicate that the movement is not necessarily associated with a material particle.

¥

S

S dr
‘ r
/

Figure 2. Surface S and a varied surface S*

Virtual work of internal forces

Let us consider Fig. 2. Let the position vector to a generic point on the interface surface S be
denoted as earlier by r(u',u?) and let the corresponding point on a varied comparison surface
S* be given by r(u',u?) + or(u', u?), where dr is the virtual movement.

The expression for the virtual work of internal forces is
S — / regds. ()
S

where o is the surface tension and eg is the relative change of area of a differential surface
element. The contribution of the virtual work of internal forces is derived in [2], and it can be

expressed as:
oér

< r7int dor 1342
ow :_/ul7u20-[(nxg1)'a’lj,2_(nng)'auldUdu’ (5)

where n is the unit normal vector to the interface S, and g; and gy are the covariant basis
vectors (Fig. 1).
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Virtual work of external forces

The external forces acting on the interface consist of the pressure difference Apn, and the
corresponding contribution can be expressed as [2]:

SW = / VgApn - srdutdu?, (6)
ul,u?
where quantity g is the discriminant of the covariant metric tensor g.g = g - g3-

Discrete formulation

Triangular elements

z
1 ¢
(a)

Figure 3. Mapping of a triangular element

The discrete formulation is again a rather straightforward generalization of the procedures
presented in two dimensions in [1]. Instead of line or segment elements now triangular elements
are used, Fig. 3. The surface coordinates have for each element the roles u! = &, u? = 1, where
& and 7 are dimensionless with values ranging from 0 to 1 and are called area coordinates. Fig.
3 (a) represents a so-called reference or parent element. The mapping of it to each triangular
element in the surface representation is given by

r(&n) = x(§,n)i+y(& i+ 2 nk, (7)
where
= (1—-¢&—na1 +Ex2+ s,
y=1—=&=ny +Ey2 +nys, (8)
z=(1-&—n)z1 + &z + nzs.
The values x1, x2, ... etc. are the coordinate values of the nodes 1, 2, 3 of the element in the

x, 1, Z-space.

Generalized forces
The virtual movement is represented by varying the position vector through the variations of

the nodes. The virtual movement in the element is

or(&,n) = 0z (&, n)i+ dy(§, n)j+ 62(€, )k, (9)

where dz = (1 — £ — n)dx1 + £dxa + noxs, dy = (1 — & — n)dyr + &0y + ndys, and dz =
(1—&—mn)dz1 +E£d29 +ndzs. The virtual work contribution from the element obtains finally the
form

W == XZ(SQZZ + Y;éy, + ZZ'(SZZ' (10)
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where X;, Y;, Z; are generalized forces, and summation convention (i = 1,2, 3) is applied. The
generalized forces consist similarly as the virtual work from terms corresponding to the internal
and the external forces.

We do not give any detailed expressions for the generalized forces. They are obtained quite
similarly as in the two-dimensional case in [1].

System equations

Also the generation and solution of the system equation goes quite similarly as in [1]. Now in
general for each node of the interface model three generalized movements and forces appear.

The generalized coordinates (which might be called also generalized movements) are denoted
q;- They are defined in principle anew for the each current system configuration. Normally, we
will employ three movements Az, Ayr and Az, for a generic node k inside the mesh. The
number of movements for an individual node can also be smaller than three, especially at the
boundaries.

The virtual work for the interface model (with respect to a current configuration) obtains

the form
N, dof

oW = Z Qidqi, (11)

i=1
where @); is the i:th generalized force corresponding to the 7:th movement ¢; and Ny the total
number of movements. The generalized forces must vanish. Thus, the system equations are

Qi=0, i=1,.., Ny (12)

The system equations are solved iteratively by a Newton-Raphson solution method version as
in [1].

Figure 4. Initial configuration and membrane shapes after 3, 5 and 7 iterations.
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Example case

As a numerical example we consider a ”"soap film” settled between two circular rings. The
pressure difference Ap acting on the interface is zero and the surface tension o is constant. Due
to symmetry, only half of the domain is modelled. The nodes joining to the boundary rings are
fixed, the nodes locating on the symmetry plane have two degrees of freedom (movements on
the symmetry plane), and the rest of nodes have three degrees of freedom.

Figure 4 shows the development of the shape of soap film during the iteration. At the end
of iteration, the membrane forms a minimal surface.

Conclusion

In this study, a method to determine the shape of a surface tension membrane has been de-
veloped. Our main concern has been the determination of the shape of minimal surfaces, and
thus the gravity is ignored. However, the implementation of the gravity to the virtual work of
external forces (6) would be straightforward.

The preliminary numerical results have been encouraging, since only few iterations to achieve
the final shape of the membrane were needed. However, at the moment no comparisons con-
sidering the efficiency of the present method to corresponding methods applied to form-finding
problems, for example the dynamic relaxation method [4], have not been done.
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Summary. This article describes a sparse grid collocation method for analysing domain uncertainty
related to tolerances in machine parts. A short summary of the ideas behind the methodology are given
along with some discussion of the results.
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Introduction

In machine design, one always has the component dimensions defined within a given tolerance.
Especially for highly loaded component, even slight deviations for the ideal design geometry
can have large implications on the stresses imposed on the component during operational life.
To guarantee a robust design with respect to design tolerances, a robust and computationally
feasible approach is needed.

A well-known standard approach is to resort to traditional Monte Carlo methods, but with in-
creasing simulation complexity, simulating a large enough number of realizations with reasonable
use of computational resources quickly becomes the limiting factor. To tackle this uncertainty
quantification problem, several different stochastic methods, such as the aforementioned Monte
Carlo, Galerkin and collocation methods, have been proposed.

In industrial applications one is not only limited by the methodology itself, but also by the
chosen software packages and preprocessing tools, therefore intrusive Galerkin methods are less
desirable. Monte Carlo and collocation methods, on the other hand, treat the FE solver as a
black box. Hence they are a more readily deployable choice for industrial applications.

Model problem

In this work, we consider a simple 3D model problem which exhibits rotational symmetry, cf.
Fig. 1. The parameter space for this model problem includes the radii of the two fillets and the
distance between them. To this end, we adopt a collocation scheme based on a suitable choice of
collocation points balanced between the solution accuracy and the number of points used. The
choice of points is essential for the proper functioning of the method, for details see [1]. We call
this type of solution a sparse grid approximation.

Another main complication is the fact that now the stochastic nature of the problem lies in
the domain itself. This leads to an additional problem in combining the results from different
realisations of the domain. To this end, we introduce a reference domain which is the ideal
configuration of the domain, i.e. when all the tolerances are zero. Then, a conformal mapping
is constructed from each 2D cross section of the realisations to the reference domain. The
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Figure 1. 3D mesh of the model problem

conformal mapping can be easily defined with the solution of two finite element solutions to a
Laplace equation on the 2D domain, and hence can be readily constructed on the fly.

Results

An important conclusion of the numerical tests was that the accuracy of the finite element
solution starts limiting the accuracy quite fast, thus the interpolant level can be quite low
if a coarse solution is used. However, as the number of stochastic parameters increases, the
benefits of a sparse grid solution become more pronounced. For example, a problem with
four random variables would require 83521 FE problem evaluations with a full grid collocation
method, but with a spare grid approximation one needs only 401 points to reach the same
accuracy. Moreover, the method is easy to run in parallel, since the individual FE problem
evaluations are independent of one another.
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Summary. We introduce new type of linear triangular shell elements based on Reissner-Naghdi type
shell theory. The elements incorporate five generalized degrees of freedoms per node and require the
nodal normal vectors of the shell mid-surface as geometric input data. The approach enables explicit
reduction of both the membrane and the transverse strains and is more transparent mathematically than
the existing linear shell elements employed in industrial FEA.
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Introduction

In the finite element modelling of shell structures parametric error growth, or locking, is detected
for various shell deformation types. This numerical phenomenon is harmful espcially for the
standard lowest-order (p = 1) finite element approximation and significant mesh over-refinement
is sometimes needed to compensate for the effect.

A long-standing approach to modelling of thin structures is the derivation of special low order
formulations that avoid the parametric error growth. For shells, the ultimate dream element is
yet to be found but there exist reduced strain formulations that work quite well on restricted
class of quadrilateral meshes, at least.

In this work, we introduce and analyse a family of simple shell elements with three nodes.
In particular, we compare the relative accuracy of two formulations in the family in a classical
benchmark test [1] featuring different shell deformation types.

Shell theory

Let us assume that the shell body has a constant thickness ¢ and its mid-surface is discretized
using three-node triangular elements. The finite element formulations are based on a shell theory
formulated in terms of local curvilinear coordinate system (x,y, (), where (z,y) € K are some
Cartesian coordinates on each triangular element K and ¢ € (—t/2,t/2) is the coordinate along
the unit normal vector 7i(x, y) of the shell mid-surface. The (reasonable) meshing assumption is
that the elements are so small, that the assumed coordinate system can be assumed orthogonal
on each element.

Kinematics

According to the standard kinematic hypothesis we assume that the displacement vector can be
written in the form

[j(.’L‘,y, C) = (’U,)\(.Z',y) + (0)\(ar,y))€>\(m,y) + w(xvy)ﬁ('ra y)? (1)
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where u = (u1,uz) are the tangential displacements of the middle surface, w is the transverse
deflection, and the quantities 8 = (61, 62) are the angles of rotation of the normal. The tangential
displacements and the rotations follow here the tangential directions €; and €5 along the z- and
y—coordinate lines, respectively.

Referring to the curvilinear coordinates (x,y, (), the in-plane components of the linearized
Green-Lagrange strain tensor can be expanded as

€aB = Eap + Cﬁocﬁ) «, B = 1a 27 (2)

The membrane strain tensor €,3, which arises from stretching of the deformed middle surface,

can be written as )

7(“04,6 + u,@,a) - baﬂw, (3)

50[6%2

where
boz,B = _ga ' ﬁ,ﬁa Oé,,B = 1727 (4)

are the coefficients of the second fundamental form of the middle surface.
Introducing the cofficients of the third fundamental form of the middle surface

Caﬁ:ﬁ,a'ﬁ,ﬁa 0576:1727

the elastic curvature tensor k,g, which arises from bending of the deformed middle surface,
comes out as

1

1
Kap & 5(0ap +0pa) + capw — S(bartng +bprtre), @ f=1,2 (5)

It is possible to simplify the bending strain expressions by sacrificing their tensorial invari-
ance. It is straightforward to verify that

Cap = barbyg
so that we may write (5) component-wise as

K11 ~ 9171 + blg(blgw - U2,1) —bnen,

Koo R~ 02’2 —+ b12(b12w — U1,2) - b225227 (6)

b b
%(blzw —ug 1) — 2(811 + £22).

1 b11
~ —(0 0 —(b —
K12 2( 1,2+ 2,1) + 5 (brow u1,2) + 9

In these expressions, the contribution of the terms bjjei1, baagoe and bia(e11 + €22) to the
maximum in-plane strains at the outer and inner surfaces of the shell is of relative order O(t/R)
only. Therefore, the number of terms in the kinematic relations can be slightly reduced by
retaining only the underlined terms in the calculations.

Finally, the transverse shear strains are defined as

Yo = 26043- (7)
These can be written in terms of the displacements as
Yo = O + basus + W, Q= 1,2 (8)

which completes our description of the shell kinematics.
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Potential Energy Functional

The elastic strain energy functional can be written as

1

UK(“: w, 9) = 5 /K(naﬂeaﬁ + daYa + maﬂ'%aﬁ) dzdy (9)

where, assuming linearly elastic isotropic material,

bt
Nag = m [(1 — l/)z’;‘ag + I/E,\)\(sag] ,
_ Et
QQ - 2(1 + V)rYOH (10)
Et3
Map = m [(1 — V)Eag + Vlﬁ)\)\(sag]

correspond to the membrane forces, transverse shear forces and bending moments in static
equilibrium considerations and the strains are given in terms of the displacements in (3), (8)
and (5).

Similarly, the potential energy corresponding to external distributed surface forces ( f1, f2,p)
and moments (71, 72) is

Vi (w,w0,0) = — / (Frtin + pw + 1205 dady (11)
K

and the total energy is given by the sum

Fx(u,w,0) = Uk (u,w,0) + Vi (u,w,0). (12)

Finite element formulations

We assume linear triangular elements for each displacement component separately and employ a
suitable skew coordinate transformation when enforcing continuity of the nodal displacements.
To avoid locking when approximating bending-dominated problems, membrane and transverse
shear strains must be reduced. To introduce the different methods, we denote by F i = (vx, yx)
the bilinear mapping of the reference triangle K onto K and by

Orrg Ozgk
_ | oz oy

Tr = Oyx  Oyk
oz 07

the Jacobian matrix of Fg. Here (&,7) are the coordinates on K.
We start by defining on the reference square K the function spaces

S(K) = {5= (ZIS;’) . a,b,c€R} (13)
" M(K) = {# = <Z i) : a,b,c € R} (14)

for the reduced transverse shear strains and membrane strains, respectively. The canonical
degrees of freedom associated with S(K') are

§— /§de§ for every edge é of K, (15)
é

127



Normal deflection Normal deflection

Approximation Approximation

————— Reference -=--=-- Reference

02 04 06 08 1.0 02 04 06 08 1.0

Figure 1. MITC3C vs. MITC3S in Case 1.

whereas the degrees of freedom associated with M (K ) are defined as
s / " #£ds for every edge ¢ of K. (16)
é

The corresponding spaces associated to a general element K are then defined using covariant
transformation formulas as

S(K)={s=J 80 F =8k(3) : 5 S(K)} (17)

and

M(K)={r=J (Bo F)J = Mk(+) : +€ M(K)} (18)
Denoting by A : H'(K) — S(K) and I, : H'(K) — M(K) the interpolation operators
associated to the degrees of freedom (15) and (16), the corresponding projectors for a general
K are defined as
IIx =./\/1K0Hko./\/l[_(1 and A g :SKOAROSI_{I

The transformation rule (17) guarantees that the degrees of freedom (15) and (16) are preserved
on K.

We shall use the label MITC4C for the formulation for which only the transverse shear
strains are projected into the space (17)

v = Ay (19)
and the label MITC4S for the formulation where also the membrane strains are projected:
g€ — HKEJ, Y — AK’)/ (20)

when evaluating the strain energy according to (9) and (10).

Numerical results

We test the performance of the formulations in a classical benchmark test introduced in [1]. The
test involves a cylindrical shell loaded by a normal pressure which is constant axially but varies
trigonometrically in the axial direction. The load is self-balancing and different deformation
states can be studied by varying the kinematic constraints at the ends. Fully clamped ends
(Case 1) lead to a membrane-dominated deformation, free ends (Case 2) to a bending-dominated
deformation and a simple support to an intermediate state.

The problem is solved on a uniform 16 by 16 triangular mesh with the two different formu-
lations and the results are shown in Figs. 1-3. MITC3C locks in the bending-dominated case
but is more accurate on the other two cases.
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Figure 2. MITC3C vs. MITC3S in Case 2.
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Figure 3. MITC3C vs. MITC3S in Case 3.
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Summary. This study investigated the influence of different boundary condition settings on
one sideways falling condition, an incident which often causes hip fracture in older adults.
Three MRI-based FE models of a single person were created in the sideways falling condition.
Results of this study showed that the presence of a fixed support at the distal end of the femoral
shaft can reduce the highest stress at the fracture prone region of the femoral neck. It was also
found that the location of the impact force applied can substantially alter the stress distribution
pattern within the femoral neck.

Key words: finite element modeling, hip fracture, sideways falling, boundary condition

Introduction

Hip fracture is a major public health problem leading to high morbidity, mortality, and disability
in older adult population. The global annual hip fracture number was estimated to 1.6 million in
2000 [7] and 7000 hip fractures were reported in Finland in 2010 [9]. Hip fractures are not only
debilitating events, but also lead to substantial financial burden for societies worldwide. Its
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financial burden is estimated to reach $131.5 billion by 2050 [6]. Over 90% of the hip fractures
are caused by falls [5] (Figure 1).

During the two last decades, finite element (FE) method has been exploited in the hip
fracture studies in order to understand the mechanism of the hip fracture. Interest has been
especially in simulations where falling conditions are studied. However, literature reveals that
different boundary conditions (BC) have been used in simulating even the same falling situation
in terms of the fall direction. This variance in the BCs might have affected the results of FE
models between studies. Recent experimental study by Choi et al. [1] addressed this issue and
suggested that the BCs at the distal end of the proximal femur can influence the result.
However, to the best of our knowledge, little is still known how different BCs affect the result.
Therefore, the aim of this study is to elaborate this issue by creating magnetic resonance image
(MRI)-based FE models of one person in one sideways falling situation with three different
BCs. Specific attention was laid on following differences in the BCs; 1) presence or absence of
the restrain BC such as a fixed support at the distal end of the femoral shaft, and 2) location of
the impact force applied (on femoral head or on greater trochanter) (Figure 1). Mayhew et al.
[10] found that the superoposterior region of the femoral neck is the hip fracture prone region
due to the thin cortical bone layer. Thus, it was especially focused to study how different BC
settings affect the stresses at this fracture prone region.

Materials and Methods

MR image data of proximal femur region was obtained from one adult female participant in our
previous study [11]. The study protocol was approved by the Ethics Committee of the
Pirkanmaa Hospital District, and a written informed consent was obtained from the participant
before measurements.

The MR images were first manually segmented by delineating the periosteal and
endocortical boundaries of the cortical bone using a touch panel (Wacom Tablet Clintiq 12WX,
Wacom Technology Corp., Vancouver, WA.) with a medical image processing software the
ITK-SNAP[16] (www.itksnap.org). The segmented bone geometry was then smoothed in
MeshLab (Visual Computing Lab — ISTI — CNR, http://meshlab.sourceforge.net/) using
smoothing method described by Taubin.[14] This method was chosen to avoid shrinkage of the
geometry inherent in the smoothing. The smoothed proximal femur geometry consisted of
cortical bone and trabecular bone, the latter denoting the inside volume of the endocortical bone
layer. Thus, although the trabecular bone actually forms porous structure, the trabecular bone
geometry was modeled as the non-porous homogeneous material. The smoothed proximal femur
geometry was imported into SolidWorks (SolidWorks Corp., Waltham, MA.) for the 3D solid
body generation.

The 3D solid body geometry of the proximal femur was imported into ANSYS 15.0
(ANSYS Inc., Houston, PA.) for the FE meshing and model analysis. A 10-noded tetrahedral
finite element was used to mesh the cortical and trabecular geometries of the proximal femur.
Average element edge size was set for 2mm for the entire geometry. A model consisted of
approximately 190000 elements and 300000 nodes. The cortical and trabecular bone of
proximal femur were modeled as homogeneous isotropic, linear elastic materials. The Young’s
modulus of 17GPa[4,8,13] and 1500MPa[4,13] were set for the cortical and trabecular bone,
respectively. Poisson’s ratio was assumed as 0.33[4,8,13] for both bone types. To simulate the
sideways falling, the most commonly used force direction was chosen from the experimental
studies conducted by Pinilla et al.[12] and Courtney et al.[2,3] The femoral shaft was tilted at
10° with respect to the ground and the femoral neck was internally rotated by 15°[2,3,12]
(Figurel). A simulated impact force of magnitude of 5000N was applied.
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In total, three FE models (A, B, and C) were created in order to address two research
questions; 1) the effect of the presence or absence of the restrain BC at the distal end of the
femoral shaft on the femoral neck stress distribution, and 2) the corresponding effect of location
of the impact force applied (on femoral head or on greater trochanter). Figure 1 shows
difference in the BCs in three FE models. Similar to the previous study conducted by Verhulp et
al.[15], the impact force was equally distributed to the surface nodes of the femoral head (model
A and B) /greater trochanter (model C) within 5mm layer perpendicular to the force. Also,
surface nodes of the lateral side of the femoral head (model C) /greater trochanter (model A and
B) in 5mm layer perpendicular to the force were restrained only in the direction of the force. For
the model B, the face of the distal end was fully restrained (fixed support). The von Mises
stresses were calculated from the FE models and stress distribution on the proximal femur in
anterior and posterior views were plotted in order to analyze the result qualitatively.

15°

BC at femoral head

A: Impact force applied
B: Impact force applied
C: Restrain BC applied

BC at greater trochanter

A: Restrain BC applied
B: Restrain BC applied
C: Impact force applied

3

BC at distal end of femoral shaft

A: no fix support
B: fixed support
C: no fix support

10°

Figure 1. Sideways falling, force direction, and different BC descriptions in three models. (1)
The sideways falling condition. (2) The force direction in coronal view, the BCs for model A, B,
and C for the location of the impact force applied and restraining BCs. (3) The force direction
in sagittal view and BC at the distal end of femoral shaft represented by red line which
represents the face where fixed support was applied in model B. Yellow areas in the picture 2
and 3 represent the surface nodes where the BCs were applied.
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Results

Stress distributions of the three models were plotted in Figure 2. By comparing the model A
with the model B, the highest stresses at superoposterior region of the distal femoral neck site
get decreased from 144 MPa in the model A to 110 MPa in the model B. Otherwise, the stress
distributions between models A and B seemed to be quite similar. On the other hand, by
comparing the model A with the model C, stress distribution pattern changed substantially. The
highest 144 MPa stress at superoposterior region observed in the model A was reduced
considerably down to 65 MPa in the model C. Furthermore, relatively low stress at
inferoanterior region of the proximal femoral neck site in the model A (about 30 MPa) was
increased drastically to about 120 MPa in the model C.

Model A Model B Model C

Superior side

144 MPa 110 MPa 65 MPa
High 1 *

Low

Medial side
Lateral side

von Mises stress

30 MPa 120 MPa

Lateral side
Medial side

30 MPa
Inferior side

Figure 2. Stress distributions in the proximal femurs in the sideways falling condition in three
models A, B, and C. Top three models are stress distributions in posterior view and are slightly
rotated superiorly in order to see stress distribution at superoposterior region of the femoral neck
more clearly. Lower three are stress distributions in anterior view and were also slightly rotated
inferiorly in order to compare the high stress values at inferoanterior region of the proximal
femoral neck site from model C with other two models’ values. Vertical coloured bar on the left
represents the von Mises stress magnitude.

133



Discussion

In this study, three proximal femur FE models of a same person were created in order to
investigate how different BCs in the same sideways falling situation modify the stress
distribution, especially at hip fracture prone region such as superoposterior region of the femoral
neck. Results from the models A and B showed that presence of the fixed support (in model B)
can reduce the highest stress at the superoposterior region. This was mostly likely attributed to
decrease in bending of the femoral neck due to the fixed support at the distal end of the femoral
shaft. On the other hand, the results from the models A and C showed changing the location of
the impact force applied can alter the stress distribution pattern more remarkably if the distal
end was not fixed. High stress region seems to shift from superoposterior region of the distal
femoral neck site to inferoanterior region of the proximal femoral neck site if the impact force
was applied on the greater trochanter instead of femoral head.

Boundary conditions at the distal end of the femoral shaft reflect the position of the knee at
the impact from the fall. According to Choi et al. [1], absence of the restrain BCs at the distal
end represents that the knee is in the air at the impact while its presence represents that the knee
is in contact with ground. In the majority of the previous proximal femur FE modeling studies,
the restrain BCs were applied at the distal end of the femoral shaft. In those studies, the
mechanical testing was also performed for the validation of the FE models, and the distal end of
the femoral shaft needed to be restrained to perform the test successfully. Thus, restrain BC was
applied at the distal end to match with the mechanical test setting. The presence of the restrain
BC seems to have an effect to reduce the highest stress at this fracture-prone region. This
implies that the knee position in the fall may be another factor contributing to the fracture.

The impact force was commonly applied on the femoral head in the most of previous
proximal femur FE studies. This was also due to the mechanical test setting. However, in the
real falling situation, undoubtedly lateral side of the greater trochanter experiences the impact
force. Indeed, the present study showed that stress distribution pattern changed drastically if the
impact force was applied on the greater trochanter. This result questions the validity of using the
femoral head as the location of the impact force applied. The result also insists that other
regions in addition to the superoposterior region may have high fracture risk in a real falling
situation.

In conclusion, the present FE modeling study demonstrated that difference in BCs in a same
sideways falling situation can alter the stress distribution patterns. Therefore, in the future hip
fracture FE modeling studies, it is necessary to give a rationale for why specific BCs were
chosen and what the meaning of chosen BCs is in terms of life falling situation.
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Tiivistelma. Tissi tyossi esitellidn laskennallinen tyokalu teriksestd valmistettavien kattoristikoiden
suunnitteluun ja optimointiin. Ohjelman tavoitteena on lyhentds merkittavisti ristikoiden suunnitteluun
kuluvaa aikaa ja tuottaa rakennesuunnittelijalle taloudellisempia -jopa optimaalisia- ratkaisuja. Suunnit-
telija syottda tarvittavat lahtotiedot, ja ohjelma etsii automaattisesti painon tai kokonaiskustannusten
mielessé parhaan ratkaisun. Optimoinnilla mééritetdan sauvojen optimaaliset profiilit. Liséiksi haluttaessa
voidaan optimoida uumasauvojen lukumaéraé ja sijoittelua. Ohjelmaa kéytetain verkkoselaimen avulla,
ja optimointi sekd muu laskenta suoritetaan palvelinkoneella. Sauvojen ja liitosten kestdvyyden tarkastus
tehdéddn eurokoodin mukaisesti. Laskennan lopputuloksena saadaan siten ristikko, joka toteuttaa euro-
koodin vaatimukset.

Awvainsanat: Ristikon optimointi, Suunnittelutydkalu

Johdanto

Matemaattista optimointiteoriaa on sovellettu kantavien rakenteiden suunnitteluun jo yli puolen
vuosisadan ajan. Tutkimusalan alkuajoista asti sauva- ja palkkirakenteet ovat olleet keskeisessé
asemassa niin sovellutuskohteina kuin teoreettisten tarkastelujen perustana. Erityisesti ristikko-
rakenteiden optimointia on tutkittu paljon, ja keskeisimmét teoreettiset kysymykset on avattu
kirjallisuudessa [7].

Léhes poikkeuksetta ristikoita késitellddn nivelpéisten sauvojen joukkona, jossa sauvojen kes-
kilinjat kohtaavat ristikon solmupisteissd. Kuormitukset kohdistuvat vain solmupisteisiin, jolloin
sauvojen ainoana rasituksena on normaalivoima. Tdmé johtaa tehokkaasti ratkaistavissa oleviin
optimointitehtaviin, joissa usein minimoidaan rakenteen painoa siten, etté jokainen sauva kestéa
sithen syntyvat rasitukset eri kuormitustapauksissa.

Téssé tyossi tarkastellaan terdksestd valmistettavien kattoristikoiden optimointia Furokoodi
3:n mukaan. Tahan tehtavaan edelld kuvattu malli on riittdméton. Eurokoodin mukaan paarteet
tulee mallintaa jatkuvina palkkeina, joihin kohdistuvasta poikittaisesta kuormituksesta aiheu-
tuva taivutus tulee ottaa rakenneanalyysissd huomioon. Lisdksi liitosten tarkastelussa on so-
vellettava ristikon tarkkaa geometriaa, jossa uumasauvojen keskilinjat eivit tyypillisesti kohtaa
paarteiden keskilinjoilla. Témé epédkeskisyys on otettava huomioon niin rakennenalyysissé kuin
sauvojen ja liitosten mitoituksessa.

Furokoodin asettamien vaatimusten lisdksi suunnittelijan on varmistettava, etta valitut sau-
vaprofiilit 16ytyvét terdstoimittajan valikoimasta. Tamé johtaa automaattisesti diskreettiin op-
timointitehtdvain, jonka ratkaiseminen on tunnetusti vaikeaa. Naméa kaytédnnon seikat johtavat
sithen, ettd tavanomaiset optimointikirjallisuudessa esitetyt tehtédvénasettelut ja ratkaisutavat
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eivit ole 16ytdneet paikkaansa rakennesuunnittelijan tyokaluvalikoimasta. Viimeaikainen tut-
kimus on kuitenkin osoittanut, ettd eurokoodin mukaiset sauvojen kestédvyysehdot ja ristikon
valmistukseen liittyvat tekijat voidaan liittdd perinteiseen ristikkomalliin suurelta osin uuden-
laisen formuloinnin avulla. Téméan tutkimuksen pohjalta Tampereen teknillisen yliopiston Me-
tallirakentamisen tutkimuskeskus on kehittdnyt Ruukki Constructionin tilauksesta rakennesuun-
nittelijalle soveltuvan ohjelmistotytkalun kattoristikoiden optimointiin. Tydkalu on toteuttanut
SUBNIC Oy. Téssé artikkelissa esitelldéin ohjelman péépiirteet ja toteutus seké siihen liittyvaa
taustatutkimusta. Ohjelman toimintaa havainnollistetaan esimerkkitehtédvan avulla.

Optimointitehtdvan formulointi

Optimoinnin ldhtokohtana on tehtédvénasettelu, joka ratkaisee, onko ongelma toisaalta ratkais-
tavissa ja toisaalta onko 16ydetty ratkaisu kayttokelpoinen. Tehtdvéan ratkaistavuuteen vaikut-
tavat suunnittelumuuttujien ja rajoitusehtojen lukumééira seké tehtévéssé esiintyvien funktioi-
den matemaattiset ominaisuudet (esim. lineaarisuus vs. epélineaarisuus). Jotta ratkaisu olisi
kéyttokelpoinen, on tehtdvéin siséllytettdva mahdollisimman paljon rajoitusehdoiksi niitd ra-
kenteen kestdvyyteen ja valmistettavuuteen liittyvié seikkoja, jotka suunnittelijan on otettava
huomioon. Jos jokin suunnittelijan kannalta oleellinen vaatimus puuttuu rajoitusehdoista, on
mahdollista, ettd optimoinnilla saatua ratkaisua on muokattava jalkikéteen.

Ristikoiden optimoinnissa on l6ydettéivi valmistajan valikoimasta optimaaliset profiilit risti-
kon sauvoille (mitoitusoptimointi). Lisiksi voidaan optimoida sauvojen ja solmujen lukumééraa
seké sauvojen sijoittelua (topologian optimointi). Kehitetyssi suunnittelutyokalussa kiyttija voi
valita joko mitoitusoptimoinnin haluamalleen ristikkotyypille, tai laskennallisesti raskaamman
topologian optimoinnin, jolla padstdéin tavanomaisesta poikkeaviin sauvoitteluihin.

Téssé tyossi optimointitehtévd perustuu ristikoille kehitettyyn ns. sekalukuformulointiin [5],
jossa rakenneanalyysin yhtélot kirjoitetaan osaksi rajoitusehtoja, ja sauvojen normaalivoimat
seké solmusiirtymét otetaan optimointiin muuttujiksi. Profiilien valinta seké sauvojen ja solmu-
jen olemassaolon mééritys hoidetaan bindéarimuuttujilla. Formuloinnin yleisessd muodossa rajoi-
tusehtoihin kuuluvat sauvojen lujuuden ja stabiilisuuden vaatimukset eurokoodin mukaan, seké
topologian optimoinnissa ongelmia tuottanut ristikon kinemaattisen stabiilisuuden vaatimus.
Kuormitukset voivat olla solmuihin kohdistuvia pistekuormia tai jakautuneita viivakuormia,
jotka muunnetaan ekvivalenttisiksi solmuvoimiksi. Kohdefunktiona on oletusarvoisesti ristikon
paino. Formulointi johtaa lineaariseen sekalukutehtdviin (mized-integer linear programming),
josta tulee kuormitustapausten, profiilivaihtoehtojen ja ristikon sauvojen lukumééran kasvaes-
sa nopeasti suuri. Tehtéville voidaan kuitenkin 16ytié jopa globaali optimi, silld viime aikoina
sekalukutehtévien ratkaisuohjelmat ovat kehittyneet voimakkaasti [1].

Kattoristikoita varten formulointia on laajennettu siséltdmééin edelld kuvailtuja eurokoodista
peréisin olevia ehtoja mahdollisuuksien mukaan siten, etta tehtdvéa sailyy lineaarisena.

Paarteiden taivutus otetaan huomioon arvioimalla jokaisen yldpaarteen sauvan taivutusmo-
mentiksi Mpq = ¢L?/10, missi ¢ on sauvaan vaikuttava tasainen kuorma ja L on sauvan pituus.
Téta momentin vakioarvoa kiyttéen saadaan tehtéviin siséllytettyd Eurokoodi 3:n momentin ja
normaalivoiman yhteisvaikutuskaavat [2, kohdat 6.2.9.1 ja 6.3.3]. Alapaarteella Mpq = qL?/20.

Liitosten kestdvyyden tarkastaminen ei sisélly rajoitusehtoihin. Sen sijaan lineaariseen teh-
tévinasetteluun saadaan liitoksen sauvojen sivusuhteille mééritetyt ehdot [3, Taulukko 7.8].

Topologian optimoinnissa on varmistettava, ettd liitosten sauvoittelu on eurokoodin mu-
kainen. Binddrimuuttujia koskevin rajoitusehdoin voidaan pakottaa liitokset K-, KT-, tai N-
tyyppisiksi. Liséksi liitoksen vierekkéisten uumasauvojen vélinen kulma on oltava hitsattavuu-
den vuoksi vahintain 30°. Topologian optimoinnissa estetdin myos ristedviat uumasauvat.

KT-liitoksissa vertikaali sijoitetaan vedettyyn diagonaaliin. Ndin menetellen liitoksen epékes-
kisyys saadaan huomattavasti pienemmaéksi kuin jos vertikaali tulisi diagonaalien véliin. T&ll6in
on kuitenkin varmistettava, ettd vertikaalin ulkomitat eivit ylitd diagonaalien ulkomittoja, ts.
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ettd vertikaali todella saadaan kiinnitettyéd diagonaalin pintaan.

Painon lisiiksi kohdefunktioksi voidaan valita ristikon kokonaiskustannukset. Tété varten on
kehitetty erityinen kustannuslaskentatyokalu, joka pohjautuu aiempaan tutkimukseen [4]. Kus-
tannustiedot perustuvat todelliseen valmistusprosessiin. My6s kustannusfunktio on mahdollista
esittdd bind#drimuuttujien lineaarisena funktiona.

Suunnittelutyékalun toiminta

Kayttdjan nikékulma

Ohjelman ldhtokohtana on, ettd kayttdjin ei tarvitse tuntea optimointiteoriaa lainkaan. Opti-
mointi tuodaan luontevaksi osaksi suunnittelutyoté siten, etta kiyttéiji kokoaa tehtavia samaan
tapaan kuin hén valmistelisi ristikkoa rakenneanalyysid varten. Rakenteen analysoinnin sijaan
suoritetaan optimointi, jonka etenemista kayttédja voi seurata ruudulta.

Optimointia varten kayttaja siis antaa joukon ristikon ldhtétietoja, joihon kuuluvat mm.
jannevaili, ristikon korkeus, yldpaarteen kaltevuus, kuormitukset sekéd paarteissa ja uumasau-
voissa kaytetyt terdslaadut. Naiden tietojen lisdksi kdyttdja voi valita haluamansa ristikkotyy-
pin (K-, KT- tai N-ristikko) tai antaa ohjelman etsiéi optimaalinen sauvoittelu topologian opti-
moinnin keinoin. Valittavissa olevien profiilien valikoima siséltda SSAB:n nelidputket.

Ohjelmaa kiytetddn verkkoselaimen avulla (kuva 1). Kdyttija kirjautuu jérjestelméén tun-
nuksineen ja asettaa optimointiin tarvittavat ldhtotiedot. Varsinainen laskenta tehd&dén palve-
linkoneella. Kéyttédjin ei siis tarvitse asentaa mité&n ohjelmia omalle koneelleen kéyttéddkseen
suunnitelutyodkalua.
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STRUCTURE

Design parameters

Optimization . n NNLALA

Length *

*

HEIGHT 2.
IHEIGHT 1
1

Ridge position *

il L1 2600

:—f RIDGE POSITION
LENGTH Height 1* 2000|
Height 2 * 2600

Roof slope * 288
=Ridge height Roof slope B

Truss height 1

Kuva 1: Suunnittelutyokalun kayttoliittyméa. Lahtotietojen antaminen etenee suoraviivaisesti
vaiheittain.

Tekninen toteutus

Ohjelman sisdinen rakenne on esitetty kuvassa 2. Kédyttdjin antamien tietojen pohjalta luodaan
optimointia varten ns. perusrakenne, joka siséltéé kaikki mahdolliset sauvat ja solmut. Perusra-
kenteen pohjalta aloitetaan joko topologian optimointi tai mitoitusoptimointi, jos kéyttéja on
valinnut ristikkotyypin.
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Kuva 2: Suunnittelutyokalun siséinen rakenne. Nuolet kuvaavat tiedonsiirtoa ohjelman osien
vililla.

ol
«
TINXYHYH

Perusrakenteen tiedot tallennetaan rakenteisena dokumenttina XML-muodossa. Tamé& doku-
mentti kytkeytyy yleisempéan hallirakennuksiin soveltuvaan laskentaohjelmaan, joka hallinnoi
optimointia ja muuta rakenteeseen liittyvaéd laskentaa. Tadmaé ohjelma myds vélittdd tulokset
takaisin kayttajalle.

Perusrakenteen XML-kuvauksen pohjalta generoidaan tarvittava médra optimointiobjekte-
ja, joissa maédritellisin ratkaistavat optimointitehtévit. Yhdestd perusrakenteesta voidaan ge-
neroida useita optimointitehtédvid valitsemalla vain osa sauvoista mukaan optimointiin. Né&in
menetellddnkin esimerkiksi mitoitusoptimoinnissa, jossa kidyttédja on valinnut ristikkotyypin.

Muodostetut optimointitehtévéit ratkaistaan valitulla optimointiohjelmalla. Tassé kiytetdan
avoimen ldhdekoodin ohjelmaa SYMPHONY (versio 5.5.7) [6]. Perusrakenteen pohjalta muo-
dostetaan optimointitehtdvan kerroinmatriisit ja -vektorit, jotka vied&in rajapintaa kayttéen
SYMPHONY:lle. Toteutus on tehty siten, ettd optimointiohjelma voidaan myShemmin vaihtaa.

Kun kaikki optimointiajot on suoritettu, halliohjelma laskee kullekin optimointiobjektille
kohdefunktion arvon. Jatkoké&sittelyyn valitaan se objekti, joka tuottaa parhaan arvon koh-
defunktiolle. Valitulta objektilta kerdtdin tdmén jilkeen tarvittavat tiedot WINRAMI-mallin
pystyttdmista varten.

WINRAMI:n avulla tarkastetaan vield, etta ristikko todella toteuttaa eurokoodin vaatimuk-
set. Laskentamallissa paarteet ovat jatkuvia palkkeja, joihin uumasauvat kiinnittyvét nivelel-
lisesti. Liitoksia késitelliédn omina objekteinaan. Niiden geometria muodostetaan siten, etté
epakeskisyydet minimoituvat.

Kun rakenne on mallinnettu, lasketaan voimasuureet ja tarkastetaan sauvojen ja liitosten
kestavyys. Koska nyt liitokset ovat mukana, voi kdyd& niin, ettd joidenkin sauvojen kestavyys
ei riitd. Téalloin sauvan profiilia kasvatetaan seindménpaksuutta lisdédmélla. Jos profiileja joudu-
taan muuttamaan, lasketaan voimasuureet uudelleen. Vastaavasti, jos liitosten kestédvyysrajat
ylittyvat, muokataan mallia. Murtumistavasta riippuen liitokseen voidaan liséitéd vahvikelevyja,
tai uumasauvojen seindminpaksuutta kasvattaa. Muokkailujen jélkeen voimasuureet lasketaan
uudelleen kuten edellé.

Jos kayttdja on maéadritellyt ristikolle paloluokan lasketaan seuraavaksi sauvojen kriittiset
lampotilat palosuojausta varten.

Viimeisené laskentavaiheena lasketaan lopullisen ristikon kokonaiskustannus kéyttéjan kus-
tannusméérittelyn mukaan kustannuslaskimien liittymien avulla.

WINRAMI:sta noudetaan mallin tiedot WINRAMI:n tarjoaman liittymén avulla tuloksien
palauttamista varten ja lopuksi WINRAMI-malli tallennetaan serverille.
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Optimointien tulokset kootaan MySQL-tietokantaan, josta voidaan mychemmin hakea eri-
laisia laskentatietoja ja mm. laskennassa generoituja WINRAMI-malleja. Eri ajoissa kertynytti
tietoa voidaan mydhemmin hy6dyntédid monin tavoin. Esimerkiksi, jos havaitaan, ettd optimoita-
vaksi on tulossa tietyilla lahtotiedoilla varustettu ristikko, joka on jo aiemmin optimoitu, saadaan
tulos suoraan poimittua tietokannasta.

Esimerkki

Ristikkotyokalun kayttoa havainnollistetaan esimerkin avulla. Tarkasteltavana on 24 m jannevélin
harjaristikko, jonka geometria on esitetty kuvassa 3. Ristikkoa kuormittavat oman painon liséksi
kattorakenteen paino (0.8 kN/m?), lumi (arvo maassa 2.5kN/m?) ja tuuli (0.6kN/m?). Raken-
nuksen keh&jako on 5m. Niistd kuormista muodostetaan kuormitusyhdistelyt eurokoodin mu-
kaisesti. Kaikkiaan yhdistelyji tulee 8 kappaletta, joista optimointiin valikoituu kaksi (symmet-
rinen ja epdsymmetrinen lumikuorma). WINRAMI:ssa tarkastetaan optimoinnin jélkeen, etté
sauvojen ja liitosten kestévyydet toteutuvat kaikissa 8:ssa kuormitusyhdistelyssa.

Kaikille sauvoille kiytetddn terastd S420, ja profiilivalikoimaksi otetaan Ruukin nelidputket,
jotka kuuluvat poikkileikkausluokkiin 1 tai 2.

Length * 24000 mm
e | = [ Ridge position * Frrn
Qo
4 g
N T L1* 2600 mm
'/‘—4’ RIDGE POSITION |
LENGTH Height 1* 2000 mim
£ o
Height 2 * 2600 il
Roof slope * 2.86 de
=Ridge height Roof slope B 2

Kuva 3: Esimerkin ristikon geometriatiedot.

Optimoinnilla haetaan minimipainoratkaisua. Ristikko voi olla K- tai KT-tyyppinen. Kaik-
kaan suoritetaan neljid mitoitusoptimointitehtdvai, kaksi kummallekin ristikkotyypille. Molem-
mille tyypeille on tarjolla "harva” ja ”tihed” topologia, joissa K- tai KT-liitosten lukumééra
muuttuu. Ristikko pakotetaan symmetriseksi harjakohdan suhteen.

Ohjelma suorittaa neljd mitoitusoptimointia ja WINRAMI-tarkastuksen parhaalle ristikolle
yhteensé 85 sekunnissa. Minimipainoksi saadaan 1180kg. Yldpaarteen kiyttoaste on 99.0 %, ja
alapaarteen kiyttoasteeksi saadaan 92.2 %. Uumasauvojen kiyttoasteet vaihtelevat 22 % ja 75 %
vililla. Keskimméisen vertikaalin kiyttoasteeksi jaa 2.0 %. Liitoksissa pédstéén enimmillién
94.4% kayttoasteeseen. Tuen seki alapaarteen ensimmaéisté liitosta on vahvistettu paarteen
pintaan hitsattavalla levylld. Ohjelma antaa ristikon kustannuksiksi 2158 €. Ristikon topologia
on esitetty kuvassa 4a.

Kun minimoitavaksi suureeksi valitaan ristikon kustannukset, suorittaa ohjelma optimoinnit
ja WINRAMI-tarkastuksen 95 sekunnissa. Nyt kustannuksiksi saadaan 2106 €, ja ristikon paino
on 1332kg. Minimipainoristikkoon nihden kustannukset ovat 2.4 % pienemmiét, ja painoa on
11.4% enemmiin. Tédhén on syyné se, ettd minimikustannusristikossa on vihemmén uumasau-
voja (kuva 4b), jolloin tyokustannukset pienentyvit selvisti. Toisaalta yldpaarteen profiilikoon
kasvattaminen on johtanut painon nousuun. Tulokset osoittavat, etté ristikkorakenteissa kannat-
taa pyrkid kokonaiskustannusten minimointiin painon minimoinnin sijaan, kun valmistusprosessi
on hyvin tunnettu.
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(b) Minimikustannusristikko.

Kuva 4: Optimaaliset ristikot.

Johtopaatokset

Téssd tyossd esitetty suunnittelutyokalu on seurausta pitkdjanteisestd perustutkimuksesta ja
avarakatseisesta ndkemyksesté tuoda optimointi rakennesuunnittelijan péivittédiseen kdyttoon.
Liittamalla insin6oriosaaminen matemaattiseen optimointiteoriaan on mahdollista kehittd4 help-
pokayttoisid ja tehokkaita vilineitd, joilla suunnittelutyon osittaisen automatisoinnin seurauk-
sena pédstddn nopeammin aiempaa parempiin tuloksiin.

Optimoitavan kohteen erityispiirteiden tuntemisen kautta voidaan tdydentéds optimoinnis-
sa kidytetyn tehtdvinasettelun puutteita. Esimerkiksi téssd esitellysséd ohjelmistossa liitosten
kestavyys ei sisdltynyt optimointiin, joten mahdollinen liitosten kestdvyyden ylittyminen hoi-
dettiin jalkik#sittelynéd vahvikelevyjen ja profiilien seindiménvahvuuksien kasvattamisen avulla.
Naiin optimoinnista saadaan hyvin kdyttokelpoinen tyokalu, vaikka tehtdvinasettelusta puuttui-
sikin joitain suunnittelunikokulmia.

Ohjelman jatkokehitys voidaan esimerkiksi suunnata laskennan nopeuttamiseen rinnakkais-
laskennan avulla. Tamén on térkedd erityisesti topologian optimoinnissa, joka on laskennallises-
ti huomattavasti mitoitusoptimointia raskaampaa. Toisaalta tyokalun taustalla olevaa tehtédvéan-
asettelua voidaan tdydentéd siten, ettd jilkikésittelyn tarve vihenee. Erityisesti liitosten kesté-
vyyden tarkastelu olisi syyté saada jo optimointivaiheessa laskentaan mukaan.
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Summary. Surrogate optimization is utilized in the case of a drag minimization of the airfoil when
the minimum lift is given as a constraint. As the surrogate, a polynomial response surface computed
using linear least squares regression method is used. Sampling points needed for the response surface
are generated using latin hypercube samples. Optimization of the surrogate objective function is done
using a conjugate gradient optimization method. As an optimization software, DAKOTA is utilized,
whereas, the objective function is calculated using a computational fluid dynamics software OpenFOAM.
Computational domain is constructed using Salome-platform. All used software are published as open
source and free of license fees. Results show that the usage of the surrogate makes method robust and
hence usable for the industrial CFD cases. The number of needed objective function evaluation is quite
high, but substantially lower than in the genetic algorithms.

Key words: optimization, computational fluid dynamics, Dakota, Salome, OpenFOAM

Introduction

There are two types of optimization methods for nonlinear unconstrained or constrained opti-
mization problems, namely gradient-based and non-gradient based methods. Former includes
for example traditional conjugate gradient method [8], whereas, the latter consists of for example
methods based on the genetic algorithms [11].

Due to non-smooth nature resulted from the ubiquitous numerical error originated from the
coarseness of the grid and due to expensiveness of the simulation of the objective function,
traditional optimization methods are difficult to utilize in the computational fluid dynamics
(CFD) [12]. One promising class of methods is surrogate-based optimization methods in which
the objective function is replaced by simpler surrogate function [4]'.

In this study, surrogate optimization is utilized in the case of a drag minimization of an air-
foil when the minimum lift is given as an inequality constraint. As the surrogate, a polynomial
response surface (quadratic in this study) computed using linear least squares regression method
is used. Sampling points needed for the response surface are generated using latin hypercube
samples [3]. Optimization of the surrogate objective function is done using a conjugate gradient
optimization method. As an optimization software, DAKOTA [2] (The Design Analysis Kit for
Optimization and Terascale Applications) is utilized, whereas, the objective function is calcu-
lated using a computational fluid dynamics software OpenFOAM (Open Field Operation And
Manipulation) [9]. Computational mesh is constructed using snappyHexMesh which is part of
the OpenFOAM distribution. Computational domain is constructed using Salome-platform [10].
All used software are published as open source and free of license fees.

!Usually in literature, ”surrogate based optimization” means methods in which actual CFD model is replaced
with the surrogate.
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Main objectives of the study are not to develop new optimization methods but

e Demonstrate how open source software Dakota [2], Salome [10] and OpenFOAM [9] can
be coupled together to optimize computational fluid flow system.

e Demonstrate how artificial local minimum extreme problem (caused by the insufficient
grid resolution) can be overcome using surrogate based optimization.

The ultimate goal is the industrial size CFD case where methods used in the academic word
such as the grid morphing cannot be used. Hence, the grid is completely reconstructed every
time new objective function is calculated. This causes also grid topology to change which results
in before mentioned difficulties with the artificial local minimum (or maximum).

Because the aim of the study is to investigate the possibilities of the open source software
in the CFD optimization and the demonstration of the coupling of the software, some crucial
stages of CFD simulation are omitted, for example grid independency test.

Theory

The optimization procedure in the software coupling level is given in Figure 1. Dakota [2]
manages optimization procedure and runs software needed in function evaluation phase (CFD
phase) and given to Dakota as a simulation script file. The simulation script file consists of all
the commands needed in CFD simulation (pre-processing, solution, post-processing etc.). In
addition, there are two files needed to run Dakota. The first is dakota.in file in which all the
optimization parameters are given. The second one is the dprepro Perl file which is the utility
that inserts values from Dakota parameters file into a simulation input file and is part of Dakota
distribution.

Dakota sends design variables (three in this study) to the Salome [10] which makes the
computational domain and saves it as .stl-files. After that, snappyHexMesh produces the com-
putational mesh. OpenFOAM [9] solves the CFD case and saves value of the objective function
(drag in this study) in the result file. In addition, results needed in the nonlinear constraints
are saved (lift in this study). Also some .vtk files are saved for the post-processing purposes.

Start
optimization

loop \

Design
[ Dakota [2] ]— variables —»[ Salome [10] ]
(params.in file)

Sto T |
Db Value of objective
optimization ;
loop function and non- Geometry
linear constraints (.stl-files)
(results.out file) l

Computational snappyHexMesh
[ OpenFOAM [9] }_ mesh _[ (part of OpenFOAM)

.vtk-files to be used
in post-processing

Figure 1. Optimization procedure.
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Optimization (Dakota)
Actual optimization is done in several stages, which are:

1. Simulate CFD case in the sampling points (three per design variables = 27 in this study)
generated using latin hypercube samples [3] and chosen inside the trust region in which
the surrogate is believed to represent the actual objective function fairly well.

2. Generate the surrogate of the actual objective function using simulated CFD results and
the linear least squares regression method.

3. Optimize the surrogate using the conjugate gradient method.

4. Compare the values of the objective function obtained using the surrogate and the actual
function at the optimal point of the surrogate and based on the accuracy:

e [f the accuracy is poor, reduce the trust region and reject the optimization step.
e If the accuracy is marginal, reduce the trust region but accept the step.

e If the accuracy is satisfactory, retain the trust region and accept the step.

e If the accuracy is excellent, enlarge the the trust region and accept the step.

5. Investigate if the optimum is found. If not, go to step 1., if yes, stop.

Comptuational fluid dynamics (OpenFOAM)

Gorverning equations (Reynolds averaged Navier Stokes equations, RANS) of incompressible
steady state turbulent fluid flow are
ou;
al’i N

where U; is the time averaged x; component of the velocity and z; is the spatial coordinate and
oU; 10P 0%U; 0 —_
7 ? <_u;u;) y (2)

J Ox; N _p ox; + V@xjamj Ox;j
where P is the time averaged pressure and v is the kinematic viscosity. u} is the flucuation part
of the velocity and overline denotes the time averaging.
The last term of the equation (2) includes Reynolds stresses, m, which represents the
transport of momentum by the turbulence and cannot be neglected. The term should be modeled
using additional equations in order to close the equation system.

0, (1)

SST k-w turbulence model

In the SST (shear-stress transport) k-w model [5], there are equations for the turbulent kinetic
energy, k, and for the turbulent specific dissipation rate, w. They are as follows

ok ok 0 ok ~
o+ Uj—amj = o [(u + apy) a:cj] +Gr— Y (3)
and 0 0 0 0
W W w
5 T Ui o~ ou; [(V—i—awut) 8xj] + Gy — Y, + Dy, (4)

where ap = Fy (g1 — ak2) + age and ay, = Fi (1 — Qw2) + w2, in which ag; is the inner and
ags is the outer inverse turbulent Prandtl number of turbulent kinetic energy, respectively. The
constants a1 and a9 are the inner and the outer inverse Prandtl number of turbulent specific
dissipation rate, respectively. Blending function?
4
, 10} , (5)

: : VEk 5000\ dagok

Fy = tanh { min ¢ min |max [ ———, — , )
frwy y*w | CDyy

2The limiter which limits the blending functions smaller than 10 and 100 are not included in [5], but imple-

mented in OpenFOAM in order to stabilize iteration.
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where y is the distance to the nearest wall and?

1 0k
CD;:UJ = max (CDkw, 10*10) , where CDy,, = 2aw2w§xjg:j. (6)

Kinematic turbulent viscosity is computed as follows

alk
max(ajw, v/2b1 SF) ’

Vy =

where the second blending function

2Vk 500 ’
F5 = tanh ¢ min [max < V) ,100] . (8)

Brwy’ yiw

The production of turbulent kinetic energy due to mean velocity gradients, G, = 1452, is
limited as follows B
Gj = min(Gy, c1 8" kw). 9)

The production of w is computed as follows
G, = LGy, (10)
4

where v = F1(71 — 72) + 72
The dissipation of the turbulent kinetic energy and dissipation of w are computed as follows

Vi = f*kw and Y, = fw?, (11)

where § = F1(81 — (B2) + Po.
The additional term D, in Equation (4) brings into the model features from the standard
k-e model and is computed using

Dy =2(1— Fl)owl Ok 0w

— . 12
wé)xj 8.73j ( )

The constants get following values:

a1 = 0.85034; apo = 1.0; a1 = 0.5; ae = 0.85616
81 =0.075; B = 0.0828; B* =0.09
~v1 = 0.5532; 9 = 0.4403; a1 = 0.31; by = 1.0; ¢ = 10.0

It should be noted that the implementation differs in respect of boundary layer treatment
from the original model proposed in [5]. Actual implementation follows closely [6]*.

Case

The case chosen as a demonstration case is shown with the dashed line in Figure 2. Velocity
is fixed to the value U = 30m/s. This yields Reynolds number based on the chord line Re =
3000000. There are three design variables which are ¥iop, Ubottom and ¥tail. The allowable
ranges of the variables are indicated by the arrows in the figure. The airfoil is constructed from
the three circular arc, therefore, only three points are needed to fix the shape of the upper and

3The limit value proposed in [5] was 1072°.
4Unfortunately this paper is very difficult to get. Therefore, in this study the method is captured from the
source code of OpenFOAM.
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lower part of the foil. = coordinates of the top and the bottom points are fixed and are both

x = 0.5m. z coordinate of the tail is fixed as x = 1.0m. Initially, the design variables get the

values: Yiop = 0.03m, Ybhottom = —0.07m and yan = —0.15m which yields the drag coefficient
Cyq = 0.0424 and the lift Cp = 1.37°.

Optimization problem can be given as:

minimize Cy (13)

subjectto Cp > 1.0 (14)

0.001m < yiop < 0.15m (15)

—0.15m < Ypottom < —0.001 m (16)

(17)

—0.3m < Yiai1 < 0.3m

AYtail

fixed semi-
circle,
R =10.025

Figure 2. Initial (dashed line) and optimal (solid line) geometry. Filled circles indicate fixed points, open
circles indicate free to move points. Arrows in design variables indicate allowable range of values.

Results and conclusions

Evolvement of the design variables, the drag and the lift are shown in Figures 3, 4 and 5. The
optimal geometry is given as solid line in Figure 2. In the CFD case, there are approximately
285,000 cells. Using 8-core computer, one function evaluation took approximately 500s from
which about 20% went into mesh generation, about 75% into CFD solution and 5% into com-
munication. One optimization cycle consists of 28 (27 for the surrogate construction and one
for the trust region size check) function evaluations, hence, whole optimization took about 40 h.

It is interest to note that this case would be a good candidate for the multiobjective opti-
mization [1], but in this study only single parameter is used as a objective function and other
candidate, i.e. lift, has been handled via inequality constraint.

Optimum is found to be:

Cq = 0.0157
Cp,=1.00
Ytop = 0.0807 m
Ybottom = —0.001m
Ytail = —0.0391m
Results show that the usage of the surrogate makes method robust (compared to traditional
gradient based methods) and hence usable for the industrial CED cases. This is mainly due to
smoothness of the surrogate function. Without the surrogate, numerical error associated to the

coarseness of the grid makes exploitation of the gradient-based methods very difficult. Number
of needed objective function evaluation is still high, but lower than in the genetic algorithms.

SCoeffients are calculated using reference values for the density p = 1.2kg/m?® and for the area A = 1.0m (in
2D case dimension of area is meter). In the airfoil, it is customary to use the planform area as a reference area.
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Figure 3. Design variables. Figure 4. Drag coefficient Cy. Figure 5. Lift coefficient C,.

Acknowledges

This work was supported by the SIMPRO (Computational methods in mechanical engineering
product development) project funded by Tekes (the Finnish Funding Agency for Technology and
Innovation).

References

[1] J. Branke, K. Deb, K. Miettinen and K. Slowinski (Eds.). Multiobjective Optimization,
Springer, 2008. doi: 10.1007/978-3-540-88908-3

[2] Dakota. Retrieved January 18, 2015, from dakota.sandia.gov

[3] R. L. Iman and M. J. Shortencarier. A FORTRAN 77 Program and User’s Guide for the
Generation of Latin Hypercube and Random Samples for Use with Computer Models, Sandia
National Laboratories, 1984.

[4] S. Koziel and L. Leifsson (Eds.). Surrogate-Based Modeling and Optimization, Applications
in Engineering, Springer, 2013. doi: 10.1007/978-1-4614-7551-4

[5] F. R. Menter. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applica-
tions. ATAA Journal, 32:1598-1605, 1994. doi: 10.2514/3.12149

[6] F. Menter and T. Esch. Elements of Industrial Heat Transfer Prediction. 16th Brazilian
Congress of Mechanical Engineering (COBEM), Brazilian, 2001.

[7] S. G. Nash and A. Sofer. Linear and Nonlinear Programming, McGraw-Hill International
Editions, 1996.

[8] J. Nocedal and S. J. Wright. Numerical Optimization, Springer, 2006. doi: 10.1007/
978-0-387-40065-5

[9] OpenFOAM. Retrieved January 18, 2015, from www.openfoam.org
[10] Salome-platform. Retrieved January 18, 2015, from www.salome-platform.org

[11] S. N. Sivanandam and S. N. Deepa. Introduction to Genetic Algorithms, Springer, 2008.
doi: 10.1007/978-3-540-73190-0

[12] D. Thévenin and G. Janiga (Eds.). Optimization and Computational Fluid Dynamics,
Springer, 2008. doi: 10.1007/978-3-540-72153-6

147



Proceedings of the XII Finnish Mechanics Days
R. Kouhia, J. Mékinen, S. Pajunen and T. Saksala (Eds.)
(©The Authors, 2015. Open access under CC BY-SA 4.0 license.
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Summary. A third order shear deformable beam is formulated based on strain and velocity gradient
theory. The governing equations and boundary conditions are obtained by using Hamilton’s principle.
Static and kinetic length scales are introduced to capture the size effect. The developed model, depicts
the influence of the velocity gradients on the governing equations, initial and boundary conditions of
the thirdﬁrder shear deformable theory and can be simplified to Timoshenko and Euler-Bernoulli beam
theories [8].

Key words: shear deformable beam, strain gradient, velocity gradient, variational approach

Introduction

Micro scale beams are widely used in micro electro mechanical systems and devices such as in
sensors and resonators. Thus, the accurate prediction of their behavior under different loading
conditions is of great importance. It is well-known that the classical continuum theories have
certain deficiencies in determining materials elastic fields in ultra small scales, where the size
effect cannot be negligible. Therefore, such theories are not adequate for interpreting the behav-
ior of micro or nano sized beams and higher order continuum theories such as gradient elasticity
theory are applied. In gradient elasticity theory, the equations of classical elasticity are extended
with additional higher-order spatial derivatives of strains, stresses and/or accelerations and en-
tering new material constants into the formulation of classical continuum theory enables one to
interpret the materials behavior in micro/ nano scales. A complete gradient elasticity theory
should include gradients of strain in the generalized strain energy as well as velocity gradients
in the generalized kinetic energy.

Several authors investigated the behavior of FEuler-Bernoulli, Timoshenko or higher-order
shear deformable micro and nanobeams via gradient theory (e.g. [4], [5], [7], [9]). However, in
most of the studies, velocity gradients are neglected in the formulation of the generalized kinetic
energy.

In a recent study [8], a third order Reddy beam is studied in the framework of strain gradient
theory where the generalized strain energy including strain and strain gradients, together with
the generalized kinetic energy including velocity and velocity gradients are considered.

Variational formulation of the gradient elasticity theory

In strain gradient elasticity, the strain energy U; in a region ) occupied by the elastically
deformed isotropic material (at time ¢) is given by [3]

1 ..
Uy = 3 Jo(uijoij + i jkTije)dv, 4,5,k € {z,y, 2} (1)
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where u; denotes the displacement components, comma represents the partial derivative and the
Cauchy-like stress tensor o;; and double-stress tensor 7;j; for an isotropic material are

0ij = Nij€mm + 21Ei5, (2)

Tigk = 13 (Aij€mm.k + 21ijk) = L3031 k- (3)

In equations (2) and (3), A and p denote the Lamé constants, J;; are the components of the
unit second-order tensor (i.e., Kronecker delta), ls is internal length scale related to the strain
gradient and ¢;; denotes the infinitesimal elastic strain components as

! (wji + wij) - (4)

€ij = E€ji = 5

The variation of the strain energy takes the form
oUy = / (5uijj01’j + 5ui,jk7'ijk)dv. (5)
Q

According to Mindlin (1964) [3], the kinetic energy K; in a region {2 occupied by the elastically
deformed material (at time t) is

Kt = 5 /Q 1% (ui7tuz~7t + lﬁui7jtui7jt) do. (6)

where p is the mass density, [x is internal length regarding the velocity gradient, and ” ;” denotes
the time derivative. The variation of the kinetic energy reduces to

0K; = / P (ui,téui,t + lﬁui,jtdumt) dv. (7)
Q

According to Hamilton’s principle
t
/ (6K, — 6T, + Wi dt = 0. (8)
0

where W, is the variation of external work. The governing equations and boundary conditions
can be obtained by applying equation (8) together with equations (5), (7) and the fundamental
lemma of the calculus of variation.

Reddy third-order beam theory within strain and velocity gradient theory [8]

Consider a beam with a rectangular cross-section of height h and width b (figure (1)). The
beam is made of homogenous and isotropic material and is subjected to a lateral load ¢,(z) on
its upper surface. According to the Reddy beam theory ([1], [2], [6]), the displacements of the
beam are

(9)

Uy (.%', Y, t) =yp (ZC’ t) - ay3 (ﬁ + w,x) (.%', t)
uy (z,y,t) = w(z,1)
where
4
“7 32
and u, and u, denote the displacements along the coordinates x and y, respectively. In equation

(9), w represents the deflection of a point on the mid-plane and § denotes the rotation of the
beam cross section. Nonzero components of the stress and strain tensor which are obtained

(10)
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Figure 1. Beam with rectangular cross section subjected to lateral load t,(z).

using equations (2), (3), (4) and (9) are substituted in equation (5), which leads to

L
oUy = / {Mmréﬁ,m — Py, (5ﬁ,x + (Sw,mx) + (Qmm - 304Rrx) (56 + 5w,x)
0

+ lsszm,xaﬁ,mz - lgapmm,x (65,mm + 5w,xww) + ls2 (Q:m:,x - 3aRxm,m) (56,1 + 5w,xm) (11)
+12N4268 2 — 3120S0y (6B 2 + 0w 1) — 6120 T,y (68 + dw ;) Y.

In equation (11), L is the length of the beam and the general bending moments and shear forces
are defined as

My = / OrzydA, Pry = / szysdAy Quz = / U:pydAa Ryy := / ny?/QdA,
A A A A

Ny ::/awLydA, Sa ::/Um,yyZdA, Tra ::/axy,yydA, (12)
A A A

where A represents the cross section area of the beam. The general bending moments and shear
force in terms of deflection can be written as

My, = ﬁmﬁﬁ,:{: - anxw,xxa Py = A:c:r:/B,x - aH:L‘a:w,:c:L‘a Quz = Axy (B + w,x) y Ryz = -ﬁxy (B + w,x) ,

N:v:c = Azzﬁ,:c - SaDcvww,wzv; Sx:v = waﬁ,z - 3aFw:vw,a:$7 Tiy = _6aDwy (B + w,w)
(13)

where
(Agas Dy Frogy Hyg) = /A (Ly?, 9" 9°) EdA, (Azy, Doy, Fryy) = /A (L, y')GdA  (14)
and
Day = Dyo—0Fya, Foy = Fro—0Hyy, Apy = Auy=30Dsy, Avy = Ave—30Dyy, Day = Dyy—3aFy,.
(15)

In equation (14), E and G denote elastic and shear moduli respectively. Applying Green’s
theorem to equation (11) results in

v = | [ Nn + Qo b 8 (Massns — Qurne — s — 60T )| 550
0

+ /0 ' [—aPm,m — Quap + 12 (osz,mx — Quazoz — 30550 20 + GaTm,xﬂ Swdz
T Y (A W | P N N 1o
- [aPm,x + Quo + 12 (—aPm,m — Qurwe + 30S0n s — 6aTm)} Jwlg

+]

—aP, + ls (an:c,xz + Qxa:,x - 30[5’@%)} 5w,:c‘0L - lgapxx,xéw,zx%a
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Figure 2. Variations of (a) rotation 8 and (b) normalized deflection w/h of a simply supported Reddy
beam with length x/h for three different beam sizes, compared to the classical model, b = 2h, L = 10h.

where B B
Myy = Myy — apmxy sz = me - SaRmza Ngy = Nyg — 30453:37 (17)

Assuming that the transverse load ¢, (z) acts on the centroidal axis of the beam, the variation
of the external work takes the form

L
5W:/ tydwdx. (18)
0

Substitution of equation (9) into the variation of the kinetic energy (7), using Green’s theorem
and Hamilton’s principle (8) and applying fundamental lemma of calculus of variation will readily
result in the governing motion equations and boundary conditions. With the aid of equations
(13) and (17) the governing equations can be written in terms of deflection as

- (szﬁ,z - anmw,zz) . + A:ﬂy (w,at + 5) + ls (Dzmﬁ,m - aFmrw,am) i
— 13 (Auy (Wi +8)) 4y — 13 (AuaB + 3 (3aFuy — Dug) Wyaw) , + 36070 Dy (w5 + ) (19)
=—p(I+a’H —2aF) By —p(a®H — aF) wy — pli (A+90°F — 6al) By
— plﬁ (9a2F — 30J) W gt + pli (I +o’H — QaF) B axtt + plﬁ (aQH — aF) TI—
-« (ﬁmxﬁ,x - aHx:rw,mx) - (Amy (w,z + B)) z + lfa (meﬁ,x - awaw,zx)
T J

,LTTL

+ ls2 (flxy (wgz + B)) - 3al52 (lﬁmﬁx - 304me,m) - 36a2l§ (Dgy (W + 5))36 —ty (20)

= POé2Hw,mtt +p (042H - OZF) Bt — pAW 4 — ,0l1%OZ2Hw,mmtt
ply (9042F - 304—7) Bt + pli (A + 9042F) W patt — pli (QQH - QF) B zaxtt,

where

JTLT ax

1.F0) = [ (Pt aa (21)

Moreover; the boundary conditions at both ends of the beam are obtained as
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+pli (I +0*H —2aF) oy + pli (0H — aF) w gy = 0
Wy =0} or 68, =0

{ an:c,a: + Qxa: + l52 (_anm,az:L’x - me,xw + Sagxx,a: - 6aTxa:>

{ M:ﬂm + l52 (_sz,mm + sz,m + Nma:) } or 55 -0

+ pa2Hw,xtt +p (042H - OéF) Bt — Pli%; (012H - OZF) B zatt or dw=0
- plﬁasz,mmtt + plﬁ (9a2F — 3aI) Bt + plﬁ (A + 9a2F) Wt =0
{_aPacac + l52 (anx,mm + Qx;v,ac - 3a§:vac> + Plﬁ (O‘QH - OdF) /B,Z’tt + plleQHw,a:actt = 0} or 5w,ac =0
{—ZSQaPm@ = O} or 0wy =0
(22)
The appropriate boundary conditions for the beam will be selected among the conditions of
equation (22). Clearly, by setting [y and [ the classical governing equations and boundary
conditions for Reddy beam are obtained.
w(z,t) and (z,t) can be determined by solving the governing equations (19) and (20) subject to
proper boundary conditions specified from equation (22). To illustrate the size effect, normalized
deflection and rotation of a simply supported Reddy beam are determined for three different
beam sizes and compared to the classical Reddy beam model (figure (2)) The beam is subjected

to load ty(x) = qsin(%), g = 1 N/m and assumed to be made of an epoxy with material

properties E = 1.44 GPa, Iy = 17.6 um, p = 1.22 kg/m?. It is observed that for or a beam with
a larger size, the difference between the classical and strain gradient theories vanishes.

Conclusion

Reddy third-order beam model is formulated in the framework of velocity and strain gradient
theory. The generalized kinetic energy including velocity and velocity gradients is considered.
Within a variational approach, the governing differential equations and boundary conditions
are obtained. The generalized kinetic energy contributes to additional terms in the governing
equations as well as the initial and boundary conditions.
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Effective radia of threaded bars in bending
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Summary. A computational homogenization method for finding the shear and torsion
correction factors of the elastic Timoshenko beam model is suggested. The method is based on
concepts of precise and rough models and matching of the virtual work expressions of the
models on a RVE (Representative Volume Element). As an example, the shear and torsion
correction factors for an open annular cross-section are compared to the values in literature.
Application on a threaded bar indicates that the effective radius in bending is close to the minor
radius of 1ISO 261 standard metric screw.

Key words: Computational homogenization, Timoshenko beam model, shear correction factor

Introduction

The standard Timoshenko beam model assumes that the cross-sections of the beam move as
rigid bodies in deformation. This is a well-known source for modelling error in the constitutive
equation e.g. due to the warping effect. The methods for reducing the modeling error are based
on solving a beam problem under less restrictive assumptions than used in the standard model as
discussed e.g. in [1], [2], and [3]. Shear and torsion correction factors of literature are just a
convenient way to quantify the difference between the standard constitutive equation and the
effective constitutive equation obtained by a precise model.

A two-scale computational homogenization method is suggested for derivation of the
effective constitutive equation. The idea is to match the virtual work expressions of the precise
and rough models on a RVE (Representative Volume Element) under periodicity assumption of
the solution in the axial direction of beam. The direct outcome of calculations is the effective
constitutive equation of the beam model considered as the rough model. In practice, finite
element method is needed for finding the solution to linear elasticity equations used as the
precise model. The method assumes that the length of the beam element used as the RVE is
small compared to the length of the beam. In addition, the RVE is assumed not to be located
near the boundaries, if warping of the cross-section is constrained there.
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Standard constitutive equation

Timoshenko beam model assumes that the cross-sections move as rigid bodies in deformation
and normal stress components in the thin directions are negligible i.e.

Uy =Ug+ 6y %P, (1)
Oyx =0y =0, )

in which translation Ty(z) and rotation 6,(z) of a cross section are associated with the particle
x =y =0 of the material coordinate system and 5(x, y) = xi + yj is the relative position vector.
Above, the z-—axis is taken to be aligned with the axis of the slender prismatic domain
occupied by the beam. The linear strain expression

§r=%|2(§+1?><,5)+%(5+12x,5)|2 (3)

obtained from the kinematic assumption in Equation (1) depends on the strain measures of the
Timoshenko beam model & =0'+k x8 and & =6’ in which the prime denotes derivative with
respect to the axial coordinate. The role of the kinetic assumption in Equation (2) is to reduce
the tendency for a too stiff behavior due to the kinematic assumption in Equation (1).

The standard constitutive equation follows from material model, assumptions above, and the
stress-resultant definition of the beam model

Fl . 1 G
{M}ZIImAL—)OEJ‘Q {ﬁx&}dv’ (4)

where 6 =Kk -& and the integral is over the cross-section. The definition above, using a beam
element Q c R3 (RVE) of length AL and centered at z, is chosen to match the expression to
appear later. In terms of the strain measures ¢ and x, Equation (4) takes the form

F A C| (&
L[5 S ®
M C. Bl ¥
in which the elements A, B and C of the matrix depend on the geometry of the cross-section,
position of the material coordinate system, and material properties.
The standard constitutive equation, derived in this manner, is known to be particularly poor

in torsion of open thin walled cross-sections. The well-known improvements, e.g. in terms of
shear and torsion correction factors, are based on improved prediction of stress in equation (4).

Computational homogenization

Derivation of the more accurate constitutive equation uses the concepts of precise and rough
models and computational homogenization on a RVE with variational equation

awmjgir-(u—ur)dvzawr. (6)
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Here, the rough model corresponds to the Timoshenko beam model, classical linear 3D
elasticity to the detailed model, and the domain Q occupied by the RVE is a beam section of
length AL .Virtual work expressions of the rough and precise models are given by

OW, = —AL(GE -F + 65 - M), (7)
W = —jQ 58, 1 5dV . (8)

In expression (7), £ and i are taken to be constants inside the RVE. In expression (8), & and
& are the symmetric Cauchy stress and the linear symmetric strain, respectively. Expressions
take into account only the internal forces so that gravity etc. are omitted.

Displacement G of the detailed model is divided into two parts

0 = U, + Al 9)

in which G, is given in Equation (1) and AU is the remainder displacement. The second term
on the left hand side of Equation (6), where G, and /Tr belong to the same set of functions, is
one way to express the uniqueness of the decomposition. Additionally, remainder displacement
AU is subjected to AL -periodicity in the direction of the z —axis i.e. to condition

AlG(X, y,Z—%AL):AU(X,y,Z+%AL). (20)

More detailed discussion on the kinematic and Kkinetic conditions to be satisfied in
computational homogenization is available e.g. in [3].

Effective constitutive equation

In the constitutive equation application, variational equation (6) is used to find the rough model
representation of the virtual work expression of the detailed model and thereby the improved
relationship between the rough model strain and stress measures. To be precise, the goal is to
find AGeU(Q), 4, €U, (Q), FeR®, and M eR® satisfying the variational equation (6) for
all SAT eU(Q), 54, eU,(Q), 6 eR®, and 5k e RS,

In the first step, strain measures & and x are considered as given so that the variations
o€ =0 and ox =0. Then, Equation (6) simplifies to the standard elasticity problem giving as
its solution the remainder displacement AU as function of & and & . In the second step, AU is
taken to be given from the first step so that SAG=0. As & and x are constants in the RVE and
o0¢ = ¢, when SAU =0, equation (6), expression (7) and (8), and strain in equation (3) give the

solution
Lot 19 gy (11)
M AL’Q | px&

to the stress resultants. Above, &=k -& is the stress vector corresponding to the detailed
model. As the stress given by the first step is linear in the strain measures £ and « , the final
outcome can be expressed in the same form as the standard constitutive equation (5) with
modified expression of A, B, and C .
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In the application examples, finite element method based on a continuous approximation to
Al and equation (6) is used to find an approximate solution to the remainder displacement. In
practice, the elasticity problem is solved 6 times corresponding to the 6 components of £ and
K . Thereafter, stress of the detailed model is integrated over the RVE according to expression
in Equation (11) to obtain the matrix elementsA, B, and C of the effective constitutive
equation.

Annular cross-section application

An open or closed annular cross-section can be taken as a basic benchmark case due to the
symmetry and results in literature [2]. For a closed case, the standard constitutive equation is
acceptable. However, if the cross-section is cut to the centerpoint to make it open as shown in
Figure 1, the standard constitutive equation is a very poor choice. Computational
homogenization gives the expressions

A= kGAIT + x,GAjj + EAKK , (12)
B =EI(ii + Jj) + x32GIKk , (13)
C =G\2Al kyik (14)

in which the correction factors «...x, are given in Table 1 as functions of thickness ratio
a=t/D. The zero and second moments of the area A and | are according to the standard
theory (where x3=x,=x3=1 and x,=0). Shear in the Xx-—direction and torsion are
connected in the effective constitutive equation, whereas the connection does not exist in the
standard constitutive equation.

y

Figure 1. Open annular cross-section.

The values of x, in Table 1 coincide with the shear correction factors of a closed annulus
and agree well agree well with the values given in [2] for ¢ =1 and a =1/20. It is noteworthy
that the values e.g. in [2] depend on the Poisson’s ratio, whereas the shear correction factors of
Table 1 do not depend on the Poisson’s ratio.

With an annular cross-section, any AL defines a RVE. Therefore the outcome does not
depend on AL or the shape of the end surface (need not to be planar). It is also possible to
consider the limit case AL — 0 or assume that the remainder displacement does not depend on
the axial coordinate i.e. 0Al/0z =0 . This simplifies calculation as the linear elasticity problem
boils down into a 2D case.
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Table 1. Correction factors for an open annular cross-section as functions of « =t/ D .

a K1 Ky K3 Ky

1 0.451 0.857 0.750 -0.294
3/4 0.328 0.812 0.741 -0.325
1/2 0.238 0.682 0.722 -0.338
1/4 0.184 0.551 0.688 -0.336
1/10 0.169 0.508 0.671 -0.334
1/16 0.168 0.503 0.668 -0.336
1/20 0.167 0.502 0.667 -0.333
1/32 0.167 0.501 0.667 -0.333

Threaded bar application

In the threaded bar application, size AL of the RVE cannot be chosen freely but it is rather
given by the geometry of the beam. Figure 2 shows the nominal geometry of the ISO 261
standard metric screw defined by the major diameter D and pitch P . Pitch represents also the
length scale of the geometry in the direction of the z —axis so that AL=iP ieZ. Root radius
r has minimum value and the maximum value depending on the minor diameter d .

z — axis direction

Figure 2. Geometry of ISO 261 standard metric screw
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In the present case, it is convenient to use a circular cross-section of nominal diameter D in the
calculation of the standard/reference constitutive equation. Using the area A and second
moment | based on that selection, computational homogenization gives

A= kGA(ii + jj) + x,EAKK , (15)
B = il (il + Jj) + x4 2GIKK , (16)
C = k+/GAEI (ii + Jj) + x5~/2GAEI kk , (17)

in which x; =0.648, x, =0.689, x3=0.474, x, =0.487, x5=0.001, and x5 =-0.002. The
geometrical parameters used in the calculations were D=8mm and P =1.25mm giving the
minor diameter value d =6.65mm. The effective radius of bending deformation mode
desf =6.64 mm, giving the bending rigidity of the effective constitutive equation when applied
in the standard constitutive equation, is close to the minor diameter d even when the rounding
radius is close to its maximum value. The finding, showing that the thread part does not
contribute much to the bending rigidity, was verified by a three point bending test that gave an
even smaller value dgy,, =6.45mm.

Conclusions

Computational homogenization with Equation (6) has various applications of which finding the
shear and bending correction of the Timoshenko beam model is just one example. The present
method is based on matching of the virtual work expression of the precise and rough models on
a RVE. To get a constitutive equation of the same for as the standard one, rough model strain
measures were chosen to be constants. Then, a more precise constitutive equation follows, when
the stress according to the standard model is replaced by more accurate one in the definition of
the stress resultants of the Timoshenko beam model.

The conditions for finding the effective constitutive equation of the Timoshenko beam
model vary in literature. Clearly, matching of two models based on vibration properties,
deflection at some point or virtual work expressions may give somewhat different results. Here,
the goal was to improve the constitutive equation, which is the main source for the modelling
error.

Threaded bar application indicates that an effective constitutive equation can be derived in a
consistent manner also when the beam cross-section geometry is periodic in the direction of the
beam axis. Then, the constitutive equation describes the relationship between the beam model
stress and strain measures in average sense.
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Summary: This study is part of a larger research of heat transfer platens also called thermal
mats which are important components in large industrial boilers. The focus is on the problem of
their vibration and fatigue of the welded joints. The warping stiffness is an important local stress
riser on the mat. The warping stresses are calculated with an analytical approach. The results
are compared with numerical analyses based on FEA and simple experimental tests. The initial
results are satisfactory and the analytical models are utilized in similar industrial components.

Key words: primary warping, secondary warping, torsion, bimoment, tubular mat

Introduction

The objects of this study are tubular mats called platens and their branch joints which are used
widely for heat transfer from combustion gas to steam in tubes. They are essential in industry
and in bio structures. Here the focus is on analysing a basic component consisting of only two
tubes interconnected connected with a fin and rigidly attached to the wall. Since the tubes are
often slender the transversely bending dynamic vibrations are excited easily. Also torsional and
warping stresses are important. The joint stresses can be obtained by several methods. The
effects of bending loads on platens are discussed by Martikka and P6llanen [1] using orthotropic
plate modelling and by Martikka and P6llanen [2] using beam modelling. These papers are
based on dynamic modelling as by Rao [3] and Boresi [4]. It is known that the applied torque
is composed as sum of Saint Venant and warping torques as discussed by Rees [5]. The effect of
torsional vibrations can be considered by FEM [6]. The dynamic torsional vibrations are
studied using a simple model of two tubes joined by a fin or a flange. Lagrangian dynamics is
used to get dynamical equations of motion and dynamic fatiguing stresses as their response.
Dynamic torque is applied to this system to get Eigen frequency and stress response. The
warping stresses will be calculated. The models of this study are utilized in similar industrial
components.

Design goals

The design goals in this study are parts of larger goals. The function of the platens in a typical
boiler is to transfer combustion heat to steam in the tubes. All vibrations are damaging to the
platens and structures. One goal of the design of platens is to prevent vibration by controlling
loads, consisting of the combustion gas flow (which may excite galloping), soot blow lance jet
loads, unstable vibrations caused by fluid flow in tubes and sound cavity vibrations.
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The detailed goal is to redesign the tube joints of the platens to prevent fatigue fractures due to
these loads. The focus in this study is on dynamic vibrations of the platens including warping.

The studied structure

The aim in this section is to give an overview of the structure. A typical joint is shown in figure
1. Free body models are shown in figure 2.

“ —— ! =0,0056
/]

r=R te

nA

< Du hf

Figure 1. Welded tube joint used in heat exchangers. a) Joint with fatigue cracks, b) Basic
element of a tube- fin- tube geometry, c) typical cross section of a platen with N= 6 tubes

The bending stiffness of the orthotropic plates is needed for use in surrogate beam models. In
figure 1b typical dimensions of common boiler tubing are shown. The platen is an orthotropic
plate. Tube mean radius r,,=0.029m, tube wall t = 0.0056, fin height h; =0.0245, fin thickness t; =
0.006

T

Figure 2. Miniplaten modelling a) Torsional loading , b) Free body models, c) Distribution of
stresses , T, is torsional shear stress , 14 is direct stress, 1, is warping shear stress and the
warping bending stresses is & k = f(w)ok
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Equation of motion and its solution

The equation of motion for the maximal torsional tube displacement v is
J+Kv=21(T, +T,sinQt)=1T(t) 1)

Here J is mass moment of inertia of around the axis of rotation calculated using an assumed
shape function, K is stiffness coefficient and T(t) is the load torque excitation.
The solution is the sum of various displacement components

V=V, +V, =V, +V, +V, =vV=asineot+bcosat +v , +v , (2
Where
Vi, = solution of the homogeneous equations, v, = solution of the particular equation

Vp1 IS the constant part , vy, is the time dependent part
The lowest Eigen frequency ® and the excitation Q and the ratio p are

a):\/K, Q= po, ng (3)
J w

The total particular response is

1 T, .
V=V +V,, = +— o f5sin pat 4)

Results of Dynamical Simulations
The stiffness coefficient K is derived from the total strain energy U stored in the structure as the
sum of three energies, U; = torsional energy of one flange plate , the energies of two tubes are

U, = bending energy and U, = torsional energy of one tube. The total energy stored as a
surrogate spring of the spring constant K

U=U, +2U, +U,)=3K-v2 =k, +2k, + 2k |2v?, K=k, +2k +2k, (5)

ks = 75000, ky = 410", ky = 0.017 .The dynamical parameters are K = 8.37-10", J = 6.1
The lowest Eigen frequency by the analytic model corresponds to mode 4 of FEM [6].

fonal =%\/§=590Hz, feeym = 468Hz,  for mode4 (6)

The analytical results are qualitatively satisfactory considering many simplifications and
approximations

Figure 3. FEM model of the basic platen modules, mode shapes and Eigen frequencies.
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Sideways cantilever vibration mode 1 frgy = 56 Hz. vertical cantilever vibration mode 2 frgy =
124 Hz, , mode 4 fgym = 468 Hz analytical f = 590 Hz for the same mode. [6].

Stresses by the dynamical model

The aim in this section is to estimate the warping stresses. Mises stress is useful for fatigue
calculations. The shear stress acts in different direction and may be added vectorally. Here
Mises stress is calculated assuming that shear stresses act at the same location in same direction
also so that they can be added directly. For fatigue analysis the mean and amplitude Mises

stresses may be calculated.
1

Geq = I:O-b2 + 3(Tt + Td )2]5 (7)
Here the bending stress, the direct shear stress and the torsional shear stress are

6Er, 3E(r, ? Gr,
Op = 2 V=AV, 74 :E(Tj Ty = RI (8)

Torque at the end of the beam

The aim in this section is to first find the torque at the end of the beam and then find out the
normal warping stress and the shear warping stress

The solution of a beam under torque with warping is discussed in several textbooks such as
Boresi [4]. One end is fixed at z = 0 and the load torque T acts at the z = | end of the beam. It
has two components, T, is the Saint-Venant torque and T, is the torque due to restraint of
warping.

T(Z):Td(z)+T(o(z) (9)
T4 may include the flange and the tubes.

At the fixed end z = 0 with long beams the warping torque is small relative to the Saint-\Venant
moment

o(a)=-T(MMA0E) -y Bl gy, (10

Large platen model with several tubes

This model is shown in figure 1c.

[1+32 +52 +(2N —1)2] (11)

ztube

I
k? :%—JVN = N[t Ch, 2] 3, =2k
oN
The omega function at height h; is distance from the mid plane to tube centres. For the larger

model the outermost tube n=N/2=8/2=4

o, =hr sing, h =%h=R, h=(2-i-1)R,

12
w,=h, -r sinp=(2n-1)ih-r sing 12
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Stresses by the warping model
The aim in this section is to find the normal warping stress and the shear warping stress.
Normal warping stress

The stresses for tube number n = 1...i......%N at height h, from the mid line of the platen are
considered. Normal stress at the top at angle ¢ = 7 is zero

\.sinhkl (2n-1)-3h-r,sin(p) .. o (13)
“kcoshkl - 1h?g, . |17 +3% +52 + (2N —1)|
Normal stress at the side is maximal at

o-mn(gozﬁ)zT(t

ztube

- 2n-1)-1h-r si
0= B(Z)® — max = O'm(¢=%72')=T(t) sinhkl_ (2n-1) 5 rmsm(y/h’:”/z 5 (14)
3 kcoshkl  1h?J,, 1% +37 +52 + (2N —1 |

ztube

Normal stress at the first tube i = 1 is maximum at angle ¢ = #/2 since it is proportional to the
omega function

o =h-r,sinp—>h-rsiniz (15)
The normal stress maximumis atz=0 and angle ¢ =05«

i 1
o, = B(z)“’l—(s)—>max:> o, =TE)SMK LM go7mpa (1)
J, kcoshkl 1h2J,. 12 +0]

Shear warping stress at top tubes of the platen

Shear stress is maximal at the top of the tube i, number N at angle ¢ = 7 , figure 1c ,2c. The
shear stress and its parameters, torque T and S function are

r.(0)= —B'(z)% =max, -B'(z),,=T({) S.(¢)= jwtds =tr,’hy[l-cosp],_,  (17)

The shear stress depends on angle coordinate ¢, figure 2c. Thus shear stress at the side is half
the shear stress at the top

tr,*hy [L-cos¢],_.

Ta)N (¢) = T(t) J t = rm = z—a)N (% 7[) = %T(UN (72-) (18)
oN

Shear warping stress at the first tube of the platen

Shear stress at the first tube at the upper line is maximum at the top and half of it at the sides of
the tube, N=1

S e = | @tds =tr, *n[1—cosg], . (19)
0

Here the warping stress for the first tube N= 1 is. Stresses are illustrated in figure 1c
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2
TN ((0)= —BI(Z) Sa;N —~N=1= - :T(t)trm hl[l—COS¢]

1-C0S¢ _ 4 0.48MPa. -

=0.48MPa
l-cosxz

z—a)l max wlmax

Results

The dynamical loading produced normal bending and warping bending stresses
o, =4.1MPa, o, =0.27MPa (21)

Their ratio is 0.27/4.1 is small as should be for a slender long beam
The shear stresses are maximal at the top of the beam

. =7, +17,=0.12+0.17=0.29MPa, r,_ =0.48MPa (22)

wlmax

Conclusions

This study is motivated by the need to develop methodology to increase the useful lifetimes of
heat transfer components. For this reason a simplified basic model of two tubes joined with a
fin are used. In this study the emphasis is to obtain stresses, which are needed for fatigue design.
Reasonable prediction for the dynamical behaviour of the mini platen was obtained using
assumed mode shapes and Lagrangian dynamics.

Warping modelling of a beam under torque gave the lowest Eigen frequency which was
higher than given by FEM. The difference was due to use of an approximate model for the
shape function.

The warping stresses were reasonable. They will be compared to model FEM results and to

results obtained with a LUT laboratory test apparatus. This information will be published in
another report.
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Summary. In this paper we use 2D finite-discrete element method (FEM-DEM) to model ice-structure
interaction process in shallow water. In the simulations we modelled the intact ice sheet, its failure into
ice blocks, and the contacts between the ice blocks, ice sheet, structure and the sea floor. We varied the
depth of the water in front of the structure. Here we present preliminary results on the ice loads applied
on the structure and describe the simulated ice-structure-sea floor interaction process.

Key words: ice mechanics, ice loads, 2D FEM-DEM

Introduction

Understanding ice mechanics and defining ice loads is essential when designing off-shore struc-
tures for seas where freezing or permanent sea ice occur. These structures, including bridges,
lighthouses, wind turbines and offshore facilities, are subjected to ice loads when moving ice
pushes against them due to prevailing wind conditions and ocean currents. Some of these struc-
tures are built in relatively shallow water, where the sea floor affects the loading process. An
example of such structures are the ice barriers that are used to protect ports from moving ice.

Here we concentrate on two-dimensional combined finite-discrete element method (FEM-
DEM) modelling of ice rubbling process against an inclined structure, such as ice barrier, in
shallow water. First we describe our simulations briefly. Then we present typical force records,
discuss the maximum force values, and describe the ice behavior during the so-called peak load
events. We conclude our paper by some remarks on future work on the topic. It should be
noticed that all of the results of this paper are from ongoing work and as such are preliminary.

Simulations

We used the 2D FEM-DEM model, which is described in detail and earlier used to model ice-
structure interaction in [4, 5, 2, 3]. The ice sheet is modelled using visco-elastic Timoshenko
beam elements, which may fail through a cohesive failure process after chosen stress criterion
is reached. The contact forces between the blocks are calculated using an elastic-viscous-plastic
normal force model and an incremental Coulomb tangential force model [1]. The simulation code
was developed at Aalto University and has its DEM part based on [1]. The model is able to
capture the ice-structure interaction processes: in [4, 5] the model was validated by comparing
its results to laboratory and full scale measurements reported in [6] and [7].
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Figure 1. A simulation of an ice-structure interaction process in the case of shallow water. The ice sheet
is pushed from the left towards the structure and breaks into ice blocks of various sizes. Water is shown
in light gray. The figure does not show the whole simulation domain.

In the ice-structure-bottom interaction simulations, a floating continuous ice sheet is pushed
against an inclined structure as illustrated by Figure 1. During the simulation, an initially intact
ice sheet fails into ice blocks, which can then interact with each other, the structure, and the
bottom during the later simulation. The structure was assumed to be infinitely rigid and it
extended five meters above the water level. The top of the structure was a flat surface where
the rubble could accumulate when the so-called overtopping occured. The simulation continued
until 250 m of ice was pushed against the structure.

Table 1 shows the main simulation parameters. The ice properties in the simulations are
mostly based on Timco and Weeks [8]. We varied the bottom depth D and ice thickness h as
shown by the table. The simulations were ran with D/h ratios 4...30. Repeated simulations
with the same D and h were run with only small variation in the effective modulus E of the ice
sheet (normal contact stifness k, always had the same value as E). This could be done, since
the model we used is sensitive to changes in effective modulus E as shown in [2]. Thus slight
variation in E leads to the solution following a different path and to changes in the interaction
process details. Number of repeated simulations in this paper varied from three to five depending
on the case.

Table 1. Main paramaters used in the simulations. Structure height is measured from the waterline.
Abbreviations in the table: eff.=effective, fri.=friction, coe.=coefficient, struct.=structure, cont.=contact,
and nor.=normal.

Parameter Unit Value Parameter Unit Value
Ice thickness h m 0.5,1.25 Ice-ice fri.coe. Wi - 0.3
Eff. modulus E GPa3.98...4.02 Ice-struct. fri.coe. Lis - 0.1
Poisson’s ratio voo- 0.3 Cont. nor. stiffness k,. GPa 3.98...4.02
Ice density pi  kgm™3 900 Plastic limit op MPa 2.0
Tensile strength oy kPa 600 Inclination angle a ° 45
Shear strength 77 kPa 600 Struct. height hs m 5
Fracture energy Gy Jm=2 12 Time step At s 2.0-107°
Water density pw  kgm™3 1010 Ice sheet vel. Up ms~! 0.05
Water depth D m 5/10,15 Element length Ly m 0.25
Drag coe. de - 2.0
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Figure 2. Typical horizontal force-displacement records from the simulations: (a) horizontal force Sy
on the inclined part of the structure, (b) horizontal force By at the bottom, and (c¢) vertical force By
at the bottom. The data is from simulations with water depth H = 5 m and ice thickness h = 1.25 m.
Positive direction for the horizontal force is towards the structure for horizontal force and downwards for
the vertical force. The figures show raw data in gray and filtered data in black.

Preliminary results and analysis

Force-displacement records

Figure 2 a-c give typical force records from the simulations with water depth D = 5 m and ice
thickness h = 1.25 m (D/h = 4). Figure 2 a and b show, respectively, the horizontal load Sy
applied on the structure and By on the bottom, and Figure 2 c the vertical force By applied
on the bottom. All figures have the force plotted against the length L of the ice pushed against
the structure. We filtered the data as illustrated by the graphs to remove potential peaks due
to impact loads and instead focused on the peaks that had somewhat longer duration. We used
Matlab medfilt function with window size three in filtering similarly to [2].

Figure 2 a illustrates how Sy typically showed several successive peak load events: a force
is building up towards a peak value and then abruptly drops. Comparison of Figure 2 a and b
show, that simultaneously with the drops in Sy values, By showed drops in its values. The sign
of By changes due to a change in the direction of the frictional force at the bottom. This on
the other hand changes when the direction of the motion of the ice in contact with the bottom
changes. Most of the time By applied to the bottom has a positive sign, which means that the
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Figure 3. Maximum horizontal load S7; values on the inclined part of the structure. The figure shows
the S values from all simulations with their means and standard deviations. The data was filtered as
indicated by Figure 2 before extracting the S7; values.

friction is resisting the ice motion towards the structure (the sign of the frictional force acting
on the ice blocks in contact with the bottom has the opposite sign). The absolute values of By
when the peaks of Sy occurred were approximately from 10 to 15 % of the peaks.

The vertical bottom force By in Figure 2 c is seen to show an increasing trend throughout
the simulation. This was often the case in the simulations with D =5 m and h = 1.25 m. The
increase was due to increase in the rubble mass in front of the structure and in contact with the
bottom. Similar increasing trend can be in fact seen in the absolute values of By in Figure 2
b. This would be expected based on Coulomb friction: frictional force on the bottom increases
together with the normal force applied on it. We did not observe similar increasing trend in
By with deeper water, since in these cases the ice rubble was only rarely in contact with the
bottom.

We extracted the maximum horizontal structure load S%; from the filtered Si — L records
of each simulation. This quantity was chosen as it is often of first engineering interest. Figure 3
presents the S7; values from the simulations of this paper. The figure gives S7; values for both
ice thickness h values as a function of water depth D. The figure shows that h strongly affects
the S values as simulations with A = 1.25 m yielded roughly three, up to four, times higher

% values than the simulations with & = 0.5 m. On the other hand the effect of D is not so
clear. The S} values in the case of D = 5 m and h = 1.25 m (D/h = 4) are approximately
one third higher than in other cases with h = 1.25 m, whereas the simulations with h = 0.5 m
yield approximately equal S7} values regardless of D. The data and the standard deviations in
Figure 3 indicate, that the scatter in S} values with A = 1.25 m is large, whereas with h = 0.5
m, the repeated simulations yielded S7; values showing fairly small variation.

Mechanics of the peak load events

Our initial analysis suggests that the peak load events in general corresponded to the so-called
ride-up events. This is in line with observations in [5]. In a ride-up event, the ice is pushed
upwards along the inclined part of the structure. To demonstrate one of these ride-up events, a
close up of S — L record in Figure 2, in the proximity of an occurrence of a peak load, is given
in Figure 4. Further, Figure 4 shows three snapshots that correspond to the instances (1)-(3) of
the close-up of the Sy — L record.

At (1) of Figure 4 the rubble is shown at the onset of load build up. It can be observed that
the rubble is in contact with the structure, but there is no ride-up. At the peak load, on the
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Figure 4. A close-up of a Sy — L record and snapshots from a simulation illustrating the behavior of the
ice rubble during a peak load event: (1) on the onset of load build up, (2) at peak load, and (3) after the
load drop following the peak force. The numbers (1)-(3) refer to instances indicated in the force record
of the event. The snapshots are from simulations with water depth H = 5 m and ice thickness h = 1.25
m Water is shown in light gray. The snapshots do not show the whole simulation domain.

other hand, large volume of rubble is being pushed by the ice sheet and slides upwards along the
structure as snapshot (2) shows. The load then drops as the rubble slides down the structure
at the end of the event, as has occurred at (3). The peak load event of the snapshots leads to
an increase in the volume of the overtopped ice (ice on top of the structure) as the comparison
of the snapshots (1) and (3) shows.
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Conclusions

We introduced some preliminary results from our simulations on ice-structure interaction in shal-
low water. Next we wish to understand how the water depth to ice thickness ratio affects rubble
pile features and other phenomena such as rubble ride-up along the wall and its accumulation
on top of the structure. We will also look into the rubble pile evolution. The most interesting
rubble pile features are the dimensions of the pile during and at the end of the simulation, and
the amount of rubble accumulated on top of the structure.
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Summary. This paper describes simulations of laboratory scale direct shear box experiments on ice
rubble. The modeled experiments were pseudo 2D and we used 2D discrete element method (DEM) to
model them. We show that our simulations can be used to describe the experiments with good accuracy.
Then we highlight the effect of shear box wall induced force chains, which cause high loads measured
during a shear box test.
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Introduction

There is an urgent and increasing need for a better understanding on ice loads. The need is
partly caused by a demand for clean energy resources, such as offshore wind energy, on regions
with ice covered seas, and by an increase in off-shore operations on ice covered seas. These
operations are due to the demand for efficient transport routes, such as the Northern Searoute,
and due to the exploitation of natural resources in the Arctic. A common cause for high ice loads
are ice ridges. The underwater part of the ridge, called the keel, can be extensive in volume and
thus cause high loads. The keel of a first year ridge is mostly comprised of a more or less loose
pile of ice blocks. We study this type of ice rubble in this paper.

We analyze the direct shear box tests illustrated in Figure 1 a. A typical direct shear box
test has an ice rubble specimen placed in a box, and a part of the shear box is moved with some
velocity 4 while the shear load S required for the motion is recorded. We recently performed a
set of shear box tests [13] and simulated them using two-dimensional discrete element method
(DEM). In DEM, the ice rubble is modeled block by block as discontinuous material, and it is
the interaction of these blocks through contact forces that results into rubble deformation. DEM
was pioneered by [1] and has been used in ice mechanics earlier by e.g. [5, 4, 10, 11, 8, 9, 7].

Here we look into interpreting shear box test results. The rubble behaviour and resistance
in a direct shear box test is often described in terms of Mohr-Coulomb material model. The
relation between the shear resistance 7 and the so-called confining pressure o (see Figure 1 a)
in this model is given by

T=o0tany +c, (1)

where ¢ and ¢ are the cohesion and friction angle of the material, respectively. Typically 7 is
assumed to act on a shear plane (see dashed line in Figure 1 a) that has an area A (note that
A = A(d) due to the motion of the box). With this assumption, 7 is simply derived from the
S — 6 records from

r(6) = =2 )
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Figure 1. Direct shear box experiment set up: (a) gives a sketch with symbols used here and (b) a photo
from an experiment. A box with a length L and height H has its upper half of the box (shown in gray)
moved right with velocity 4. Confining pressure o is applied to the rubble by a cover (indicated in (a)
by black and gray dashed line). Cover may rotate and translate in vertical direction freely. The shear
plane, as assumed in Equation 2, is shown in (a) with dashed line.

We first show that our simulations models the problem well. Then we discuss the simulations
and highlight the physical phenomena force records of the experiments. We show that the
maximum loads in the experiments were caused by the force chains, which are not accounted for
by simplifications included into Equation 1 and 2. The force chains were fairly easy to observe
in the simulations, whereas observing them in an experiment can be challenging. The work we
present here is based on [12].

Simulations of the experiments

Our two-dimensional discrete element method (DEM) simulations are largely based on the mod-
els described in detail in [4] and [8]. In the model, the contact forces between the blocks are
calculated using an elastic-viscous-plastic normal force model and an incremental Mohr-Coulomb
tangential force model. The normal forces in contact are always compressive for a block, thus no
freeze bonds between the blocks are modelled. The block fracture is neither simulated but this
is not a limitation: no block breakage was observed in the experiments. The main parameters
used in the simulations are given in Table 1.

Figure 1 b shows a photo of the experimental set up, which we describe in detail in [13]. The

Table 1. Most important paramaters used in the simulations. Abbreviations in the table: fri.coe.=friction
coefficient, nor.=normal, tan.=tangential, and cont.=contact.

Parameter Unit Value Parameter Unit Value
Ice-ice fri.coe. [T 0.5 Rubble length L m 0.6
Ice-wall fri.coe. - - 0.3 Rubble height H m 0.4
Cont. stiffness nor. - Pa 4.0-108 Shearing velocity § ms? 0.02
Cont. stiffness tan. - Pa 1.5-108 Confining pressure o kPa 5.76,11.03
Plastic limit - Pa 2.0-10° Small block size - mxm 0.02x0.03
Large block size - mxm 0.04x0.06
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shear box used in the experiments was made out of Plexiglas and had a length L = 0.6 m and
height H = 0.4 m as Figure 1 a shows. Since the box was only 0.04 m wide, the experiments
could be considered pseudo two-dimensional. The cover was free to rotate and move in vertical
direction yielding to approximately constant o throughout an experiment. Dead weights was
placed on top of the rubble to apply desired confining pressure o onto the rubble: o values 5.76
kPa and 11.03 kPa, respectively referred to as low and high o, were used. The velocity of the
box motion was set up to 0.02 ms~!. We used displacement interval § ~ 0...0.14 m similarly
to our experiments in [13]. Two different types of rubble were used: one consisting of small
(0.02 m x 0.03 m) blocks and the other consisting of large (0.04 m x 0.06 m) blocks.

Validation of our simulations

We first validated our simulations by comparing their results to the experimental results. The
shear force-box displacement (S —¢) are shown in Figures 2 a-d or simulations and experiments.
The figures show how the simulations and the experiments showed similar features: commonly
S first increased with high 95/96 rate towards its mean value S, and then varied substantially
and showed peak load events, which are here defined as being distinct load peaks followed by
abrupt drops. The exact details of the S records depended on rubble configuration, which were
not identical between the experiments and the simulations. Increase in ¢ and block size led to
more prominent peak load events in the simulations and the experiments. In addition to S — §
records, the figures show the mean values S of shear force in each experiment and simulation.
The mean and the maximum S values both increased with an increase in ¢ and in block size
and were in fair agreement in the experiments and simulations. We present a more thorough
validation in [12].

Findings from the simulations

Our simulations showed that the rubble behaved like a typical granular material: the forces
within the rubble were transmitted through chains of highly loaded particles, or force chains,
while most of the blocks were only lightly loaded. In the simulations these can be straightfor-
wardly illustrated by using a particle stress tensor o* as (see e.g. [2, 6])

* 1 -
% =4 Z ir. (3)
c=1

In this definition A is the area of a block, n the number of contacts on a block, and f{ and T are
the components of the contact force £°= f7i+ f/j and the so-called branch vector r°= rgi+rj,
respectively. Here ¢ is defined to be the unit vector having the direction of a vector from
the centroid of a block to the point of application of contact force ¢ acting on it. The minor
principal value o3 (here the negative sign indicates compression) of the symmetric part of o*
and the corresponding principal direction can be used to illustrate the main compressive load
and its direction for a block.

Figures 3 illustrate typical force chain networks and their change in the simulations. The
figures are from three stages of two simulations: (1) as S increases towards a peak load, (2)
close to a peak load, and (3) after a peak load. The figures show the normalized values 673 of
minor principal stresses with the corresponding direction for each block. Here the 65 values are
normalized by the maximum value of o; at stage (2) of each simulation. The &5 values and
directions are only shown for blocks having o5 value less (higher compression) than mean value
of o3 at stage (2).

The snapshots in Figures 3 from stage (2) clearly show that the force chains and the boundary
conditions of the experiment are closely related to the peak load events: a chain of blocks
transmits high loads from the upper part of the left wall, on which the S was measured, to the
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Figure 2. Typical shear force-displacement (S — ¢) records from experiments (exp.) and corresponding
simulations (sim.): small blocks with confining pressures (a) o = 5.76 kPa and (b) ¢ = 11.03 kPa and
large blocks with (c) o = 5.76 kPa and (d) ¢ = 11.03 kPa. The figure also shows the mean shear force S
for each experiment and simulation.

fixed lower part of the right wall. These force chains usually vanished abruptly together with a
drop in S, as the snapshots from stage (3) indicate. For example, the simulation on the right
column of Figure 3 at stage (3) does not have any blocks with &5 values higher than the mean
g5 at the peak load event of stage (2).

This simulation-based observation implies that caution should be used when interpreting
data from the shear box experiments: the measured maximum loads are related to the force
chains and the boundary conditions of the experiments. If the force chains are not accounted for
correctly, rubble properties derived from the results, for example material parameters for a Mohr-
Coulomb model, are dependent on the experimental set-up. The so-called shape interlocking
component [3, 5] included into the shear load of a direct shear box experiment, may be very
high and related to force chains.

Conclusions

We performed direct shear box experiments in laboratory scale and simulated them with discrete
element method. We validated the simulations and used them for a study on the rubble behavior
in the experiments. This showed the strength of the simulations: simulations clearly show how
force chains were generated within the ice rubble during a test and cause a sequence of peak
shear load events (see Figures 3). More details on our work on this topic can be found from [12].
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Summary. In this paper, a peak ice load data from 2D combined finite-discrete element simulations is
reviewed. The paper gives simple examples on how the effects of model parameters on peak ice loads can
be studied. Results also highlight that there is a need to use statistical methods to describe the data in
its full extent.

Keywords: Ice-structure interaction, Peak ice loads, Combined finite-discrete element method

Introduction

Reliable ice load calculation is a complex task. One of the sources of complexity is the ice rubble
formation that in many cases, especially with wide structures, occurs in front of the structure
[10]. This rubble and its deformation may change the failure process of the ice sheet and affect
ice loads in many ways [5, 9, 10]. Different tools are available for calculating ice loads. Some
analytical methods have been reviewed in [8]. Numerical models, however, are more general
and they are capable to produce more realistic and profound information about ice-structure
interaction processes.

Ice-structure interaction processes consist of discrete events and they are stochastic [2, 4].
Thus, a natural way of studying ice loads is to use discrete models. Previously discrete ap-
proaches in some forms have been utilized e.g. in [1, 3, 11]. Recently a two-dimensional combined
finite discrete element method (2D FEM-DEM) approach has been developed and validated in
[6] and further utilized in [7] for instance.

Measured and simulated ice loads are scattered and therefore statistical methods need to be
used in studying them. In this paper, this problematic is demonstrated by few examples based
on peak ice load observations from 207 2D FEM-DEM simulations. The same data has been
previously considered and analysed from a different point of view in [9]. First in this paper, the
2D FEM-DEM simulations and peak ice load extraction are explained. Then the results from
simulations are shown and shortly discussed. Finally the paper is ended with conclusions.

Simulations

In the simulations, a floating and initially continuous ice sheet was moving with a constant
velocity of 0.05 m/s against a sloping rigid structure (see Figure 1). During the process, the ice
sheet was broken apart into smaller ice blocks. The ice sheet was formed with discrete elements
that were connected to each other with Timoshenko beam elements. Beam elements were used
firstly to model the elasticity and secondly to model cohesive softening and fracturing of the
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ice. Discrete elements were used to treat interactions between different parts of the system,
e.g. contacts between ice blocks and contacts between the ice and the structure. More detailed
description of the model is given in [6]. Parameters used in the simulations are summarized in
Table 1. Eight model parameters were varied in 207 simulations as indicated in the table.
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Figure 1: Snapshots from a simulation with A = 1.25 m and a = 70°.
ice L [m] is used to identify the process stage.
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Figure 2: A typical ice load record from a 2D FEM-DEM simulation. Extracted peak ice loads
are highlighted with red circles. The close-up on the right highlights the data during the global

peak ice load observation. Regions 1, 2 and 3 are explained in the text.

A typical horizontal ice load Fj record from a simulation is shown in Figure 2. Ice load
records were divided into three subregions based on certain amount of pushed ice L. These
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subregions cover initial (0 m < L < 50 m), middle (50 m < L < 150 m) and end parts (150 m
< L < 250 m) of simulations. Thus, three separate peak ice load values were obtained from each
simulated ice load history. In this way, we were able to study how the accumulated ice rubble
in front of the structure affected peak ice loads.

Table 1: Summary of simulation parameters. Varied parameters are emphasized with an asterisk
symbol ().

Parameter Symbol  Unit Value(s)
General Gravitational acceleration g m/s? 9.81
Ice sheet velocity v m/s 0.05
Drag coefficient de 2.0
Ice sheet  Thickness* h m 0.25-1.50
Effective modulus* E GPa 2.5-5.0
Poisson’s ratio v 0.3
Density Pi kg/m3 900
Tensile strength* o kPa 200-600
Shear strength* T kPa 195-600
Contact Plastic limit* op MPa 1.0, 2.0
Ice-ice friction coefficient™ i 0.1-1.0
Ice-structure friction coefficient® 0.05-0.35
Water Density Pw kg/m3 1010
Structure  Slope angle* @ ° 20-70

Results and discussion

Figures 3 and 4 display the simulated peak ice load data with respect to the ice thickness h and
the slope angle « respectively. Based on earlier observations in [9] these two quantities have
been chosen for this study as an interesting parameters. In figures 3 and 4, the data from regions
1, 2 and 3 are separated with different type of markers and small horizontal offsets. In addition,
linear fits were added for descriptions of “averaged” effects.
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Figure 3: Simulated peak ice loads and corresponding linear fits for Regions 1-3. Peak ice loads
are plotted against the ice thickness h.

The data in Figure 3 suggests that peak ice loads depend strongly on the ice thickness h.
The slope of the linear regression line is approximately 280 kN/m in case of Region 1 and 660
kN/m in case of Region 3. Hence, another prominent effect is that the dependency on the ice
thickness strengthens when the process evolves from Region 1 towards Region 3. Notice that
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Figure 4: Simulated peak ice loads and corresponding linear fits for Regions 1-3. Peak ice loads
are plotted against the slope angle a.

660 kN/m is more than twice as much as 280 kN/m.

A bit surprisingly the data in Figure 4 suggests that peak ice loads do not depend strongly
on the slope angle . The slope of the linear regression line is approximately 3 kN/° in case
of Region 1 and 3.5 kN/° in case of Region 2. This time, the effect of the process and the
ice rubble accumulation can be clearly seen as the linear regression line translates in vertical
direction when the process evolves from Region 1 towards Region 3.

Because of large scatter in the data, regression lines in figures 3 and 4 do not provide good
estimates for the most extreme peak ice load observations. This highlights a need to study
statistical properties of the data, e.g. peak ice load distributions, in more detail. Numerical
simulations can be greatly utilized to obtain required data and samples. Main advantages of
these 2D FEM-DEM simulations, for instance, are the full control on all model parameters and
the ability to run long-term processes to reach extensive ice rubble formations. For reference, it
is good to recognize that from practical reasons the ice thickness is often the only measured ice
parameter in full-scale experiments.

Conclusions

In this paper, peak ice load results from 207 combined finite discrete element method simulations
were concisely reviewed. The outcome of the paper is summarized in following conclusions:

e Based on the used data, simulated peak ice loads depend strongly on the ice thickness h
and only a little on the slope angle a.

e The ice rubble accumulation clearly have an effect on peak ice loads and thus the full
ice-structure interaction process need to be considered in peak ice load calculation.

e Because of large scatter in observed peak ice loads, a more detailed statistical analysis is
required to describe the data in its full extent.

e The 2D FEM-DEM approach is an applicable way to provide data for ice load estimation
due to full control over model parameters and with ability to run long-term processes to
reach extensive ice rubble formations.
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Tiivistelma. Tissi katsauksessa esitetdian perinteiselle vektorilaskennalle vaihtoehtoinen tapa esittéi
Cauchy-Navierin yhtalo kvaternioanalyysin avulla.

Awvainsanat: Kvaterniot, Cauchy-Navierin yhtalo

Johdanto

Téssé kirjoituksessa tarkastellaan kvaternioanalyysié ja sen soveltamista Cauchy-Navierin yhtélon
ratkaisemiseen. Tarkastelemme vain yhté tiettyd reuna-arvo -ongelmaa, eikd néin lyhyt teksti

voi luonnollisestikkaan olla kovin tdydellinen. Kirjoitus onkin laadittu enemmaénkin tiekartaksi

asiasta kiinnostuneille, jossa esitelldén keskeiset ideat ja annetaan kirjallisuusviitteet, josta yk-

sityiskohtia ja lisétietoa voi alkaa etsié. Perusteoriaa kvaternioista ja analyysista 16ytyy Klaus

Giirlebeckin ja Wolfgang Sprofliigin monografioista [1, 2] ja viimeisimpié tutkimustuloksia l6ytyy

esimerkiksi Sebastian Bockin viitoskirjasta [3]. Namé ldhteet auttavat alkuun ja viimeisimpid

tutkimusartillekeita 16ytyy esimerkiksi edelld mainitun vaitoskirjan 1ldhdeluettelosta.

Kvaterniot

Tarkastellaan kolmiulotteisen avaruuden R? kantavektoreita i, j ja k. Perinteisessi vektorilas-
kennassa avaruuden pisteet esitetédédn nédiden lineaarikombinaationa x = xi + yj + zj. Tama
notaatio mahdollistaa kaiken perinteisen ”ristin ja pisteen” matematiikan muodostamisen ilman,
ettd kiinnitdmme mitédén huomiota symboleiden i, j ja k sisdltoon. Irlantilainen matemaatik-
ko William Rowan Hamilton ryhtyi miettimé&n 1800-luvulla, voitaisiinko edelld oleville vek-
toreille mééaritelld tulo kompleksilukujen tapaan. Huomautettakoon téssi, ettd ristitulo ei ole
ominaisuuksitaan riittdvé, kompleksilukutulon tapaisen tulon mééarittelemiseksi vektoreille x.
Hamiltonin oivallus oli méaritella vektoreiden ¢, j ja k vélille tulo, asettamalla

i? =5 =k =ijk=—1.

Hamiltonin huomio oli, ettd pyrittdessad pitdmédn kiinni tulon assosiatiivisuutta, on pakko ot-
taa kantavektoriksi mukaan myos skalaari 1. T&ll4 tulolla varustettu kanta-alkoiden {1,1,j, k}
generoimaa algebraa kutsutaan kvaternioalgebraksi ja merkitdan H. Lis&ksi edelld olevista las-
kusadnnoistd seuraa kantavektoreiden antikommutatiivisuus, eli ¢j = —ji, ik = —kj jne. Mieli-
valtainen alkio ¢ € H on siis muotoa

qg=t+xi+yj+ zj,
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ja kvaternioita voidaankin pitda kompleksilukujen luonnollisena yleistyksené. Kvaternioalgebras-
sa H on voimassa samat laskusdidnnot kuin kompleksiluvuilla poislukien se, ettei kommutatiivi-
suus ole voimassa'. Kvaterniot on yleensi tapana esittéis skalaari- ja vektoriosien summana

qg=1+x.

Maééritelldén kvaternion reaaliosa asettamalla Re(q) = t ja imaginaari- tai vektoriosa Im(q) = x.
Kompleksikonjugoinnin tapaan méiritelldin konjugaatti asettamalla

q=t-x
jolloin normi voidaan mé&aritella
la* = qg = g9 =t* + 2* +y* + 2°.
Jos q # 0, saadaan normin méaéritelmésti vasta-alkion kaava

- q
q IZW,

Q

1

joka siis toteuttaa gg~! = ¢ 'q¢ = 1. Jos p = s + y on toinen kvaternio, saadaan tulolle esitys

gp=1ts—xX-y+1ly+sx+xXYy.

Téstd ndhdéédn, ettd vektoriosien tulo on xy = —x -y + X X y.

Differentiaali- ja integraaliperaattoreita

Reaalifunktioiden funktioluokat laajenevat kvaternioarvoisille funktioille olettamalla ominaisuu-
det komponenttifunktioille. Olkoon siis f : 2 — H dervoituva funktio avoimessa joukossa
QCR3 eli f=fog+ fii+ foj + f3k, missi f, : @ — R on reaaliarvoinen derivoituva funktio,
kun a = 0,1, 2, 3. Kvaternioarvoista differentiaalioperaattoria

D = id, + jo, + k.

kutsutaan Diracin operaattorikst tai yleistetyksi Cauchy-Riemannin operaattoriksi. On helppo
todeta, ettd D f voidaan kirjoittaa muodossa

Df = —divf + Vfo +rotf, (1)

kun f = fy + f. Huomaamme, ettd reaalifunktioilla V fy = D fy ja vektoriarvoisilla funktioille
divf = D -f jarotf = D x f. Jos Df = 0 avoimessa joukossa 2 C R3 kutsutaan funktiota
f (vasemmalta) monogeeniseksi joukossa 2. Koska kvaternioiden tulo ei ole kommutatiivinen,
pitdd Diracin operaattorin operointia tarkastella myos oikealta. N&in ollen, jos siis? fD = 0
avoimessa joukossa 2 C R3, kutsutaan funktiota f oikealta monogeeniseksi joukossa €. Diracin
operaattorin térkein ominaisuus on se, ettd se on Laplacen operaattorin negatiivinen nelio, eli
on voimassa

D? = —A,

missd A = 02 + 85 + 02. Téaméi kaava takaa monogeenisten funktioiden olemassaolon, silld jos
h : © — R on harmoninen funktio, eli Ah = 0, niin tilldin f = Dh on monogeeninen. Erés
esimerkki monogeenisesté funktiosta on ns. Cauchyn ydin

1 x
47 |x|?’

E(x) =

'Tams nihdisn helposti esim. (1 +i)j=j+ij=j+k#j—k=j+ji=j(1+1).
*Merkinti tarkoittaa fD = 0, fi 4+ 9y, fj + 0. fk.
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joka on monogeninen, kun x # 0. Tarkastellaan seuraavaksi yhtilod Df = ¢ joukossa €2, kun
funktio g on annettu. Tamén ratkaisemiseksi tarvitaan seuraavia integraalioperaatoreita. Olete-
taan, ettid joukon reuna 02 on riittdvan sddnnollinen integroimista varten. Olkoon nyt v joukon
012 yksikk6éulkonormaali. Operaattoria

Faaf(x) = /(99 E(x —y)v(y)f(y)dSy

kutsutaan Cauchy-Bitsadze -operaattoriksi ja (singulaarista integraali)operaattoria

Tof(x) = — /Q E(x — y)f(y)dVy

puolestaan Teodorescu-muunnokseksi. On suoraviivainen lasku (katso [1]) osoittaa, ettd Teodorescu-
muunnos on Diracin operaattorin oikea k#ddnteisoperaattori, eli

DTof(x) = f(x),

kun x € €. Kaikkia yll4 mainittuja operaattoreita yhdistéé seuraava identiteetti (katso todistus

[1]).
Lause 1 (Borel-Pompeiun kaava) Jos f : Q — H on derivoituva joukossa R3, niin

f(x), kun x€Q,

Foaf(x)+To(Df(x)) = {0 kun x ¢ Q.

Joukossa 2 Borel-Pompeiun kaava voidaan kirjoittaa operaattorimuodossa
Fyq+TaD =1.

Tilanteessa, jossa f on monogeeninen, eli Df = 0, Borel-Pompeiun kaava tuottaa Cauchyn
integraalikaavan

f(x) = Foaf(x) = - E(x —y)v(y)f(y)dSy,

joka on suora kompleksianalyysin Cauchyn kaavan yleistys. Borel-Pompeiun kaavan avulla voi-
daan myo0s ratkaista reuna-arvo -ongelma

Df =g joukossa €,
i o

g=20 reunalla 0f),

jonka ratkaisuksi saadaan f = Tqg, kunhan g oletetaan riittdvan sdannolliseksi.

Avaruuden LZ(Q) jako

Tarkastellaan seuraavaksi reuna-arvo -ongelmien ratkaisemisessa tarvittavia funktioavaruuksia.
Funktioavaruus LIQHI(Q) koostuu vektorimuuttujan funktioista f = fo + f17 + foj + fsk, joiden
kertoimet? f, € L?(Q2). Funktiolla h : Q — R on heikko derivaatta joukossa  C R3 muuttujan
x suhteen, jos on olemassa funktio g siten, etti

[ stexiav = - / h(x)0up(x)dV
Q

Q

3Palautetaan mieliin, ettd g € L*(Q), jos ja vain jos Jo lg(x)[?dV < co.
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jokaisella ¢ € C§°(€2). Télloin merkitédén d,h = g. Vastaavasti méadritelldén heikot derivaatat
Oyh ja 0.h. Heikkojen derivaattojen avulla méiritelliin Sobolev-avaruus

Wa(Q) = {h € L*(Q) : 0,h, Oyh,0.h € L*(Q)}
ja kvaternioarvoisille funktioille

Wam(Q) = {f = fo+ fii + foj + fsk : fo € Wa(Q)}.

Reuna-arvo -ongelmien kannalta tirkedtd ovat ne Sobolevin avaruuden funktiot, joiden arvo
reunalla on nolla. Merkitéddn naitd funktioita

WQ,H(Q) ={fe W%,H(Q) : f = 0 reunalla 0Q}.

Olkoon Ru = roug + riuii 4+ reuej + rsusk kvaternio-operaattori, jossa komponenttifunktiot
o > 0 ovat derivoituvia. Madritelldén télld operaattorilla painotettu sisétulo avaruuteen L% ()
asettamalla

(f.9)r = /Q RTfR g V.

Sisétulon arvot eiviit ole vilttimitti reaaliarvoisia, mutta (f, f)r > 0. Avaruudelle LZ(Q)
saadaan dekompositio (katso todistus [1])

LE(Q) = (RKer(D) N L () ©r DW5 5 (92),

missid Ker(D) = {f : @ - H: Df = 0} on monogeenisten funktioiden joukko ja suora summa
on laskettu sisitulon (-,-)r suhteen. Niin ollen jokaista f € LZ(2) kohden l6ytyy funktiot
g,h: Q — H, joille

f = Rg + Dh,

missd g on monogeeninen ja joka m#drdd f:n reuna-arvot. Médritellidn nyt projektigt Pr :
L%(Q) — RKer(D) N L%(Q) asettamalla Prf = Rg ja Qg = I — Pr : L%(Q) — DWy»(Q)
asettamalla Qgrf = Dh.
Cauchy-Navierin yhtilo

Tarkastellaan nyt lineaariseen elastisuusteoriaan liittyvéad reuna-arvo -ongelmaa

{,uAu + (p+A)Vdiva = —f, joukossa (2,

u=20, reunalla OS2,

misséd Lamén vakiolle asetetaan rajoitukset p > 0 ja 2u+X > 0. Lisdtdédn superpositioperiaatteen
nojalla ongelmaan reuna-arvo -ongelma Aug = — fo, ug = 0 reunalla, jolloin saadaan kayttamalld
edellisissé kappaleissa esiteltyja kaavoja

{—,LLDZU —(u+AN)DReDu=—f, joukossa €,

u =0, reunalla 992,
missi Re Du = — div u kaavan (1) nojalla. Nyt ylempi yhtélo saadaan muotoon
—D(pDu+ (p+ A)Re Du) = —f
Ryhmitelldéan sulkeiden sisélld olevan operaattorin termejé, saadaan

uDu~+ (n+ A)Re Du = pRe Du+ pIm Du+ (1 + A) Re Du
= (2u+ A)Re Du + pIm Du.
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Madritelldén nyt operaatori Mq = (2u + A)Re(q) + pIm(g). Télloin saadaan pDu + (u +
A) Re Du = M Du ja alkuperiinen reuna-arvo -ongelma muotoon

{DMDu: f, joukossa €,

u =0, reunalla 9f).

Tamé ongelma voidaan ratkaista kvaterinoanalyysin keinoin. Operoidaan yhtéaléén puolittain
Tq:lla ja sovelletaan Borel-Pompeiun kaavaa ToD = —Fyq + I, jolloin saadaan

—FoqMDu+ MDu=Tqf.

Koska M~1q = ﬁ Re(q) + %Im(q) saadaan yht#lo muotoon

—M'FyqMDu + Du= M~ 'Tqf. (3)

Jos nyt _
M 'Tof € Lg(Q) = (M~ "Ker(D) N L () ®pr-1 DWy ()

on olemassa u € W%H(Q), joka toteuttaa yht&lon*. Operoimalla yht#léon (3) puolittain projek-

tiolla Qpy-1, saadaan Du = Q-1 M T f. Koska termin Du reuna-arvot ovat nollia saadaan,
kuten ongelmassa (2), yhtélon ratkaisuksi

u=TaQ -1 M_ITQf.

Alkuperaisen ongelman ratkaisu saadaan téstd poimimalla vektoriosa.
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Transpositions and duals of high-order tensors. On theory
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Summary. The transpositions and duals of a tensor have numerous applications in many fields of
mechanics. They are needed for calculation of a tensor norm, for the definition of pull-backs and push-
forwards, and in connection with tensor symmetrizations. Considering the literature of mechanics, the
transpose of a bilinear map or a second order tensor is well-defined whereas the duals and transpositions of
higher order tensors have remained abstract. The main goal of this work is to demonstrate the difference
between the transpositions and duals of high order tensors and show the influence of that difference on
real-life applications.

Key words: Tensor transpositions, duals, symmetries

Introduction

The transpositions and duals of tensors have significance in mechanics. Examples can be found
in nonlinear continuum mechanics [1], in finite elasto-plasticity [2, 3], and in micro-mechanics
[4, 5]. Two mainstreams can actually be identified from the literature: classical tensor algebra on
inner product spaces and tensor analysis on manifolds, [1, 6]. The derivations of those concepts
differ since in the classical approach the identification of both dual and primary vector spaces
is performed a priori whereas the different forms of tensors in tensor analysis on manifolds are
clearly identified by the explicit use of a metric. Based on tensor analysis on manifolds, the scalar
and the inner product become clearly distinguished and can be used to define the duals and the
transpositions, respectively, [7, 6]. Depending on the order of the tensor under consideration,
various number of duals and transpositions can be defined. Within the framework adopted,
also symmetries of higher order tensors are determined on a systematic manner involving their
closed-form representations. An important example is the fourth order tangent stiffness tensor
which is of practical value in numerical solution methods. The paper closes with the conclusions
and implications for both theory and practice.

Introduction of second order tensors on tangent spaces

Let Py and P be the placements of a manifold and let TxPy and TxP be tangent spaces at
the points X € Py and x € P, respectively. The natural bases on Tx Py and TyP are termed
{Ga, A=1,2,3} and {gq, a = 1,2, 3}, respectively. Similarly, the corresponding dual bases of
the cotangent spaces Tx Py and TP are {64 A=1,2,3} and {g% a = 1,2, 3}, respectively.
The so-called reciprocal bases {G?} and {g’} to {G4} and {g,} are defined by the inner
product as
G4 -G =03, and g, g’ =0}, (1)

where 55{’ and 6 are Kronecker’s delta symbols [6]. With the notation G5 := G4 - Gp and
GAB .= G4 . GB, and analogously for gq, and ¢, one can deduce the linear relations between
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the reciprocal base-vectors and the base-vectors as being
GA — GABGB, ga — gabgb’
G =GaG” g4 =gug’

(2)

The corresponding dual bases {&4} and {g®} of the dual spaces T%Po and T;P, respectively,
are defined as

(®A7 GB)‘U = 5%7 (ga’ gb)Qﬁ = 6{?7 (3)
where the bracket, ( , ), expresses the dual pairing, also termed the scalar product [6]. The
relations between the dual and the reciprocal base-vectors are given by

64 = GG = (G, " =gg® = (g, (4)

or the dual vectors &4 and g® equal to the covectors associated to G and g®, respectively.
The bilinear tangent map, such as the deformation gradient in continuum mechanics, is defined
locally as a two-point tensor, [6],

F = FYyg, X &4 € Lin(TxPo; Tk P). (5)
Definition 1 The adjoint or the dual F* € Lin(TyP;TxPo) of F is defined by means of the
dual pairing as
(F*f, a)TXpO = (f, Fa)Txp eR VaeTxPy,fe T;:'P

Since the inner product is only defined between the objects existing on the same space, the
transposed map instead of the dual is provided.

Definition 2 The transpose of a two-point tensor F € Lin(TXPQ;TxP) is defined as
Ffa-b=a-Fb, VaecTyP, beTxPo.
Based on Defs. 1 and 2, one can write
Fla.-b:= (GF'a,b)rp, = (ga, Fb)rp = (F*ga, b) 7, (6)

cf. [6] for more detailed account. The result (6) gives the relation between the transposed and
the dual map, i.e.

FT = G 'F*g € Lin(TyxP; TxPy), VF € Lin(TxPo; TxP).

Duals and transpositions of high order tensors

In the following, the set of linear maps between tangent or vector spaces is denoted by Lin
or more precisely by Ling, k € {2,(3),4,...,2m|order of a tensor} if no need for specification
exists. Similarly, the set of invertible and symmetric maps is denoted by Inv, C Linj; and
Symy, C Linyg, respectively. Since tensors are understood as being invariant quantities, absolute
notation will be employed. The generalized scalar and inner product needed in the definition of
the duals and transpositions, respectively, are demonstrated in the subsequent Section by using
their specific form for fourth order tensors.

Definition 3 Let there be V,W € Lin,, and C € Lino,,. The duals of C, denoted by C*, C*
and *C, are defined as follows:

(C(V),0) :=WCV =VCW e R (major) dual of C,
WCV = W**CV = WC*V* € R left and right minor dual of C,
WCV = V**(COW =V (C*)*W* € R left and right minor dual of C*.

189



Definition 4 Let there be V,W € Lin,, and C € Lina,,. The transpositions of C, denoted by
CT, Ct and 'C, are defined as follows:

WeCV =V eCI'W e R major transposition or the transpose of C,
WeCV=WTe!CV=WeC'VI cR left and right minor transposition of C,
WeCV =V e (YW =V o (CT)'WT € R left and right minor transposition of CT

where the notation e denotes the generalized inner product.

Let there be C € Linog,,. Based on 3 and 4, the following identities apply to the duals and the
transpositions, [8]:

€)=, =), (o=, (©) =0
t(C*) — (Ct)*, (C*)t — (Ct)*, *(Ct) — (*C)t, (tc)* — t(C*)7 *(tct)* — t(*C*)t.

The duals and transpositions of fourth order tensors

The duals and the transpositions of different tensor products are defined to be consistent with
the contractions being employed. For subsequent considerations, the two tensor products termed
"IK” and "@”, and the double contraction ”:” are defined. The tensor product "K” is known as
the Kronecker product, whereas the tensor product "E” is defined and frequently employed in
continuum mechanics.

Definition 5 The double contraction between a fourth and a second order tensor is a four-linear
map Ling X Ling — Ling, and between two second order tensors it is defined as Ling X Ling — R,
i.e.

(A XB:v; KX ml) g Mvy = (mg,Avl)(ml,BvQ),
(A OBt &Vg) g Xvy = (mQ,AV1>(m1,BV2>

holds.

If the double contraction is calculated on the basis of the inner products, it is termed the
double-dot product, denoted by ”:”.

Theorem 6 Let A,B € Liny be second order tensors. The duals of the decomposable tensors
(with respect to the double contractions) AKX B € Ling and A @B € Ling are given by

(ARB) = A*XB*, *(ANB)*=B*XA* (AEB)=BrA,
(AEB)*=AEmB*, *(AmB)="AEB, *(AmB)"=A*"EB"

Proof. Without loss of generality, let there be A,B € Lin(TxPo; TxP), vi,ve € Tx Py, and
wi,1w9 € TXP. Then AXB, AEB € Lin(TEP x TxPo x TP x TxPo; R). Application of Def.
5 for the duals results in

(A XB: Vi X 1‘01) 1)) &VQ = (mg,Avl)(ml,BvQ) = (Vl,A*mg)(Vg,B*ml) =
(A*XB*: 1w X vy) : vi K =: (AXB)* : oy K vy) : vy Koy,
(AEB:w; Xvy): oy XKvy = (w2, Avy) (o1, Bve) = (o1, Bva) (g, Avy) =
BEHA:wXvy):wKve=:(ABB)" : 1oy X vy): 103 X vy,

etc. o
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Figure 1: Domain and range of the four-linear map (isomorphism) C € Lin(TsP xTxPo X TaP xTx Po; R)
and the commutative diagram for the dual, transpose and metrics (taken from [8]).

c-tcTt
TxPo R TP === TP R T4 Py

cC™ T
/@g—l g@G—ll \

(*7 *)TXPO (*, *)Tx'p € R (*7 *)TXP(*v *)TXPO € R

,C
T3 Py B TP =Se TP W Tx P
c— *c*T

Theorem 7 Let A, B € Ling be second order tensors. The transpositions of the decomposable
tensors (with respect to the double-dot products) AX B € Ling and A @ B € Ling are given by
(ANB) =ATRBT, AXB)!=B'XAT, (ApB!=BTpA7T

(ApB)!=ApB!, ‘(ApB)=ATpB, ‘(AzB)=ATgB.
Proof.  Let there be A,B € Lin(TxPo;TxP), vi € TxPo, v2 € TxPo, w1 € T¥P, and
wo € TyP. Based on Def. 4 the transpose (A @ B)? is obtained by
(A EB:tw X Vl) two Xy = (W2 -A - Ug)(tﬁl,BVl) = (m1 BT V1)(W2,A*T02) =
(B*T 0 AT wo X vg) : 1oy Kvy =: ((AEIB)T cwoXog) o Xvy ete. o

Explicit representations of the transpositions on tangent spaces

Since the duals and the transpositions are both tensorial operations, they were defined using
absolute notation, cf. Defs. 3 and 4. Calculation of the transpositions, however, depends on the
metric of the metric tensor spaces being involved.

Corollary 8 Suppose that C € Lin(Tx Py x TxPo x TxPo x TxPo; R). The transpositions of C
are given by
C'=G'RG:C*:GRG!,
C'=C:(G'XG)",
'C=*(GRG):C
ict=*GRG™):C (G*&Gﬁ
‘=) =" GRrG™,
(€)= (1) = (G'RG): (¢,

i.e. the transpositions lie on the same space Lin(Tx Py x TxPo x TPy x TxPo; R).
Proof. See [§].
Fig. 1 shows the commutative diagram for the dual and transpose of a four-linear map. It

can be concluded that the transposed map operates from the actual primary tensor space into
the original primary tensor space and the dual transposed map operates from the original dual
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tensor space into the actual dual tensor space. The original tensor and its dual operate vice
versa.

Example 9 In state-of-the-art models for polymer materials, the symmetric Kirchhoff stress in
its mized form T € Sym(TxP;TxP) is defined as
3K+ 2u

= 2pu(In Ve)de” + ktrace(Inve)i = 2u(iX i+ 6
1

idi):lnv®=:L:Inv® (7)
where (Inv®)% := Inv® — Ltrace(Inv®)i denotes the deviatoric component of the elastic stretch
tensor v¢, and p and k are the elastic constitutive parameters, [5]. In contrast to the mized
form (7), the kinetic, stress-like quantities are often given in the contravariant form while the
kinematic quantities are given in the covariant form. Using (2) and (4), yields the Kirchhoff
stress

dev 1

T = Thg_l = 2ug_1(ln v¢) g_1 + ntrace(g_l Inv®)g™
3 +21n 4
6 g

"

(8)

=2u(g ' Rg !+ Bg ) Inve =: £L°: Inv® € Sym(TIP; Ty P),

L under considera-

which is in the contravariant form depending on the contravariant metric g~
tion.

In an implicit finite element solution process, the stress-strain relation needs to be linearized.
Using the correct transformations, see e.g. [8], the second Piola-Kirchhoff stress is defined as
S := F17F~* € Sym(T%Po; TxPo) and its work-conjugate Cauchy-Green deformation tensor
as C := F*gF € Sym(TxPo; TxPo). Then,

as , At

9 -1 —x\/, —1lp—x* I o —1y/
Ci=2-5 (F'RF ).dF.(g F*XI) -2/(SKC™)

€ Lin(T5%Po x T Po x T Po x TxPo; R)

(9)

where I is the identity. The details how to obtain the derivative dr/dF which is consistent with
the integration algorithm employed can be found e.g. from [3]. In (9), the left, right, and their
coupled sub-symmetrization, denoted by

(@) =5(()+7(e), (o) =5((0)+ (o)), (&) = 7((&)+ ()" + () +7(¢)"),  (10)

were introduced. The left sub-symmetry results from the symmetry of the stress S, whereas the
differentiation with respect to the symmetric strain C results in the right sub-symmetry of C.
However, the magjor symmetry of C does not explicitly appear. The Lagrangian form (9) can be
pushed forward to the spatial configuration which yields

_dr
- dF

see e.g. [8] for more detailed account. According to the classical approach (tensor calculus on
inner-products spaces), the metric in Eqs. (9) and (11) would be considered as identity, i.e.

c: (g RF) —2(rRg Y € Lin(TiP x TEP x TEP x TiP;R), (11)

C="'(F! &F_T)’:j—;‘ (FTRI)Y —2/(SKCYY,
(12)
_ di L I ol o\ /
c—dF.(lﬁF) 2(r X i)

Comparison of Egs. (9) and (11) with Eq. (12) reveals an important outcome. An advantage
of Egs. (9) and (11) is their applicability over different sub-spaces, whereas the results in (12)
can be applied only on the sub-space under consideration. In other words, it is not clear how
Egs. (9) and (11) could be obtained if only the results in Eq. (12) would be at hand. Moreover,
different forms of a tensor cannot be identified in the classical approach either. A consequence
is that important transformations, such as pull-back and push-forward, become ambiguous.
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Uzawa iteration method for a class of Bingham
fluids
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Summary. This presentation is concerned with fully guaranteed and computable bounds of
errors generated by Uzawa type methods for variational problems in the theory of visco-plastic
fluids. The respective estimates have two forms. The first form contains global constants (such
as the constant in the Friedrichs inequality for the resPective domain), and the second one is
based upon decomposition of the domain into a collection of subdomains and uses local
constants associated with subdomains.
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Abstract. A new method for a measurement and analysis cardiovascular health has to offer new
information for clinical doctors. The received information has to be repeatable and reproducible
before routine clinical studies will begin. We have developed a photoplethysmographic system
for PPG waveforms which are measured repeatable way in consecutive recordings as well as
reproducible in longer time recording intervals. Temporal values of the signal components are
studied in order to define the invariants of the signals by means of envelope construction.
Furthermore, due to the sensitivity of waveform measurements, any bodily movements cause
error in the correctness of the results. After measurements in supine position the arterial pulse
waveform analysis (PWA) is a valid and very reliable technique. The main goal for this study is
the verification and validation of the noninvasive method for arterial elasticity assessment.

Key words: arterial elasticity index, pulse waveform decomposition, photoplethysmography

Introduction

Avrteriosclerosis is a common vascular disorder among older people, but its negative impacts on
young people are much greater than on the elderly people. Early arterial aging has become the
most common and important issue in clinical research. Arterial elasticity (AE) has proved to be a
direct indicator for cardiovascular diseases (CVD). That’s why accurate measurements and
analysis of the blood vessel properties are important for better characterization of both arterial
and venous diseases and the development of reliable computational models. Many non-invasive
measurement methods for direct and indirect arterial pulse waveform have been proposed, such
as the use of ultrasonic transducers (arterial and venous wall thickness and pulse wave velocity
(PWV)), photoplethysmograms (PPG, volume PW) and mechanical sensors (pressure PW) [1, 2].
Ultrasonography and pulse wave velocity (PWV) tests are the main diagnostic methods in clinics
to assess the degree of arteriosclerosis or atherosclerosis. Because atherosclerosis occurs as
calcifications of vessels, it may obstruct the ultrasound beam but optically vessels can be
measured. Sometimes ultrasound cannot differentiate between a blood vessel and other tissue.
There is a few methods to record the healthiness of blood vessels. These methods can give new
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insights into the physiology and before pathophysiological processes in the central and especially
peripheral circulatory system.

In photoplethysmographic (PPG) measurements, both the systolic and diastolic pulse

waveform have the peak and trough inside of the upper and lower envelopes. Before envelope
calculation the signal is smoothed for 25 points window (1 kHz sample frequency). After the
envelopes removal it is possible to calculate, e.g., pulse waveform decomposition, spectral
functions, correlations, Lissajous’ patterns, respiratory rate, heart rate, autonomic and vascular
activity, both vasoconstriction. We study the representation of PPG pulse waveform
decomposition based on a lognormal function form and a finite Gaussian basis in the pulse
waveform analysis (PWA). The Gaussian basis is received simply by taking logarithm of the time
axis on the normalized pulse waveform. The Levenberg-Marquardt algorithm is much applied for
the solution of nonlinear least-squares curve fitting and estimation problems. This iteration
algorithm works faster on the Gaussian basis function compared with the linear pulse waveform,
being 50-200 times faster giving the exact same results. The found pulse and its features can be
specifically called. Namely, a pulse waveform can be decomposed into a percussion, tidal,
dicrotic, repercussion, and retidal wave. Arterial pulse decomposition refers to dividing a
measured pulse wave into a set of mentioned constituent pulse waves and thus makes a complex
pulse wave transmission phenomenon understood more easily. Pulse wave decomposition (PWD)
has been successfully used in PPG pulse wave analysis and ECG signal analysis, but also in image
processing. It has potential needed to draw a clear distinction of contributions made by constituent
pulses, in this case by the five constituents. However, however, there are no internationally
recognized standards for clinical PPG measurement. Processing of the PPG pulse waveform series
is as follows:
Generate the upper and lower envelopes to connect the maxima and minima respectively. The
upper envelope u(t) and lower envelope v(t) of the PPG signals x(t). Then we subtract the upper
envelope u(t) from the x(t) and taking the absolute value of the original PPG signal. The PPG
signal is then inverted so that it correlates positively with blood volume. For normalization
between [0, ... , 1] we determine the new upper envelope u(t) for the new signal x(t). By this new
envelope u(t) we divide the signal x(t) which is now between 0 and 1 from its minimum to its
maximum. Each true signal s; is also connected with the corresponding noise ni. The true signals
can be due to the blood volume change (1), respiratory rate (2), vasomotor activity (3), autonomic
activity (4), vasoconstrictor (5), thermoregulation (6), which can be together combined as so-
called Traube Hering Mayer (THM) waves. These waves give a steady signal that changes very
slowly. These waves are in part caused by different mechanisms, and that they provide different
information about arterial properties at central and peripheral sites. As in the equation (1), these
waves are simply summed up

x(t) =s5;(t) +ni(t), i=1,..,6 Q)

Because the behavior of arteries is a function of the dynamic characteristics of the circulatory
system, the analysis of arterial pulse waveform gives information also on the arterial elasticity.
The drift phenomenon of the PPG signal causes inaccuracy for assessing arterial stiffness if not
properly processed. Therefore, we used a signal process method, known as the pulse waveform
decomposition (PWD) with curve fitting. The finger PPG pulse wave can be decomposed a signal
set of five components which can be called basis functions. However, the PPG method suffers
from interference and distortion such as baseline wander, mains-line interference, and random
spikes or other such artifacts. The baseline wander is removed by the envelopes, light, and mains-
line power interference by the phase sensitive detection (PSD) electronics in measurements.
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Materials and methodology

The PPG pulse waveforms analyzed in this study were obtained from volunteer subjects in supine
position. Data were collected with approval of each person tested with informed consent. The
results of this volunteer study was carried out on healthy individuals, where PPG device was used
to measure the pulse waveforms at least 300 sec from left index finger and second toe to monitor
peripheral perfusion after 10 min rest. The PPG pulse waveform with its envelope signals from
the radial artery are captured using a lab made PPG device connected with USB measurement
card to a personal computer. The measurement software is Signal Express (National Instruments).
Signal processing was realized with OriginLab (Microcalc) software for envelopes and the pulse
waveform decomposition. The pulse waveforms from the radial artery were captured using two
laboratory made probes, which contain two pulse oximeter sensors based on two different
wavelengths of LED light (640 nm & 920 nm) to capture the pulsations with its baseline and
single pulses. Photon envelope represents a space area along which most photons travel from the
LED to the photodetector through the measured tissue. The received signal is processed by the
phase sensitive detector (PSD) electronics. In the finger PPG pulse waveform it is possible to find
percussion, tidal, dicrotic, repercussion, and retidal peaks in the off-line signal processing. These
peaks are identified by the software and the intervals between these components are calculated to
find out the Arterial Elasticity Index (AEI), a useful tool for assessing noninvasively the status of
the vascular but also autonomic nervous system.

Results and discussion

PPG recordings were obtained from all the volunteers throughout the study, and also PCG
(phonocardiography) were used as a timing reference for the PPG signals. PPG signal processing
as an example is applied as follows. Figure 1 shows the draw and smoothed finger PPG (left) and
the upper and lower envelopes of the corresponding PPG.
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Figs. 1. The original infrared finger PPG (black), its smoothed 25 points curve (red) (left), and
the upper (blue) and lower (green) envelope (right) for 300 s (31 male person).

Figure 2 shows the normalized PPG envelope wave (left) for 300 s and the normalized PPG pulse
waves for 5 s from the Figure 1 (right). PPG signals contain the three peaks indicating a specific
elastic structure of the PPG waveform measured from a young person. In Figure 3 it is shown the
corresponding infrared toe PPG recording (black), its smoothed 25 points curve (red) (left), and
the normalized toe envelope signal (right) for 300 s (31 male person, Figure 1). Both the finger
and toe envelopes contain the similar “peaks” resulting the respiration rate.
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Lissajous pattern provides information about the basic mechanical properties of the material, e.g.,
arterial wall elasticity, with a linear response being hypothetically an ellipsoid. However, in
biomedical applications the Lissajous’ patterns analysis are more complex and not easily
interpreted. The pattern contains both the upper and lower peripheral arterial elasticity. PPG signal
data collection is underway in the clinical settings.
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Summary. In this paper, a coupled magnetoelastic model for isotropic ferromagnetic materials com-
monly used in electrical machines is presented. The constitutive equations are written on the basis of
the total energy in which the right Cauchy-Green strain tensor and the Lagrangian form of the magnetic
field strength are used as the basic state variables.

Key words: magnetostriction, anisotropy, integrity basis, total energy function

Introduction

In transformers and rotating electrical machines magnetostriction is known to generate vibra-
tions and acoustic noise. Electrical steel used in these machines is known to behave anisotropi-
cally. In this paper a model for anisotropic magnetostriction is developed. The model is based
on the formulation introduced by Dorfmann and Ogden [1, 2, 3] utilizing the concept of “total
energy function”.

Lagrangian fields

In magnetoelastostatics the three basic magnetic variables are the magnetic field H, the mag-
netic induction B and the magnetization M. The fields H and B are considered as the primary
fields and M only as an auxiliary field [4], which can be defined in terms of H and B.

In electromagnetics it is customary to work with the Eulerian frame, so the field H and B
are related to the current configuration. To model anisotropic behaviour where the material
orientation is important, the material description of motion is preferable and the Lagrangian
forms of the primary magnetic fields are

H,=F'H, ad B,=JF'B, (1)
where F' is the deformation gradient and J = det F'. For further details see [1, 2, 3].
Constitutive equations

General form

Denoting the complementary form of the total energy function as Q*(F, Hy,), and using the
standard Coleman-Noll procedure, the total stress 7 and the magnetic induction B can be
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obtained from equations

oN* oN*

B=-J'F . 2
OF’ OHY, 2)
The function Q*(F, Hy) is a partial Legendre transform of the total energy function Q(F, By,),
i.e.

r=J'F

Q" (F,Hy)=Q(F,By) — Hy-By. (3)
The total energy function 2 is related to the Helmholtz free energy per unit mass ¢ as
Q=po®+3ug'JB-B,  where &(F,By)=4(F,J 'FBy) (4)

in which pg, o are the density in the reference configuration and the magnetic permeability in
vacuum, respectively.

Intregrity basis

For modelling ansiotropic magnetostriction, it has been chosen that the energy function depends
on the right Cauchy-Green deformation tensor C = FT F, the Lagrangian magnetic field H,
and two direction vectors a1 and a2, not necessarily orthogonal to each other. Integrity basis
of a scalar function depending of a symmetric second order tensor and three vectors consist of
the following 21 invariants [5]:

I, =tr C, L =3{trC)?—tr C?, I3=detC, I,=H-H, Is=H - a,
Is = H - as, I; = ai-ao, Is=H - CH, Iy = a1-Cay, Ip = as-Cay,
I,i=H-Cay, I1;=H - Cas, Lis=a1-Cas, TLiu=H--C?H, I;5=a;-C?a,
L = GQ'CQG;Q, L;=H - CQal, ILigs=H - Czag, Iig = al-Czag, Iy = ai-aq,
Iy1 = as-as. (5)

Since a1 and a9 are unit vectors, i.e. aj1-a; = ao+-ay = 1, there are only 19 invariants in the
anisotropic magnetoelastic model.

Total stress tensor and magnetic induction

From equations (2) expressions to the total stress tensor 7 and the magnetic induction vector
B are

19

o0 oI
—J'F 7k
T=J ; o, OF (6)
Y 90 ar
B=-J'F i
I kzzl oI, OHy, (7)

Evaluation of the derivatives 0Q* /OF and 0Q*/0H 1, gives

T =J 20 +2(I1b — b0 + 21305 + 2bH @ bHQS + 2Fa; @ Fa Q4+
+2Fas® FaxQjy+ (Fai @ bH +bH ® Fa,)Qy,+ (Fax® bH + bH ® Fas)3+
+2(bH @ b’H +b*H @ bH)Q, + (Fai ® bFa; + bFa; ® Fa,)Qj;+
+(Faz ®bFay+ bFay;® Fay)Qs+2(bH ® bFa, +bFa; ® bH)Q,+
+2(bH ® bFas+ bFay ® bH)Q g+

+(Fa1®bFa2—|—bFa1®Fa2+Fa2®bFa1+bFa2®Fa1)Q’1k9], (8)
B =—J'2bHQ; + Fa Q% + FaoQ} + 2bHQ; + bFa Qf; + bFax,+
+2b5HQ, + b2 F a1}, + b2 Faxy), (9)
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where b = FFT is the left Cauchy-Green deformation tensor, the notation 27 denotes the
derivative f = 0Q*/JI; and ® is the standard tensor product. The specific form of the total
energy function is now to be determined based on experimental evidence.
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Tiivistelma. Téassa artikkelissa esitetddn menetelmd, jolla voidaan mitoittaa kuorielementin
ortogonaaliset paaterékset ja leikkaushaat murtorajatilassa. Menetelmén erityisend vaatimuksena
on péaaterasten mitoituksen toimivuus mille tahansa mielivaltaiselle normaalivoiman ja
taivutusmomentin yhdistelmélle. Mitoitusmenetelméa perustuu hyvin tunnettuun ja yleisesti
kaytettyyn terdsbetonisen poikkileikkauksen voimatasapainomitoitukseen ja se huomioi
Rakennusmaarayskokoelma B4: n asettamat vaatimukset rakenteen mitoituksessa.
Laskentamenetelma ei huomioi rakenteen mahdollisia stabiiliusongelmia, ns. 2. kertaluvun
vaikutuksia. Nain ollen ohuiden, mahdollisesti nurjahtavien kuorirakenteiden mitoitukseen
menetelmé ei sovellu.

Avainsanat: kuorielementti, murtorajatila, paaterakset, normaalivoima, taivutusmomentti.

Johdanto

Téssa artikkelissa esitetddn mitoitusmenetelmd [1], jolla kyetddn mitoittamaan paikalla valettuja
terasbetonikuorirakenteita. Mitoituksen vaatimukset on maaritetty seuraavasti:

-Mitoituksen tulee tapahtua Rakennusmaéardyskokoelma B4: n [2] vaatimusten mukaisesti.
-Mitoitus tulee kyeté tekem&én tehokkaasti my6s suurille ja vaativille rakenteille.

-Menetelmédn tulee mitoittaa ortogonaaliset paaterdkset sekd leikkaushaat kuorielementin
terasbetonipoikkileikkaukselle.

-Mitoituksen tulee toimia mille tahansa mielivaltaiselle poikkileikkauksen kuormitukselle.

Lahtotiedot

Terasbetonirakenteiden terdstyksiad mitoitettaessa ovat rakenteiden ulkomitat yleensé tiedossa.
N&ama rakenteiden ulkomitat suunnittelija on valinnut kokemuksen tuomalla asiantuntemuksella
sopiviksi huomioiden kuormitukset sekd muut rakenteen kelpoisuuteen vaikuttavat seikat.
Mitoitettavista rakenteista tiedetddn kaikki muu, paitsi niihin sijoitettavat terdsmaarét.
Suojabetonipaksuudet suunnittelija saa normeista ja suojabetonipaksuuksien ollessa tiedossa
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tiedetddn myos terdsten sijainti. Kuvassa 1 on esitetty terésbetonipoikkileikkauksen
mitoitukseen liittyvéat geometriset suureet.

de Ylapinta

h | d — Puristusterakset Asc

——o——-t-——o4

Kuva 1. Terésbetonipoikkileikkauksen mitoitukseen liittyvat geometriset suureet

— Vetoterakset A

Alapinta

Mitoitusvoimasuureet elementtimenetelmasta

Terésbetonipoikkileikkauksen mitoitusvoimasuureet saadaan elementtimenetelmalld suoritetusta
lineaarisesta  elastisesta  analyysistd isotrooppisilla  materiaaliominaisuuksilla.  Tama
menettelytapa on vyleisesti hyvéksytty ja laajassa kaytossa. Mitoitusvoimasuureet lasketaan
elementtimenetelmalla alkeiskuormitustapauksittain. Alkeiskuormitustapausten
mitoitusvoimasuureet yhdistellddn mitoituksessa varmuuskertoimilla kuormitusyhdistelyiksi.
Elementtimenetelméstd saadaan raudoitteiden mitoittamista varten elementtikohtaiset
mitoitusvoimasuureet. Jokaiselle elementille mitoitetaan elementtikohtainen raudoitus.
Paateraksien mitoittamista varten tarvitaan kummallekin raudoitesuunnalle (x-ja y-suunnille)
mitoittava momentti ja normaalivoima. Kuorielementti antaa paaterdksien mitoitukseen voimat
Fx, Fy ja Fxy seka momentit Mx, My ja Mxy. Leikkaushakojen mitoitusvoimiksi saadaan
kuorielementiltd pystysuuntaiset leikkausvoimat Vx ja Vy. Kuvasta 2 ilmenee voimien
merkkisdantd ja elementin ylapinnan ja alapinnan méaérittely. Elementin ylapinta on elementin
paikallisen koordinaatiston Xe-Ye-Ze positiivisen Ze — akselin puoleinen pinta Positiiviset
momentit Mx-ja My-suunnissa aiheuttavat elementin alapintaan vetoa ja ylapintaan puristusta.
Positiiviset normaalivoimat Fx ja Fy aiheuttavat vetoa elementin keskipinnan suunnassa ja
negatiiviset normaalivoimat vastaavasti  puristusta. Mitoitusvoimasuureina  kéytetaan
voimasuureita elementin keskipisteessa.
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Kuva 2. Elementtimenetelmaanalyysista saatavat mitoitusvoimasuureet

Poikkileikkauksen mitoitus optimointitehtiavana [3]

Terésbetonisen poikkileikkauksen mitoittaminen perustuu voimatasapainon aikaansaamiseen
ulkoisten kuormien ja siséisten vastustavien voimien vélille. Ter&sbetonipoikkileikkauksen
voimien kehittymistd betonin puristusblokissa ja terdksissd on tutkittu monilla kaytannon
kuormituskokeilla. Kuormituskokeiden tuloksena terdsbetonipoikkileikkauksen kayttaytyminen
ja voimien Kkehittyminen tunnetaan hyvin. Yleiset terdsbetonin mitoitusoletukset kuten
puristusblokin ideaalinen toiminta ja betonin jaykka-plastinen materiaalioletus ovat luotettavia
ja riittdvdn tarkkoja oletuksia, jotka perustuvat kuormituskokeiden havaintoihin.
Terésbetonipoikkileikkaus mitoitetaan siten ettd poikkileikkauksen sisdiset voimat voivat
kehittyd tasapainoon rakenteen ulkoisten kuormituksien kanssa. Pdaéterdkset mitoitetaan
tasapainoon momenttikuormalle ja normaalivoimalle. Paaterdksid mitoitettaessa on kaytossé
kaksi tasapainoyhtala.

Fc+ FAsc + I:Ast + Nd: 0 (1)
Fe'(d = 0.5:kyX) + Faee'(d —=dc) + Mg= 0 )

Yhtaloissa (1) ja (2) on kaytetty seuraavia merkintgjéa:
F. = Betonin puristusblokin resultanttivoima [N]

Fasc = Puristusterasten resultanttivoima [N]

Fast = Vetoterasten resultanttivoima [N]

Ny = Mitoittava normaalivoima [N]

My = Mitoittava momenttivoima [Nm]
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k, = Puristusblokin suhteellinen korkeus

x = Neutraaliakselin etéisyys poikkileikkauksen ylapinnasta [m]

d = Vetoterésten etaisyys poikkileikkauksen ylapinnasta [m]

d. = Puristusterasten etdisyys poikkileikkauksen ylapinnasta [m]

Mitoitettaessa terdsbetonirakennetta ovat tuntemattomina vetoterdsten maara Ay ja
puristusterasten maara As.. Taman lisaksi tuntemattomana on poikkileikkauksen neutraaliakselin
sijainti X (kuva 3). Neutraaliakselin sijainti tarvitaan betonin puristusblokin korkeuden ki-x
madrittdmiseen. Tuntemattomia on kolme, ja ratkaistavia yhtéloita kaksi.

b
dc €cu Kx X

€sc A

hid|y Asc

A F
¢ o b N

ast

Kuva 3. Poikkileikkauksen geometria, muodonmuutoskuvio ja sisdiset voimat

Kyseessd on siis optimointiongelma. Kuinka valita raudoitepinta-alat Ay ja As Seké
neutraaliakselin sijainti x, jotta tasapainoyhtaltt toteutuvat ja ratkaisu on paras mahdollinen?
Parhaana mahdollisena ratkaisuna voidaan pitdd esimerkiksi pienintd terdsmenekkid. Pienin
terasmenekki saavutetaan minimoimalla kokonaisterdspinta-alaa. Ongelman matemaattinen
esitysmuoto on seuraava:

min [AsTot(Nd’ Md, O, fcd; fyd; b’ h’ d’ dC’ X)] (3)

Yhtélossa (3) ® = poikkileikkauksen tutkittavan rajatilan muodonmuutosjakauman
aiheuttama kayristys ja Astet = Yhteenlaskettu kokonaisterdspinta poikkileikkauksen ala- ja
ylapinnassa. Yhtélon (3) minimia haetaan seuraavien epdyhtéldiden rajoittamassa avaruudessa:

Ast>0, Asc>0 ja x sijaitsee valilla - co<x<+oo ()

Ratkaisualgoritmin kdaytannon toteutus

Laskenta-algoritmeissa jotka halutaan yleispateviksi, kaikissa tilanteissa toimiviksi
proseduureiksi, numeeriset ongelmat aiheuttavat suurimman tyomaaran. Tassa artikkelissa on
tarkoituksena esittdd menetelmé jolla kyetdadn mitoittamaan terésbetonipoikkileikkaus mille
tahansa mielivaltaiselle kuormitusyhdistelmélle. Edelld esitetty laskentateoria ei sellaisenaan
toimi yleispatevénd mitoitusmenetelmand. Mitoitus siséltdd singulaarisuuspisteitd, joita edelld
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esitelty laskentateoria ei ota huomioon. Ongelmia aiheuttaa myGs optimoinnissa kaytettdva
peitemenetelmd, eli koko sallitun avaruuden yli kulkeminen. Laskentatehon sailyttamiseksi,
tulisi raudoiteméaéria laskea mahdollisimman harvoilla neutraaliakselin sijainnin pisteilla. Mita
harvemmilla neutraaliakselin sijainneilla optimia tutkitaan, sitd suurempi on mahdollisuus ettéd
kdypéa optimia ei 16ydy. Algoritmissa joudutaan tdman takia kdyttdmaan ns. suodattimia jotka
Ioytavat toleranssien puitteissa aluksi ei kdypien ratkaisujen joukosta tarkentavilla iteraatioden
avulla haettavan kdyvan ratkaisun. Kaytetyista suodattimista esitetddn seuraavassa esimerkkeja.
Tarkein kaytetty suodatin on normaalivoiman sijaintisuodatin, joka toimii seuraavasti:
Suodattimessa kuormitusta tutkitaan epakeskisend normaalivoimana Ny Jos kuormittava
normaalivoima on esimerkiksi tuhatkertainen mitoitusmomenttiin n&hden, voidaan ajatella
poikkileikkauksen olevan puhtaan normaalivoiman kuormittavana eli normaalivoima on
keskinen. Suodattimien avulla hakuavaruus jaetaan seuraavasti nimettyihin ala-avaruuksiin: 1)
Kuormittamaton poikkileikkaus; 2) Kauttaaltaan vedetty poikkileikkaus; 3) Kauttaaltaan
puristettu  poikkileikkaus; 4) Neutraaliakseli sijaitsee vetoterdsten painopisteessd; 5)
Poikkileikkaus puhtaassa taivutuksessa; 6) Neutraaliakseli poikkileikkauksen sisalla pois lukien
tapaukset 4) ja 5).

Sovellusesimerkki: Merikosken vesivoimalaitoksen tuloputken spiraali

Kuvassa 4 on esitetty elementtimalli Merikosken vesivoimalaitoksen vesiteista.

Kuva 4. Merikosken vesivoimalaitoksen vesiteitten elementtimalli
Seuraavassa kuvassa 5 on esitetty spiraalin takaseindn (180 astetta) sisapinnan tarvittava

pystysuuntainen raudoitusméérd neliomillimetreind seindn leveysmetria kohti pikasulun
hydrostaattisen paineen (16 metrid vesipatsasta) ja oman painon kuormitusyhdistelmalle.
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Kuva 5. Merikosken vesivoimalaitoksen tuloputken spiraalin takaseindn (180 astetta)
sisdpinnan tarvittava pystysuuntainen raudoitusmaaré murtorajatilassa neliomillimetreind seinédn
leveysmetria kohti pikasulun hydrostaattisen paineen (16 metria vesipatsasta) ja oman painon
kuormitusyhdistelmalle

Yhteenveto

Tassa artikkelissa  esitettiin -~ menetelmd  terasbetonipoikkileikkauksen — murtorajatilan
mitoittamiseen  murtorajatilassa.  Mitoitusteorian  taustalla oleva optimointi-l&htGinen
ratkaisutapa osoittautui tehokkaaksi. Kehitetyn menetelmén toimivuus varmistettiin useilla
numeerisilla testeilld. Testituloksia verrattiin perinteisilla mitoitusmenetelmilld saatuihin
ratkaisuihin ja tulokset olivat yhtenevid. Mitoitusmenetelma toimii jalkikéasittelijana
elementtimenetelma-ohjelmistolle [4].
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Summary. This paper deals with numerical modeling of the dynamic tensile strength of Kuru
granite and corresponding experiments with the dynamic Brazilian Disc (BD) tests using the
Split Hopkinson Pressure Bar apparatus (SHPB). It was found that the indirect tensile strength
of the Kuru granite increased from the static value of 13 MPa to 36 MPa when the impact
velocity reached 20 m/s. A numerical method was developed for simulations of these tests. The
method includes a material model based on the rate-dependent isotropic compliance damage and
embedded discontinuity concepts for rock and an FEM based explicit time marching technique
for simulating the dynamics of the SHPB apparatus. Simulation results are in decent agreement
with the experiments.

Key words: Dynamic Brazilian disc test, Split Hopkinson Pressure Bar, FEM, rock fracture

Introduction

The tensile strength of brittle materials, such as rock and concrete, is usually much lower than
their compressive strength (up to 30 times). Moreover, while both strengths display significant
loading rate hardening effects, this effect is especially pronounced with the tensile strength.
Therefore, a numerical model aiming at a realistic prediction of the rock behaviour under
dynamic loading conditions should take the loading (strain) rate sensitivity into account. The
dynamic tensile strength of rock can be indirectly measured using the Split Hopkinson Pressure
Bar (SHPB) apparatus with the so-called Brazilian Disc (BD) specimens [1].

This paper presents some preliminary results of an on-going project at TUT, the purpose of
which is to provide experimental data on the dynamic tensile strength and failure modes of the
granite rocks. The data can be used, for example, for (dynamic) calibration and validation of
rock material models. This paper also presents a numerical model based on a viscodamage and
an embedded discontinuity models originally developed in [2]. The numerical simulations of the
failure mode and the dynamic tensile strength are compared to the experimental results. High
speed photography and Digital Image Correlation were used to analyse the experimental results
and to provide still-shots with the deformation field of the deforming BD specimen.
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Experimental setup

The principle of the SHPB test apparatus with the Brazilian Disc sample is shown schematically
in Figure 1.

Strain gauges
g & Vo
/N /AN —
| - 7 —»L.\J/%— P mm 111 |
o Z
\/—ry Pulse shaper
Transmitted bar BD sample Incident bar Striker bar

Figure 1. Schematic picture of the SHPB setup for the dynamic BD test.

The striker bar impacts the free end of the incident bar generating a compressive stress wave
(incident pulse), which travels through the incident bar and the BD sample, causing its
diametrical splitting. The incident, transmitted, and reflected pulse strains, ¢, &, &, are measured
as a function of time using the strain gages indicated in Figure 1. Moreover, a pulse shaper of
relatively soft material (copper, rubber) is used to improve the dynamic stress equilibrium by
increasing the rise time of the incident stress pulse. The indirect tensile strength of the specimen
can be calculated, based on the elasticity solution of the quasi-static problem, as

oy =2P /7D 1)

where P is the force acting on the specimen with the length L and diameter D. The dynamic
forces acting on the incident and transmitted sides of the BD specimen are calculated using
Equations (2) [1]

P =AE, (s +¢), P,=AEg 2)

where Apand Ey are the cross-sectional area and Young’s modulus of the bars. When good stress
equilibrium is reached, the forces P, and P, are equal, but P, typically has fewer oscillations,
and is therefore more often used for calculations of the indirect tensile strength with Eq. (1).
Two Photron SA-X2 high speed cameras were used to record the deformation and fracture of
the samples. A speckle pattern was applied on the surface of the samples since the natural
pattern of the rock surface does not provide a very strong contrast for the Digital Image
Correlation algorithm. Images were recorded at 160 kfps and the size of image was 256x176
pixels. These images were analyzed with the LaVision StrainMaster (DaVis) 3D-DIC software.
A circular mask was used to limit the outer edges of the samples outside the analyzed region.
Analyzing the images were carried out by comparing the images to the first (reference) image
using a step size of 9 pixels and a subset size of 25 pixels.

Material model for rock fracture

The material model for the rock fracture is based on a combination of isotropic rate-dependent
damage model and an embedded discontinuity model. The model briefly described here is
described in more details in ref. [2]. The isotropic rate-dependent compliance damage model is
chosen for description of the nonlinear pre-peak hardening process. For the present purposes,
such a model is defined by
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Wherea is the viscodamage loading function, o, is the positive part of the stress tensor, o is
the elastic limit stress, D is the compliance tensor obtained from the initial compliance tensor D,
= Ey* (E, is the undamaged stiffness tensor), while i, K are the internal variable and its rate,

respectively, A is the viscodamage increment, and @ is the hardening variable. Moreover,

h,s are the hardening and viscosity modulus, respectively, and g is a parameter controlling

the initial slope of the hardening curve. The inverse compliance tensor, Eq, is the damaged
stiffness modulus.

R VN, -n|
VN™ =arg| max
=123 | VN, |

Figure 2. CST element with a discontinuity line I'q (left), and function M r, (right).

The embedded discontinuity part of the model describes the post peak softening process
leading to final failure of the material. It is based on the decomposition of the displacement
field into a regular part and the displacement jump due to a crack. When a body in R* is
discretized with CST elements (see Figure 2), the displacement and strain fields can be written
as

u(x) =Nui +Mga,, M7 =H_ (x)-N*(x)

&(x) = (VN, ®U)™ — (VN (X) ®a, )™ + 5, (N®at,)*" (4)

where the displacement jump is denoted by @, , while N, and u; are the standard interpolation

functions and nodal displacements (with summation on repeated indices), respectively.
Moreover, Hr is the Heaviside function, and & is the Dirac delta function. The solitary node j5°'
is chosen so that the node n and VN* are as parallel as possible. This is achieved by the
criterion in Figure 2. For the details of the FE implementation of Equation (4), see ref. [2].

A bi-surface discontinuity model accounting for mode | and Il fracture types developed in
ref. [2] reads

(Iﬁt(trd VK, K) =n'trd — (o, +q(x,K)), ¢s(trd VK, K) :‘m'trd‘_(o-s +Z—:Q(K,k))

0, =@, +a, :zt_jfr + §t¢s , kz/it%—‘f;ms 2‘:5
Ty Iy

t. :n-E:(VSU—(VNS"' ®ad)5y”‘):n'o

(5)
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where n and m are the unit normal and tangent vectors for the crack surface, o is the bulk stress,
and while o and o are the elastic limits in tension and shear, respectively. Moreover, k., x are

the internal variable and its rate related to the softening law for discontinuity, while A, A, are
the crack opening and sliding increments. An exponential softening law is assumed as
q =hx + sk with h=-go, exp(—gx). Finally, g = a/G,c where G, is the mode | fracture

energy. The displacement jump can be solved by the standard return mapping of computational
plasticity as shown in ref. [2].

Fixed crack concept is adopted, i.e. n remains the same after introducing a discontinuity in
an element. A crack is embedded perpendicular to the first principal direction into an element

when the criterion &, > &y, is met. Here, the equivalent damage strain &, = /4 : &4 is

defined with £, = (D—D,) : 6 (damage strain), while & is the positive part of it, and &im is the
limit of the damage strain.

In order to have continuous response upon transition from the continuum model to the
discontinuity model, the hardening variable g and the parameter controlling the post peak slope,

g above, are set as q(x, &) =q(K,K), § = Ouyn/Gieayn Where o, = o, +7(ic, k) is the
dynamic tensile strength, and Gy, is the dynamic mode | fracture energy.

SHPB simulation model

The SHPB test setup with the BD sample of rock illustrated in Figure 1 is modelled as follows:
the incident and transmitted bars are modelled with standard 2-node bar elements. The incident
pulse is modelled as an external stress pulse, ai(t), applied to the end of the incident bar. The
contacts between the BD sample and the incident and transmitted bars are modelled in a
standard manner by imposing contact constraints between the bar end nodes and the edge nodes
of the discretized BD sample. The contact constraints are imposed with the forward increment
Lagrange multiplier method and the explicit modified Euler time integrator is employed in
solving the response of the system in time.

Numerical simulations and experimental results

The following set of material properties and model parameters were used in the simulations: E =
60 GPa, v=0.2, p= 2600 kg/m®, o = 8 MPa, o; = 16 MPa, G, = 100 N/m, Gicayn = 10Gyc, &iim
=5.5E-5,g =80 1/m, S§=0.04 MPa -s/m and s = 0.001 MPa-s/m. The simulations are carried
out in 2D (plane stress conditions) with a mesh consisting of 3616 CST elements. Due to the
limited page count of this paper, only the results for the impact speed of v = 10 m/s are
presented in Figure 3.

Figure 4 show the stress vs. time for the tests with impact speeds of 10m/s and 20m/s. The
increase of the impact speed from 10m/s to 20 m/s results in an increase of the dynamic strength
of the rock by 13%. The DIC analysis shows that the fracture of the samples initiates closer to
the incident bar contact point. Point (a) on the Figure shows the starts of the loading and (b)
indicates the moment just before reaching the maximum stress. The corresponding images taken
by high speed-cameras are shown in Figure 5. These images are overlaid with strain maps in Y-
directional Lagrange strain maps (vertical, perpendicular to loading). The first two images show
uniform strain over the surface of the sample and the first strain localization does not appear
until few microseconds before the strength of the rock starts to decrease. This implies that the
fracture starts from inside of the sample and not on the surface. As the fracture propagates, it
appears on the strain map as well (Figure 5c). This is followed by a rapid propagation of the
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crack (Figure 5 d and e) and the test is finished by crushing of the sample at contact points with
stress bars. Engineering strain in the direction perpendicular to loading before the fracture was
measured placing a virtual strain gage on the centre of the BD samples. The maximum strains
prior to the fracture for the tests with impact speeds of 10 and 20 m/s are 0.46% and 0.62%.
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Figure 3. Simulation results: propagation of the fracture att = 80 us (a), t = 135 ps, tensile stress
as a function of time (c), and experimental failure mode (d).

The simulated and experimental tensile strengths (Figures 3c and 4) have a good agreement.
The simulated failure is the typical axial splitting observed also in the experiments (Figure 3b

and d)
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Figure 4. Tensile strength as a function of time.
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Figure 5. DIC images obtained during the dynamic deformation of the test with impact speed of
20m/s.a)t=0us b)t=12.5¢c) t =43.75us d) t = 50us e) t = 56.25ps.

Conclusions

Numerical and experimental testing of the Kuru Gray granite was carried out. The simulated
and experimental results show a reasonable match before and after the maximum stress. The
DIC results also show that the final fracture initiates below the surface before becoming visible
on the surface. The DIC analysis can provide useful information for both model verification and
material characterization.
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Summary. This paper discusses wind-tunnel testing done for the structural engineering of the
planned new roof structure of the Helsinki Olympic Stadium. In the plan, all spectator stands
will be covered by wing-like slender structure, whose wind-induced vibrations, wind-induced
fatigue and dynamic wind loads are of special interest. The new roof will have shape and
structure closely like the existing roof of the East spectator stands completed 2005. Although
wind-tunnel testing results of this existing roof are available, the new roof can possibly make
such changes to aerodynamics that new testing was considered important. This also make
possible to apply two enhanced testing techniques; namely net-pressure measurements of time-
dependant pressure fluctuations and high-frequency force-balance measurements. The purpose
of this paper is to describe these and the related results in detail.

Key words: wind-tunnel testing, boundary-layer wind tunnels, wind loads, high-frequency
force-balance measurements, stadium structures

Introduction

Helsinki Olympic Stadium is one of the national landmarks of Finland, and was originally build
for the cancelled Olympics 1940. The stadium was completely modernized in 1990-1994 and
also renovated just before the 2005 World Championships in Athletics. One of the major change
was a new roof for the East spectator stands. The roof was designed as slender wing-like
architecture giving a challenge to structural engineers to cope with wind-induced vibration and
to reliable predict reaction loads to old structures. To this end, the author conducted 2004
comprehensive wind-tunnel testing program for determining equivalent static wind loads, wind-
induced vibration response and stress-cycle count for wind-induced fatigue analysis. A major
new renovation is planned to start 2016, in which rest of the spectator places will be covered
with a similar type of roof. The wind-tunnel testing for the new roof was done 2014-2015 (Fig.
1) by the author New testing technique were added to the program, namely time-dependent net-
pressure measurements through the roof using miniature pressure taps; and high-frequency force
balance (HFFB) measurements of the scale model constraint forces and moments.

The present type of testing is generally done in boundary-layer wind-tunnel (BLWT), where
turbulence is generated in the flow that cope to be similar with the real wind. BLWT testing
technique was originally put forward since 1960’s in the engineering of skyscrapers [1], and are
in the last decade also applied in Finland in this context [2]. In typical test, the scale model of
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the structure will be used, where also the surrounding topography and structures are included.
Thus, the scale model size will be determined by the size of the wind-tunnel working section
that is in most tunnels is around 2...5 m in width or more. Although the scale model is big, the
test objects are usually relative small in size, typically less than half meter.

Figure 1. Overview of the test object and the test setup in boundary-layer wind tunnel of the
Aalto University. Geometric scale of the model is 1:160 (photo the author).

The fundamental scaling law that determines the measurement of time-dependant quantities is

the time scaling given by
1% tvV
==, 1
(o)), »

where t = time; V = wind speed; L = geometric dimension; and the subscripts P and M denote
the full scale (real structure) and the wind tunnel model, respectively. Eq. (1) also characterises
the eddy size, or other length-scale measure, of turbulence. Time taken by an eddy of size L
passing an observation point at rest is given by

t v (2
Thus, if in testing one is interested to capture impact of eddies of size 0.01 m in flow speed of
10 m/s, one need sampling rate of order 1000 samples per second and more. On the other hand,
if the testing flow speed is decreased sampling rate could be decreased, but on the hand, the load
(pressure, force or moment) to be identified will be smaller making them more difficult to
measure precisely. For this reason, pressure measurement are often done with the maximum
flow speed available at the wind tunnel and the scale model can resist without vibration and
damage. HFFB-testing approaches utilizes the frequency-domain methods through the scaling
law related to non-dimensional form of spectral densities

fs,(f)| [ fs,(f)
{ o H o } ©)
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where f = frequency; Si(f) = spectral density of a time-dependant quantity i and ;? = variance of
the quantity i. In practice, spectral densities are most often determined by software algorithms
employing the Fast-Fourier Transform technique. HFFB-based vibration assessment requires
load spectral density being measured and extracted with a stiff scale model. In addition to being
stiff, the HFFB scale-model is designed as as lightweight as possible to push its own natural
frequency high: in order to avoid its own resonant vibration and dynamic amplification factor to
influence the measurement results.

To fulfil Eqg. (3) the turbulence spectral density should be similar in a wind tunnel. This is done
using the long floor (Fig. 1) of typical BLWT that generate a boundary layer which is adjusted
similar to natural wind at the site by changing size and location of roughness blocks on the
floor. In the testing, the flow speed and turbulence then varies with height and it being measured
and confirmed before the testing. This is generally done by using the hot-wire sensor technique.
The similarity of local turbulence caused by nearby objects are made similar by just reproducing
the geometry faithfully in the scale model.

It could be observed that the definition of reference wind speed is important in comparing the
wind-tunnel-test results to the results based design standard approaches. Most design standard
use short duration wind speed peak values (1 s or 3 s gust) as bases to determine the wind
velocity pressure and the wind load. To reach consistent reliability-level in design, the wind
tunnel testing should basically use the same definition. For example, the Eurocode defines gust
wind velocity inherently through the equation

Vy=1+71,V, 4)

where V, = gust wind speed, I, = turbulence intensity and V,, = mean wind velocity. Both I, and
Vi, varies with height and roughness of the topography. Turbulence intensity denotes the
standard deviation of wind speed fluctuation respect to mean wind velocity by the definition

1=2v, (5)

where oy = standard deviations of the wind velocity. This standard deviations is measured
through continues wind speed measurements with high sampling frequency: in experiments of
natural wind around 1...40 Hz over one hour; and in wind-tunnel testing around 1 kHz over
around 30...60 s. Being non-dimensional quantity and contributing the results 1, should be the
same in the testing than in the full scale. If the height profiles of V, and I, are similar in testing,
then the turbulence is often assumed similar also, and the scaling law of Eq. (3) is being
assumed fulfilled. In the most precise assessments however, wind tunnel turbulence is often
found to lack low frequency content (slow wind speed fluctuations) that contributes the I,
measured in natural wind.

Measurement of time-dependant net-pressures

Pressures transducers were mounted at 2.5 mm diameter holes drilled through the roof structure.
The front sensing-end of the transducers was mounted on the top surface. The rear end,
transmitting the reference pressure, was mounted on the bottom surface. On those points were
transducer length exceed the roof thickness, a short pneumatic tube was used to move the
underneath measurement point exactly on the bottom surface. This setup allowed net pressure
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across the roof being measured directly. Total 45 points were measured that were distributed on
the south end of the stadium (Fig. 2).

Figure 2. Example of transducer locations at the South-West roof block.

Sampling rate of the 2.5 kHz was used with mean flow speed 16 m/s at the roof level. As all
wind directions were measured using angle increment 10°, total 1620 data series were recorded,
each containing data for 30 s (= 75’000 numbers). In text format, this was 1.7 gigabytes of data
that eventually needed some software-automation to be efficiently processed.

Typical measurement result is illustrated in Fig. 3 and processed results in Fig. 4. Result to
report include the mean value; the standard deviation; and the positive and negative extreme
values. The extremes are obtained through moving averaging corresponding to 1 s full-scale
values. Because extreme values are basically random quantities they could be extracted by two
methods: 1) just recording maxima within covering sufficient long time-period in full scale, or
2) by statistical sense fitting the presumed probability distribution to the tests results, and
picking up the results with desired confidence level (as peak factor to the standard deviation).
The approach 1) was used in the present case. In approach 2) on the suction side amplitudes
appear to be the Weibull-distributed and at the pressure side the Normal-distributed [1].

Unfiltered measurement data

WMWM\/\,NWM R e v v
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Figure 3. Two second extract for raw measurement data.

It was found out that the biggest 1 s net pressures in 50 y return period storm are of order
3.0...3.9 kN/m? and occur in the leading edge of the roof. For comparison, related peak
velocity pressures outside the stadium, at roof level, were computed to be 0.8...1.2 kN/m?
depending on the wind direction.
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Figure 4. Typical processed result of pressure measurements for full scale structure.

It is generally important to consider electrical noise in the measurements, as the peak values are
related to very short averaging in the experiments. In the present case, the time scaling imply
that some 30 consecutive numbers (over the period of 0.012 s) could be averaged to obtain 1 s
full-scale peak value. In the present case, the noise was not an issue, and the spectral density
analysis of the data indicate that the results are usable up to 900...1250 Hz depending on the tap
location, i.e. pressure level being measured.

HFFB Testing

HFFB testing was conducted to get more detailed information of resultant load reactions,
especially on horizontal direction, and to get data for vibration assessment and fatigue stress
cycle count. South-East segment of the roof, which correspond the planned moving joints of the
structure, were instrumented with custom force balance system (Fig. 5). Main aim in the balance
design was to measure horizontal load as accurate as possible as it small compering to vertical
load, but yet important in structural engineering. Example of extracted spectral densities is
shown in Fig. 6. Here, with the used flow speed and geometric scale the model natural
frequencies in range fy = 100...200 determines the resonances with full-scale natural
frequencies of order fp = 1...2 Hz in 50 y return period wind. Drag coefficient for horizontal
load was found to be to be of order 0.15; and the peak horizontal and vertical acceleration in full
scale of order 0.5 m/s® and 5 m/s® in 50 y return period wind, respectively.

In the present case, factory made miniature force-balance modules were used, that are
electrically sealed in both the sensing unit and the cables. Electrical noise was not found to be
an issue. The calibration of the HFFB is tedious, as in practice the stiffness of the test object and
the supports along the non-sensing directions distorts the theoretical calibration. Here, the
theoretical calibration refers to rigid body equilibrium that can be computed from the geometry
and the factory calibration constants of the force-balance modules.
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Figure 5. a) HFFB setup, and b) FEM model used in design of the balance system.
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Figure 6. Example of measured normalised spectral densities of resultant loads.

Conclusions

Wind-tunnel testing done for the Helsinki Olympic Stadium new roof is presented concentrating
on net-pressure measurements and HFFB techniques. The results can be characterised to be
within expectations from the earlier tests done for the East roof. The results are mainly
important for the structural engineering of the project. They do have also some research
significance, as the structural engineer of the project performed computational fluid dynamics
(CFD) simulation using mutually the same 3D geometry and the same assumptions of the wind
and turbulence environment outside the stadium. As the goal of the both was to predict wind
loads for structural engineering, the studies conducted allow better understanding of the
phenomena and limitations involved, and hopefully lead to a proposal how turbulence needs to
be taken into account in CFD analysis to get consistent results.
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X-ray tomographic method for measuring 3D deformation
and liquid content in swelling materials

Tero Harjupatana, Jarno Alaraudanjoki and Markku Kataja
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Summary. A non-invasive method for measuring the three-dimensional displacement field and liquid
content distribution in a wetting and swelling material using X-ray tomographic imaging is introduced.
The method is demonstrated here in monitoring the evolution of 3D deformation and water content
distributions in cylindrical samples of swelling clay material wetted in a constant total volume. The mea-
surements were carried out using a high-resolution microtomographic device (SkyScan 1172) and image
voxel size 24 pum. The results obtained are repeatable and appear qualitatively correct and plausible.
They are useful e.g. in validating models involving transport of water and the resulting deformation of
swelling materials. The method is potentially applicable also in other materials and processes involving
liquid transport and deformation.

Key words: X-ray tomography, liquid content, liquid transport, deformation, bentonite, swelling, wet-
ting.

Introduction

The dynamics of liquid transport and deformation in processes involving wetting or drying of
solid materials such as soils, building materials, foods and various biological materials [1, 2, 3, 4]
can be quite complicated. Theoretical approaches based on first principles towards modelling
these processes tend to become tedious, and phenomenological input is often required. Measuring
the total liquid content and the global deformation of a wetting/drying material sample is rather
straightforward by conventional gravimetric and morphological methods [5, 6]. At least rough
local information can be obtained by destructive segmenting of the sample. Various modalities
of tomography and other non-destructive methods have been used for measuring the local three-
dimensional liquid content distribution [7, 8, 9, 10] or the local deformation of material samples in
various mechanical conditions [11, 12]. However, few efforts appears to have been made towards
simultaneous non-destructive measurement of the evolution of both the liquid content and the
local deformation field of a material sample during wetting or drying process. Availability of
such a measurement method would be potentially useful for experimental research of processes
involving liquid transport and the resulting deformation, and for development and validation of
theoretical models of such processes.

In this work, we introduce a method based on X-ray microtomography for non-destructive
simultaneous measurement of three dimensional distribution of local liquid content and displace-
ment field of a wetted material. The method is applied here in monitoring the wetting-swelling
behaviour of bentonite clay samples enclosed in a sample chamber of constant total volume.
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Methods
X-ray tomography

With X-ray tomography, the spatial distribution of the linear X-ray attenuation coefficient (LAC)
in the sample is obtained [13]. In a typical X-ray tomographic imaging procedure, of the order
of one thousand X-ray projection images of the sample are taken from different directions by
rotating the sample in the X-ray beam. The three-dimensional distribution of LAC is then
reconstructed from the projection images by a computer. The data is conveniently represented as
a three-dimensional gray-scale image (stack of two-dimensional cross-sectional images) allowing
not only visualization but also quantitative study of the internal structure of many heterogeneous
materials. The gray-scale 'voxel’ values in such an image are linearly correlated with the actual
LAC value in the sample. In a case of monochromatic X-ray beam, the gray-scale value (or the
LAC) is furthermore linearly correlated with partial densities of materials present in the sample
so for the solid-liquid system the gray-scale value is

G=C+as ps+ar-p (1)

where C, as and «; are constants depending on materials and settings used. For a polychromatic
X-ray source (e.g. X-ray tube), linearity in Eq. 1 may not hold exactly due to beam hardening
artifact. However, this artifact can be corrected at the reconstruction stage which seems to work
well for the purposes of this study. There are usually many other artifacts present in images such
as ring artifacts, cone-beam artifacts and noise. Those can be reduced by optimizing scanning
settings or performing specific corrections in reconstruction software.

The X-ray microtomographic device used in the present work was SkyScan 1172 desktop
scanner (Fig. 1) which has a microfocus X-ray tube with maximum operating voltage of 100
kV and maximum power of 10 W. The minimum pixel size is 0.7 um but for the purposes of
the present study the device was used in a reduced resolution mode with image size 1000 x 524
pixels of size 24 pm.

Experimental set-up and samples

Cylindrical bentonite samples of diameter 17 mm and height 10 mm were made by compacting
a weighed amount of bentonite powder (MP Biomedicals Bentonite) in a mould into a predeter-
mined mean solid phase partial density (1.2 — 1.5 g/cm?), and placed in a sample holder (see Fig.
1). In order to facilitate deformation measurement, hollow glass microspheres of diameter 100
pm were mixed with the bentonite powder to act as inert tracer particles in the otherwise quite
homogeneous material. During the experiment, the sample was held in approximately constant
volume in a plastic (PEEK) tube and between cylindrical end-pieces. The end-pieces include
wetting and venting channels, and glass sintered plates that allow liquid flow in the sample
through the lower end surface, and escape of air through the upper surface. The experiment was
started by taking a reference state tomographic image of the non-wetted sample and after that,
the wetting (simulated groundwater) of the sample was initiated. The wetting was periodically
interrupted and the sample holder with the partially saturated sample weighed, scanned in the
tomographic device, weighed again and reconnected to liquid supply to resume wetting. The
scanning time was about 45 minutes, and the total time required for each scanning-weighing
interval was about an hour. The procedure was repeated typically 10 times until the sample
was completely saturated in about 1-2 weeks total time.

Deformation analysis

The local displacement of the solid phase caused by swelling can, in principle, be found by
comparing the tomographic images of the reference state and each of the partially wetted states
of the sample, provided that both images contain enough tractable details. The displacement
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Figure 1. Microtomographic device (SkyScan 1172) and schematic cross-sectional view of the sample
holder.

vectors are determined in a three-dimensional grid defined in the reference state image. At
every point of that grid, a reference subimage is compared with subimages extracted from the
deformed image at the vicinity of the grid point. The minimum for the sum of the squares of
the difference in voxel values then defines the measured displacement for that particular grid
point. Sub-pixel accuracy is further achieved by fitting second order polynomial function to the
minimum.

In order to test the deformation analysis algorithm, a cylindrical sample was made of two-
component liquid rubber material doped with glass tracer particles similarly to the bentonite
samples. The rubber sample was placed in a material testing stage that allows tomographic
imaging of the material under compression or tension. A reference tomographic image of the
sample was taken at zero load. The sample was then compressed axially inducing deformation
into a barrel-like shape, and imaged again in this configuration. The subimage matching al-
gorithm was used to calculate the displacement field between the unloaded reference state and
the deformed state. The experimental result was compared with a numerical solution for the
same set-up obtained by COMSOL software indicating very close qualitative and quantitative
agreement.

Liquid content distribution

The unknown coefficients (C, as and «;) in the Eq. 1 can be evaluated from measurements
of additional calibration samples made by varying solid and liquid densities. The reference
tomographic image gives the initial density of the solid material if the possible liquid content in
the reference state is known (measurable and assumed to be constant here). The change in solid
density between wetted and reference state can be calculated from the measured displacement
field and therefore the solid density distribution is known in the wetted state. The remaining
unknown quantity, i.e. the liquid density p; can then be calculated from in Eq. 1.

The tomographic liquid content analysis method discussed above was compared with results
from a straightforward gravimetric analysis of subsamples obtained by slicing a partially wetted
(22 h) test sample. After CT method, the sample was carefully cut horizontally into 10 slices
of thickness about 1 mm. The liquid content of each slice was determined gravimetrically using
oven drying at 105 °C. The results obtained from the gravimetric measurement and from the
tomographic imaging method indicate reasonably good correspondence between the two results
in regions well inside the sample.
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Results

The X-ray tomographic imaging and image analysis methods described above yield three-
dimensional displacement field and liquid content distributions in the material sample at se-
lected times during the slow wetting process. Typical examples of such results averaged over the
azimuthal angle for a bentonite sample wetted in the sample holder chamber are visualized in
Fig. 2. The results on displacement distributions obtained by the X-ray tomographic analysis
appear consistent and repeatable in the entire sample region. The water transport mechanism
resembles diffusion which is characteristic for the bentonite. The time evolution of the displace-
ment field seems to be complicated which indicates that the swelling of the bentonite is complex
phenomenon.

The most important source of error in the deformation analysis are the spurious displace-
ment vector values that occasionally appear as a result of false local minima found by the image
correlation algorithm. Those do not seem to have significant contribution to azimuthally aver-
aged results. Another experimental issue affecting the accuracy of liquid content measurement
is the incomplete stability of the X-ray source and detector. For accurate results, very good
stability is required during each individual scan and between the scans during the experiment.
Although, lacking an applicable reference method, quantitative assessment of absolute errors of
both the local displacement and the total local liquid content analysis is not feasible, the overall
confidence level of the results is reflected by the deformation and wetting test cases.

> 1
1017 h Ty
VoY 4 B Y
ey
gt
A A A R R R R
= Ol 0.8
A R R
a5 %10 v v
N 4 ..... corrrrrrs
------ e r PP -
c
2 062
o
0 o
10171 h 7, 5
8, __ BAER, crv 04¢;U
—
€ 6
E %
N 4 z 0.2
”
-
2 L
0 = 0

0 2 4 6 80 2 4 6 8
r [mm] r [mm]

Figure 2. Azimuthally averaged displacement field (scaled by a factor of 5) and water content (p;/ps) in
a bentonite sample measured at four different times during wetting.

Conclusions

A method for simultaneous non-intrusive analysis of three-dimensional deformation and liquid
transport in solid, wetting material, based on X-ray tomographic imaging has been introduced.
The analysis is based on comparing the tomographic images of the reference state and of a wetted
and deformed state. The displacement field is obtained by a straightforward image correlation
method. This requires that a sufficient amount of local detail, identifiable in the two images, are
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found in both states, and that the imaging resolution is sufficient for revealing the deformations.
In addition, liquid transport in the material should be slow enough such that the sample can
be considered approximately stationary during a single tomographic scan. The deformation
analysis was successfully compared with numerical solution for a rubber test sample under axial
compression. The liquid content analysis was compared with gravimetric results from axially
wetted and sliced cylindrical bentonite samples. The results showed relatively good accuracy
in the interior parts of the sample. The method requires calibration with samples of known
solid and liquid partial densities. The plausible sources of errors in the method are related to
conical X-ray beam geometry, false displacements found by deformation analysis algorithm and
instabilities in tomographic device. While the primary motivation and field of application in
this work has been the study of the hydromechanical properties and swelling of bentonite clay,
the developed method is potentially applicable in also other materials and processes involving
liquid transport and deformation.
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Betonisten ratapolkkyjen vasytyskuormituskokeet

Tommi Rantala, Olli Kerokoski ja Antti Nurmikolu

Tiivistelma. Visytyskuormituskokeissa kuormitettiin kayttamattémia suomalaisia betonisia
ratapolkkyja B97 ja BP99. Kuormituskokeiden tarkoituksena oli selvittdd ratapdlkkyjen
vasymisominaisuuksia ja vasymisen vaikutusta ratapolkyn jaykkyyteen. Lisdksi tutkimuksessa
arvioitiin halkeaman merkitystd. Kuormitustasot valittiin siten, ett4d vasymisen merkitystd
todellisessa kayttotilanteessa voitiin arvioida. Kuormituskokeista johdettu vasymisraja ja
laskennallinen halkeilukestavyys ovat selvésti suurempia kuin kenttdkokeissa mitatut rasitukset.
Raiteessa  sijaitsevien ratapdlkkyjen  murtuminen liikennekuormituksessa  véasymisen
vaikutuksesta on siis hyvin epatodennakaista.
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Seismic analysis of a liquid-filled shell structure

Jussi-Pekka Matilainen' and Jari Puttonen®
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Summary. The purpose of this study is to introduce a numerical technique for analysing a
liquid-filled shell structure under earthquake ground motions. Prescriptions of the EN 1998 to
the representation of earthquake ground motion as accelerograms are explained. Accelerograms
representing the ground motion are generated by matching recorded accelerograms to a response
spectrum and, alternatively, artificial accelerograms are generated for reference. For the
numerical simulations, structures are treated with traditional Lagrangian formulation while the
liquid is represented by arbitrary Lagrangian-Eulerian (ALE) formulation. Governing equations
of the ALE formulation are introduced. An industrial-sized liquid-filled tower subjected to both
the matched and artificial accelerograms is analysed. Horizontal deflections of both the liquid-
filled and empty towers due to accelerograms are determined. As a result of this study,
information is gained from both the effect of OIground motion selection process and liquid fill on
the structural response of the tower. This study demonstrates that the fluid-structure interaction
significantly affects the dynamic behaviour of a structure during a seismic event.

Key words: EN 1998, earthquake ground motions, arbitrary Lagrangian-Eulerian, ALE, fluid-
structure interaction, FSI

Introduction

The European seismic design code EN 1998 [1] introduces two different methods for the
selection of earthquake ground motions. First, a set of earthquake events are selected from the
Pacific Earthquake Engineering Research Center (PEER) [2] Ground Motion Database based on
surface-wave magnitude (M) and shear-wave velocity (vs3). The natural accelerograms are
matched to the elastic response spectrum in order to fulfil the spectrum-compatibility
requirements and scaled to the design ground acceleration, a4, in order to correspond the desired
seismic zone. Second, artificial earthquake accelerograms are generated for reference.

For problems with both fluids and solids, Eulerian formulation is used for the fluid part and
Lagrangian formulation for the structure part, and a coupling algorithm known as Euler-
Lagrange coupling is employed between them. Since the Eulerian mesh is stationary, it must be
large enough to enclose the entire fluid domain of interest. In order to optimize the Eulerian
mesh, advantage may be taken of arbitrary Lagrangian-Eulerian (ALE) formulation in which the
Eulerian mesh moves in an arbitrary manner.

A numerical simulation for the liquid-filled shell structure under earthquake ground motions
is carried out with Abaqus/Explicit [3], which is an explicit dynamics finite element program.
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Selection of earthquake ground motion records

EN 1998 prescriptions

Within the scope of EN 1998 the earthquake ground motion at a given point of the ground
surface is presented by an elastic ground acceleration response spectrum. However, the
description of the seismic motion may be made by using artificial and recorded or manipulated
accelerograms [4]. According to the EN 1998, the sets of accelerograms that are selected must
satisfy the following criteria:

1. The mean of the zero period spectral response acceleration values has to be higher
than the value a,4S for the site in question, where ag is the design ground acceleration
and S is the soil factor.

2. The mean of the 5 % damped elastic spectrum that is calculated from all time
histories should be no less than 90 % of the corresponding value of the 5 % damped
elastic response spectrum, in the range of periods between 0.2T; and 2T, where T,
is the fundamental period of the structure in the direction where the accelerogram is
applied.

3. A minimum of three accelerograms has to be selected in each set. When three
different accelerograms are used, the structural demand is determined from the most
unfavourable value that occurs from the corresponding dynamic analyses. On the
other hand, in case that at least seven different records are used, the design value of
the action can be derived from the average of the response quantities that result
from all the analyses.

In this study, it is assumed that the site of interest is located on an area of high seismicity
(Ms>5.5) which imposes the use of Type 1 spectrum for horizontal ground motions. In addition,
it is assumed that the reference peak ground acceleration on type A ground, ag, corresponding
to the seismic zone is set to 0.40g and the underground conditions correspond to the ground type
B. An importance factor v, equal to 1.0 is assigned, resulting in a design ground acceleration on
type A ground ag=y,ag. Based on this information, the elastic horizontal (S;) response spectrum
prescribed in EN 1998 is established for 5 % viscous damping as a function of the vibration
period of linear single-degree-of-freedom system (T).

Recorded accelerograms

Based on the assumed site of interest in this study, PEER Ground Motion Database was queried
to find seven earthquake events with M>5.5 and 360 m/s < vs3 < 800 m/s that best match the
Type 1 horizontal elastic response spectrum for a class B site. The selected earthquake events,
along with their NGA numbers, dates, recording stations, distances of the recording stations to
the rupture planes (R,) and seismogenetic parameters (Ms, Vs 30) are listed in Table 1.

After the selection of earthquake events from the database, accelerograms are matched to
the elastic horizontal spectrum and scaled to the design value a,=0.40g with the SeismoMatch
[5] software, which uses the wavelets algorithm. Comparison of the difference between the
matched horizontal spectra and the elastic horizontal spectrum is shown in Figure 1.

Artificial accelerograms

In addition, the SeismoArtif [5] program is employed for the generation of seven artificial
accelerograms compatible with the horizontal response spectrum.
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Figure 1. Comparison of the horizontal matched acceleration spectra to the elastic horizontal
spectrum, EW-direction (East-West).
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Arbitrary Lagrangian-Eulerian and Euler-Lagrange coupling

Governing equations of the ALE formulation

Governing equations of the ALE formulation are based on conservation laws which are a group
of fundamental equations of continuum mechanics that must always be satisfied by physical
systems. The conservation laws relevant to the ALE formulation are the mass, momentum and
energy conservation. [6]

Adopting the notation used by Benson [7], the spatial coordinates of a point are denoted %,
velocity of the material is 2, velocity of the reference coordinates is 7, and their difference, the
convective velocity, is w = 1 — v. Both the material and reference coordinate velocities, 2zt and
v, are expressed with respect to the spatial coordinates. In addition, the Cauchy stress is denoted
[o] and specific body force is b while the state variables p and e denote the density and internal
energy per unit mass, respectively. The superscript r is added to the state variables p and e or
material time derivative 2 when they are expressed as a function of the reference coordinates.

The governing equations for mass, momentum and energy, respectively, are given by
equations (1) to (3) as

op' ou, op

oo, w2 1

o Pox ox @
our 60'". ou.

1 = —+ b— W.—I 2
o " ax, TN @)
oe' ou, oe
= =c.—+ phu — pW, — 3
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Governing equations of the ALE formulation are solved by a method known as operator
splitting which breaks the partial differential equations into a series of simpler ones that are
solved sequentially. In this approach, the computation of ALE equations is divided into two
phases for each time step. First, the solution is advanced in time by a Lagrangian step in which
the mesh moves with the material. In this step, the changes in velocity and internal energy due
to the internal and external forces are calculated. The second step, called Eulerian step,
computed the transport of mass, energy and momentum across element boundaries. During the
Eulerian step, the mesh that was displaced in the Lagrangian step is remapped back to its
arbitrary position. There is no time step associated with the Eulerian step. In the Lagrangian
step, velocity of the reference coordinate system v equals the material velocity u, resulting in
w = 0 and mass is automatically conserved. Thus, the governing equations (1) to (3) in the
Lagrangian step simplify to
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In the Eulerian step, Van Leer transport algorithm is used in transporting the state variables.
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Seismic analysis of a liquid-filled shell structure

Applicability of the ALE formulation and Euler-Lagrange coupling is put to an industrial level
test by analysing a liquid-filled tower under earthquake accelerograms.

The tower is made of concrete with a density of 2500 kg/m?®, elastic modulus of 30 GPa and
Poisson’s ratio of 0.2. Isotropic linear elastic material model is used to represent the concrete.
The tower has a radius of 3.125 m at the bottom and a radius of 6.250 m at the top. Shaft of the
tower is 42 m high while the total height is 60 m and the wall thickness 0.4 m. The tower is
filled up to a height of 54 m and the Mie-Griineisen equation of state with a bulk modulus of 2.2
GPa is used to represent the water. Viscosity is not taken into account. Masses of the empty
tower and the liquid are 1093 and 3030 tonne, resulting in a total mass of 4123 tonne.

Arbitrary Lagrangian-Eulerian (ALE) formulation is employed to represent the water
domain which follows motion of the tower as a rigid body. Three-dimensional, 8-node Eulerian
elements of type EC3D8R are used to model the water. The tower, on the other hand, is
modelled with 4-noded, quadrilateral shell elements of type S4R. Finally, the bottom plate is
modelled with rigid shell elements of type R3DA4.

The rotational degrees of freedom are constrained at the tower base, thus enabling the
acceleration in the orthogonal directions. A vertical field of 1.0 g is applied to give a realistic
hydrostatic pressure in the water. In order to enforce Euler-Lagrange coupling, the Lagrangian
mesh for the tower, the Lagrangian mesh for the tower structure is embedded in the ALE mesh
for the fluid. The finite element model of the liquid-filled tower is shown in Figure 2.

Dynamic time-history analyses are conducted under both the matched and artificial
accelerograms with 0.40 g peak acceleration. As response parameters, time-histories of the
horizontal deflections are recorded up to 20 s in order to evaluate the effect of liquid-fill and
record selection process on the results.

Liguid:
EC3D2R Eulerian elements

Tower:
S4R shell elements

Bottom plate:
R3D4 rigid elements

Figure 2. Finite element model of the liquid-filled tower.
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Conclusion

A numerical technique for analyzing a liquid-filled shell structure subject to earthquake ground
motions is presented in this study. Selection process of accelerograms representing the seismic
ground motion according to EN 1998 is introduced. Suitable earthquake events are chosen from
the PEER database, matched spectrum-compatible and scaled to the desired level of ground
acceleration. Artificial accelerograms are generated for reference.

ALE formulation of the finite element method is used for the fluid domain while traditional
Lagrangian formulation is used for the structure domain. Coupling between the fluid and
structure domains is achieved through Euler-Lagrange coupling algorithm. The governing
equations of the ALE formulation are introduced.

Earthquake accelerograms and ALE formulation are applied to simulate the effect of fluid-
structure interaction on the structural response for a liquid-filled shell structure. This study
demonstrates that ALE formulation is a convenient tool for analysing dynamic FSI problems in
a single model for real-sized complex structures.
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Performance-based seismic optimization design

Qimao Liu and Juha Paavola

Summary. Performance-based engineering is to design, evaluate and construct, as
economically as possible, the engineering facilities that can meet the uncertain future demands
of owner-users and natural hazards. The performance-based design is believed to be the
promising method in earthquake engineering, wind engineering and fire engineering. The paper
takes the performance-based seismic optimization design as an example to describe the
philosophy of the performance-based design method. First, the basic concepts of performance-
based seismic design are introduced. Second, how to quantify the uncertain future hazard levels,
i.e., to obtain the future demand diagrams, is presented. Third, how to quantify the capability of
the structures to resist the future hazard, i.e., to achieve the capability diagram, is in detail.
Fourth, how to evaluate the performance of the structures at different future hazard levels, i.e.,
to catch the performance points, is described. Finally, the optimization modelling is proposed
for the performance-based design. The performance-based design of steel frame is
demonstrated. The limitations of the current performance-based seismic design method are also
discussed.
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Shear bands in soft clays: strain-softening behavior
in finite element method

Marco D’Ignazio and Tim L&nsivaara

Summary. Strain-softening behavior of soft sensitive clays is very often neglected in
geotechnical design. During undrained loading, such materials show a dramatic loss of strength
after the peak stress, until residual strength is reached at large strain. As a consequence, local
failure occurs and plastic strains localize in a shear band. Shear band modeling in Finite
Element Method requires a regularization technique to overcome mesh dependency. NGI-
ADPSoft2 model is able to simulate the post-peak softening behavior of sensitive clays. In this
study, the influence of strain softening on the stability of sensitive clay slopes is studied using
the NGI-ADPSoft2 model. The analyses are conducted using the finite element software
PLAXIS 2D AE. The advantages of using a strain-softening soil model are discussed.
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Summary. Settlement of clay is a combination of several processes. The applied load causes
excess pore water pressure in clay. Usually the largest part of settlement is called (primary)
consolidation settlement, which is caused by pore water flowing out of clay. At the same time
also the creep of soil structure (secondary consolidation) occurs. In this paper a model for
calculating simultaneous primary and secondary settlements is represented. Model is derived
from Darcy’s law applied to measured pore water pressure data. Parameters can be determined
by using a modified oedometer apparatus.

Key words: consolidation, clay, pore water pressure, oedometer test

Introduction

Applying load causes excess pore water pressure. Draining of pore water from clay layer leads
to decrease in volume known as primary consolidation. However, not only draining of pore
water but also changes in soil skeleton cause volume decrease and thus settlement. This process
is called secondary consolidation or creep. In geotechnical engineering, rate of settlement
(primary settlement) of a structure founded on clay (or other cohesive soil) is generally
calculated using either Terzaghi’s [10] or Janbu’s [5] theory of consolidation. Terzaghi’s theory
of consolidation is based on pore water pressure —equation, which describes changing of pore
water pressure u as a function of time t and depth z.

Changes of pore water pressure are usually described by partial differential equations
(PDE). Almost all partial differential equations governing diffusion contain only first order term
of time, thus only the rate of increasing of pore water pressure u is included. The simplest is
Equation 1 which was first introduced in geomechanics by Terzaghi in the 1920°s [10].
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Janbu’s [5] theory of consolidation is based on distribution of remaining degree of deformation.
Terzaghi’s and Janbu’s theories lead to the identical solution in one-dimensional flow- and
deformation conditions which take place in oedometer test. Various assumptions limit
applications of the two theories. The main assumptions in Terzaghi’s one-dimensional theory of
consolidation are: (i) the soil is homogeneous and fully saturated, (ii) solid particles and water
are incompressible, (iif) compression and flow are one-dimensional, (iv) strains are small, (v)
Darcy’s law is valid, (vi) the coefficient of permeability and the coefficient of volume
compressibility remain constant and (vii) there is a unique relationship between void ratio and
effective stress [9].

Oedometer test

Standard oedometer test

For almost 100 years oedometer tests have been used for the determination of calculation
parameters for settlement analysis for structures constructed on clay (cohesive soil). Oedometer
test is carried out on a cylindrical test specimen that is confined laterally by a rigid ring [3]. In
incrementally loaded standard oedometer test only height of the sample and time are measured
in several (>7) load increments. Typically the load increments are doubled once a day. In order
to help the interpretation of parameters and to reduce the effect of sample disturbance it is
recommended to include unloading and reloading cycles. Thus the duration of the test can be 2-
3 weeks.

Pore water pressure oedometer test

In the pore water pressure oedometer not only height of the sample (H) and time (t) are
measured but also pore water pressure (u) from the bottom of the sample. Thus drainage occurs
only upwards and primary consolidation takes four times longer than in a standard test, because
time for primary consolidation is dependent on the second power of drainage path. Minimizing
the duration of the test would require choosing load increments corresponding to the stress
increase caused by the structure. In this paper only pore water pressure at the bottom of the
sample is used: The distribution of pore water pressure inside the sample is not needed in this
study.

The development of the pore water pressure during different load increments is represented
in Figure 1. After the loading the pore water pressure increases until it reaches its maximum
value after few minutes. In all consolidation models, however, it is assumed that the pore water
pressure reaches its maximum value immediately after the loading. Furthermore, the pore water
pressure does not reach the applied load (Ac;) as it is assumed in classical soil mechanics.
During the increase of pore water pressure remarkable part of primary consolidation occurs
(Figure 2). In Figure 2 also Brinch-Hansen’s [2] formula representing Terzaghi’s theory of
consolidation is fitted to observations, which indicates that Terzaghi’s theory can be applied and
pure secondary consolidation starts after 5-6 hours.

As seen in Figure 2, the pore water pressure has a peak value in the early stage of the
consolidation. This is caused by two processes: first the pore water pressure rapidly increases to
match the applied load and then at the same time the pore water pressure decreases due to water
flowing out of the sample.
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Figure 1. Observed pore water pressure in oedometer test of HUT-Clay. [8]
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Figure 2. Time-dependent behaviour of HUT-Clay in oedometer test. [8]

Separation of primary and secondary settlements

Secondary consolidation (creep) is supposed to start immediately after loading, even before pore
water pressure reaches its maximum value. That is obvious near the upper part of the sample
where drainage is arranged through the porous stone. The primary and secondary consolidation
can be separated from each other by deriving Darcy’s law by replacing the hydraulic gradient
with pore water pressure. In this method the decrease of water permeability can also be taken
into account.

There are several time-settlement functions which are based on a simple first order
differential equations. Usually there are two parameters to be solved, and they depend on the
boundary conditions. Primary settlement can be calculated with Equation 2:

Spri=kK J u(t)dt, )

where s, is primary settlement. In Equation 2 parameter k describes changes in rate of

settlement v with respect to u
Some theories of consolidation include two damping factors acting simultaneously (one for
primary consolidation and one for creep). Especially Kondner’s solution [6], [7] is very
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powerful in practice, when for example one has to predict future settlements from measured
data in structures.
Solution of Equation 1 contains only one term of decreasing pore water pressure u with time
t. Thus there cannot be any peak values of pore water pressure. The changes of pore water
pressure u can be calculated using a modified version of Equation 1, which includes better all
processes during the loading:
ou N ou N &u 3)
— +o; — +oL,u=¢, —,
o ot Yoz

where a4, a » and ¢, are parameters and z is depth. If distribution of u with respect to the
variable z is not taken into account, the solution for u(t) with peak value u, is

u(t)=-ugeMt+u et 4

and the solution of u with respect to the variables z and t is

2
('uO e}q t +u0 ekzt), e(-z /4cyt)
y/ 2meyt

where A, and A, are the roots of characteristic equation of Equation 3 (left side) and uj, is the
peak value pore water pressure (,which in ideal case is the applied load).

If Equation 2 is assumed to represent primary settlement only, it is possible to predict the
creep parameter(s) since the remaining settlement is supposed to be only creep. The creep
parameters can be the determined either by subtracting calculated primary settlement values
from observed total settlement or by fitting the observed data to creep function (as has been
done here).

The primary settlement can be calculated with Equation 2. In Equation 2 the (graphical)
integral of u(t) can be obtained directly from measured data. The parameter k is different for
increasing and decreasing pore water pressures (ki, k;). The k values can be obtained from
measured rate of settlement and pore water pressure as represented in Figure 3. At first, a line
parallel to rate of settlement at the end of the load increment is drawn from origin (step 1). Next,
the line is cut at the point of peak value of pore water pressure uq (step 2). Finally, a line parallel
to rate of settlement before the peak value is drawn (step 3). The rate of settlement at the
beginning of the load increment cannot be used as Darcy’s law is not valid at such low,
increasing u values. The slope of first line gives the k, value for settlement caused by decreasing
u and the slope of other line gives the k; value for settlement caused by increasing u.

Total settlement of the sample in oedometer test is the sum of primary settlement (Equation
2) and creep settlement defined by the creep function (S;):

uz)= )

Stot:Spri_i_scr =k f u(t) dt +Scr,f( 1 'e)%t):sinc,f( 1 'ekl t) +Sdec,f( 1 'exﬂ)—}_scr,f( 1 'e}%t) ) (6)

where sy = total settlement, s, = creep (settlement), sicfand Sqrare final values of primary
settlements (increasing and decreasing respectively) and sq¢ is final value of creep. The
parameters of Equation 6 are determined by by fitting the observed data of s, u and t to
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Equations 2, 4 and 6. Thus primary settlement can be calculated by using either Equation 2 or
Equation 6 (if creep has been calculated).

Calculated primary settlements (u increasing and u decreasing), calculated creep settlement
and both calculated and observed total settlement are represented in Figure 4. The primary
settlements have been determined with Function 2 as described earlier. Creep parameters have
been calculated with fitting the observed data to the creep function at the time when pore water
pressure is 0 or constant (when settlement is solely caused by creep). The creep function used
represents theory of consolidation by Gibson & Lo [4]. It is also possible to calculate creep
settlement by subtracting calculated primary settlement values from observed total settlement
values. Calculated total settlement is the sum of calculated primary settlement and creep.

Pore water pressure calculated with Equation 4 is represented in Figure 2. The parameters
(A1 and L) are the same as in Equation 6.

List of parameters of Equations 4 and 6 is shown in Table 1.

Site:  HUT
Depth: 2,00-2,03 m
No.: 6230u

o1, kPa: 49

+ Rate of settlement

—Rate of settlement
caused by pore water
pressure dissipation

rate of settlement, v [mm/h]

25

pore water pressure, u [kPa]

Figure 3. Pore water pressure versus rate of settlement of HUT-Clay in oedometer test. [8]
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No.: 6230u
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——primary settlement
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....... primary settlement
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settlement, s [mm]

—Total Settlement

20 Observed total

time, t [h] settlement

Figure 4. Observed and calculated settlements of HUT-Clay in pore pressure oedometer test.
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Table 1. List of pore water pressure and settlement parameters. HUT-clay. Test number 6230u.

Sinc Sdec Ser Uo 7“1 7“2 7“3 kl k2
(mm) (mm) (mm) (kPa) (1/h) (/)  (A/h)  ((mm/h)/kPa) ((mm/h)/kPa)
0,18 0,53 0,38 21 90 -045 -0,086 0,217 0,02

Conclusion

The observations show that the time-settlement behaviour of HUT-Clay from Otaniemi is
separated to primary and secondary phases from the very beginning of the test. This behaviour
can be calculated with a combined settlement model Equation 6.

The development of the modelling is based on the measured pore water pressure of an
undisturbed sample tested with pore water pressure oedometer. The model is derived from
Darcy’s law.

All the parameters are derived from one oedometer test results. In this article the parameters
for one load increment are determined from 24 hours load increment. The duration of load
increment shall be determined in each case based on measured pore water pressure, which is
dependent on the permeability of clay and also the height of the sample.

In the future the development of the calculation model continues. This development will be
based on the experiments with different soils. Test procedure shall also be developed.
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Rautatiekiskon sivukuluneisuuden vaikutusten
mallintaminen

Tiia-Riikka Loponen, Pekka Salmenperd, Antti Nurmikolu ja Jari Mé&kinen

Tiivistelma. Téassa artikkelissa kasitelladn rautatiekiskon sivukuluneisuuden vaikutusta rautatiekaluston
kulkuun. Kiskon sivukuluminen kasvattaa raideleveytta, jolloin myos raidevalys kasvaa. Raidevalys sdatelee
laippakosketuksen syntya, ja raidevalyksen kasvaminen mahdollistaa p{(jrékerrglle, eli akselin yhdistamille
Ey('jrllle, suuremman sivuttaissuuntaisen liikkeen. Artikkelissa tutkitaan kiskon sivukuluneisuuden vaikutusta
aluston kulkuominaisuuksiin ja rataan kohdistuviin rasituksiin erityisesti mallinnuksen ja simulointien
avulla. Mallinnus toteutetaan yhdelld kalustotyypilla: Ex-matkustajavaunulla, lJ;oka on yksikerroksinen IC-
vaunu. Sivukuluneisuuden vaikutusta kaluston kulkuun tarkastellaan eri kuluneisuusasteen omaavien
kiskoprofiilien avulla. Kiskoprofiileiksi on valittu kulumaton kiskoprofiili, lievasti kulunut Kiskoprofiili,
voimakkaasti kulunut kiskoprofiili ja erittdin voimakkaasti kulunut kiskoprofiili. Mallinnus tehdaan suoralla
ja kaarteissa, ja kaarretarkastelussa huomioidaan erilaiset kaarresdteet. Vaihdealueet on rajattu taman
tarkastelun ulkopuolelle. Simulointien avulla saadaan selville, ettd kiskon sivukuluneisuudella ei ole
merkittavaa negatiivista vaikutusta kaluston kulkuun ja rataan kohdistuvaan rasitukseen.

Avainsanat: liikkuva kalusto, kiskon sivukuluminen, pyoréa-kisko-kontakti, simulointi,
kalustomallinnus, monikappaledynamiikka
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Summary. Determination of a critical point is the primary problem in structural stability analysis.
Mathematically it means solution of a non-linear eigenvalue problem together with the equilibrium equa-
tions. Several techniques exist to compute the critical equilibrium states and the corresponding modes.
In this paper direct algorithms to solve the critical equilibrium state are discussed and a hybrid algorithm
is proposed, which hopefully has enlarged domain of convergence.

Key words: computational stability analysis, finite element method, critical points, eigenvalue problem,
non-linear systems

Introduction

Proper stability analysis of structures, or other systems in various physical disciplines, requires
the computation of the critical point and its sensitivity analysis, which in structural stability
analysis is called as imperfection sensitivity analysis. In practice, the stability analysis is most
often performed with the following two-step procedure. First, the linearized stability eigenvalue
problem is computed, where the linearization is performed with respect to the unloaded, un-
deformed state. Second, a full non-linear analysis is performed, with an imperfect structure
through some continuation (path-following) algorithm. The imperfection is usually taken as a
combination of the lowest critical modes. Success of such an approach is very much depending
on the proper choice of the perturbation. In most commercial finite element (FE) codes, this is
the only possible approach for stability analysis.

The non-linear stability eigenvalue problem consists of solving the equilibrium equations
simultaneously with the criticality condition. The first appearance of this idea seems to be from
1973 by Keener and Keller [1]. In their approach the criticality condition is augmented as an
eigenvalue equation. Similar approaches have been used also in Refs. [2, 3, 4, 5]. Another
approach uses a scalar equation indicating the criticality [6, 7] or expansion to a higher order
polynomial eigenvalue problem [8, 9]. In the context of parametric investigations of instability
behavior, several methods for defining and handling criticality have been discussed in [10, 11].

Stability eigenvalue problem

The problem of finding a critical point along an equilibrium path can be stated as: find the
critical values of g, A and the corresponding eigenvector ¢ such that

f( 7)‘) = 0
Ll 0 .
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where f is a vector defining the equilibrium equations and f’ denotes the Gateaux derivative
(Jacobian matrix) with respect to the state variables q, i.e. the stiffness matrix. At the critical
point the equilibrium equations (1); has to be satisfied together with the criticality condition
(1)2, which states the zero stiffness in the direction of the critical eigenmode ¢. Such a system
is considered in Refs. [3, 12, 5].

The equilibrium equation (1); constitutes the balance of internal forces r and external loads
p, which is usually parameterized by a single variable A, the load parameter, defining the
intensity of the load vector:

flg,A) =r(q) — Ap.(q) (2)
If the loads do not depend on the deformations, like in dead-weight loading, the reference load
vector p, is independent of the displacement field g. A more general case, with p = p(}, q) is an
obvious expansion of the above expressions. A discussion on different loading control variables,
and their effects on stability conclusions is given in [13].

The system (1) consists of 2n+ 1 unknowns, the displacement vector g, the eigenmode ¢ and
the load parameter value A at the critical state. Since the eigenvector ¢ is defined uniquely up to
a constant, a normalizing condition can be added to the system (1). In addition, some stabilizing
conditions might also be needed. In general, the full augmented system can be written as

A

Fla.X) =F(q, )+ folg,A) =0
9(¢:9,A) =1 h(qg. 0.2 =f'(a,\)¢+ ho(d,A) =0 (3)
c(q,9,A) =0,
where A is a vector of control and auxiliary parameters and ¢ is a vector of constraint or
stabilizing equations: the dimension of these vectors is p > 1. The additional functions f, and

hg are chosen such that f, = hg = 0 at the solution point. A Newton step for the approximate
solution of (2) can thereby be written as

A~

Kf 0 P 5q f
Z K, N ép p=—4q h ¢, (4)
Cq C¢ C)\ oA (&
where 9 5 5
7 — 7 07 _ /:76 :76 :76
[f ¢] ’ Cq c 8q’ o) 8¢? C)\ 8)\ (5)
Ohg of oh
= ! = _— = — = —
Kf—K+f0, Kh—K+8¢, P N and N E3N (6)

Computation of the matrix Z requires second order derivatives of the residual. In the literature,
these are usually obtained by numerical differentiation. For the geometrically exact Reissner’s
beam model, an analytical derivation of the Z-matrix is given in [14].

For the eigenvector normalization different constraint equations can be used, [5, 14, 15].

The system (4) is usually solved by a block elimination scheme together with direct linear
solvers. Utilization of iterative linear solvers has been discussed in [15].

The key problem in solving the extended system (3) with the Newton’s method starting
from the unloaded undeformed equilibrium state is that the Newton’s method is only locally
convergent. Therefore the domain of attraction can be small and it is likely that the initial state
does not belong to it.

Hybrid algorithm

A simple way to circumvent the problem related to the small convergence domain is to use a
continuation algorithm to get closer to the domain of attraction of the extended system. A
single “continuation step algorithm” for critical point computation could be constructed in the
following way.
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Compute a crude approximation to the lowest critical load and the corresponding eigen-
vector.

. Use that point as a starting point of the orthogonal trajectory method [16, 17, 18] to get

a nearby point on the equilibrium path.

From the computed equilibrium state, use the extended system (3) for computing the
critical point.

It is believed that such an algorithm is more robust, but not computationally more demanding
than the pure direct procedure.
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Menetelma lentokoneen ohjausservon sisdisen
vuodon havaitsemiseksi

Jouko Laitinen

Tampereen teknillinen yliopisto, Kone- ja tuotantotekniikan laitos
PL 589, 33101 Tampere, jouko.laitinen@tut.fi

Tiivistelmd. Lentokoneen ohjausservon sisdistd vuotoa, eli esimerkiksi hydraulisylinterin
vuotoa mannan tiivisteiden ohi, on vaikea havaita. Vuodosta seuraa servon nopeuden ja voiman
menetystd, jolla varsinkin lentokoneessa voi olla vakavat seuraukset. Téllaisesta vuodosta ei ole
nakyvissd ulkoisia merkkeja, eikd vuodosta johtuvaa voiman ja nopeuden menetysta
normaalikdytdssa valttamatta huomaa. Kuitenkin suurta voimaa tai nopeutta vaativissa
lentoliikkeissé ohjausservon riittdmaton suorituskyky voi aiheuttaa tilanteen, jossa ohjainpinnan
aerodynaamiset voimat eivét riita pitdimaén lentokonetta ohjaajan hallinnassa.

Tassa julkaisussa esitellddn menetelma lentokoneen korkeusvakaajan servon sisdisen vuodon
havaitsemiseksi. Menetelmd perustuu lentokoneen jérjestelmien tuottaman prosessidatan
tulkintaan ja analysointiin. Datasta voidaan laskea ohjainpinnan saranamomentti, eli
ohjainpinnan liikuttamiseen vaadittavan vaantdmomentin suuruus kulloisessakin korkeudessa,
nopeudessa ja lentotilassa. Laskettua saranamomenttia verrataan ohjauspinnan asennon
virheeseen, eli ohjauspinnan komentosignaalin ja saavutetun asennon valiseen eroon. Mikali
virhe on huomattava tilanteissa joissa ohjauspinnan vaantdmomentin tarve ei ole suuri, on syyta
epéill& ohjauspinnan servon sisaista vuotoa.

Avainsanat: ohjausservo, hydraulisylinteri, sisdinen vuoto

Johdanto

Hornet F/A-18 lentokoneen korkeusvakaimen (stabilaattorin) komentosignaali (Pitchcommand)
ja kummankin korkeusvakaimen asento (Left stab position, Right stab position) rekisterdidaan
20Hz:n taajuudella, eli 20 kertaa sekunnissa. Korkeusvakaimien servojen asentotietoja tutkittiin
laskemalla kuinka paljon korkeusvakaimien asennot poikkeavat komentosignaalin arvosta. Kun
korkeusvakaimen servojen laskettuja komento-asentoeroarvoja (korkeusvakaimen komennon ja
saavutetun asennon ero) verrattiin, huomattiin etté niissa on suuria eroja lennon eri vaiheissa.

Ihannetapauksessa komento-asentoeron arvo on nolla, eli vakaimen asento vastaa sille
annettua kaskyd. Kaytdnndssa komento-asentoeroarvo poikkeaa enemman tai vdhemman
nollasta ja on joko negatiivinen tai positiivinen. Arvon poikkeaminen nollasta tarkoittaa
virhettd, eli sitd ettei korkeusvakain pysty taysin toteuttamaan ohjauskéskya.
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Aluksi arveltiin suurten poikkeamien tarkoittavan sitd, ettd stabilaattorin servo on viallinen.
Kun useilta lennoilta kerattyd dataa vertailtiin, huomattiin, etta lennoilla, joilla oli kéytetty
paljon suuria ja nopeita ohjainpoikkeutuksia (esim. taitolento), myds komento-asentoeroarvot
olivat suuret.

Koska komento-asentoerosta ei voida suoraan paatella ohjainservon kuntoa, asiaa tutkittiin
vertaamalla komento-asentoeroa ohjaimen ké&antdmiseen tarvittavan voiman suuruuteen.
Ohjaimen kaantdmiseen tarvittava voima, tarkemmin sanottuna saranamomentti, voidaan laskea
ohjainpinnan  mitoista ja lentokoneen nopeudesta, korkeudesta ja ohjainpinnan
saranamomenttikertoimesta. Saranamomenttikerrointa ei voitu suoraan laskea, vaan se taytyi
selvittdd tuulitunnelikokeiden perusteella piirretyistd kuvaajista. Saranamomenttikertoimeen
vaikuttaa lentokoneen kohtauskulma, ohjainpinnan poikkeutuskulma ja sivuluisu, joka oletettiin
téssé tarkastelussa nollaksi.

Ajatuksena tdssé tarkastelussa on se, ettd kun tarvitaan suurta voimaa ohjainpinnan
kaantamiseen, voidaan hyvéksya suurempi virhe. Jos taas voiman tarve on pieni, mutta virhe on
suuri, kyseesséa saattaa olla ohjainservon tai hydraulijarjestelman vika.

Tarkastelun kohteeksi otettiin lento, jolla koneen jérjestelma antoi varoituksen oikean
korkeusvakaajan servon viasta, jolloin voitiin olla varmoja, ettd kyseessa oli varmasti servon
toimintahairio.

Kyseinen lento oli koelento, jonka aikana koneen oikea moottori sammutettiin ja
kaynnistettiin - uudelleen. Ohjainservon toimintaa tarkasteltiin kahdessa kohtaa lentoa:
ensimmaiseksi kohdaksi valittiin kohta huomattavasti ennen hairiétd ja jossa molemmat
moottorit ovat kdynnissa, toiseksi kohta juuri ennen toimintahairioté ja jossa oikea moottori oli
sammutettu. Syy, miksi toinen tarkastelukohta oli juuri ennen héiri6ta, eikd sen aikana, johtui
siitd, ettd haluttiin n&hda, voidaanko lahestyvé hairid havaita ennakolta.

Saranamomentin laskeminen

Ohjainpinnan saranamomentti laskemiseksi tarvitaan kuvassa 1 esitettyjé arvoja ohjainpinnasta.
Saranamomentti laskettiin yhtél6illa (1) ja (2). Laskentaa voitiin yksinkertaistaa korvaamalla
yhtéldssa olevat ohjainpinnan fyysiset mitat kertoimella yksi, koska tarkastelun kohteena on
saranamomentin suhteellinen arvo (ohjainpinnan koko ei muutu, kun saranamomentin arvoja
lasketaan lennon eri pisteissd) [1].

HM .

Kuva 1. Ohjainpinnan kulmat o = kohtauskulma virtaukseen ndhden, 6 = ohjainpinnan
poikkeutuskulma. HM = saranamomentin suunta ohjainpinnan sarana-akselin suhteen.
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HM =0.5pV2C,,S,c, (1)

Yhtalossa (1) termin 0.50V > kertoimet p = ilman tiheys ja V = nopeus saadaan koneen
lentoarvojen rekisteroinnisté. Kertoimet S, = ohjainpinnan pinta-ala ja ¢, = ohjainpinnan jéanne
asetetaan  ykkosiksi, koska tarkastellaan  keskenddn samanlaisten  ohjainpintojen
saranamomentteja.

C, =C, +C, @,+C, &, 2)

Yhtélossé (1) esiintyva saranamomenttikerroin C,, lasketaan yhtalostd (2). Ohjainpinnan
ominaisuuksia eri lentotiloissa kuvaavia kertoimia Ch, Cy, jaC,_ei ole saatavilla, vaan
saranamomenttikertoimen C,, arvo selvitettiin koelento;en perusteella tehdysta kuvaajasta,
kuva 2 [2] [3].

Integrated Stabilator Loads, B = 0 deg

“-100 -5.0 0.0 5.0 10.0 15.0 20 250 30.0 35.0
Angle of Attack (degrees)

Kuva 2. Saranamomenttikertoimen arvot tuulitunnelikokeiden perusteella laaditussa
kuvaajassa. Pystyakselilla saranamomenttikertoimen arvo, vaaka-akselilla koneen
kohtauskulma. Eri kayrdt kuvaavat saramomenttikertoimen muutosta ohjainpinnan eri
poikkeutuskulmilla [3].
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Komento-asentoeron vertaaminen ohjaimen saranamomenttiin

Komento-asentoeron eli halutun ja saavutetun ohjaimen asennon eli virheen suuruutta verrattiin
kulloisessakin lentotilassa tarvittavan saranamomentin suuruuteen. Vertailu tehtiin jakamalla
virheen suuruus saranamomentin lasketulla arvolla ja normeeraamalla tulos. Jotta tuloksista
voitiin piirtdd frekvenssikuvaaja, laskennan tulokset jaettiin 50 luokkaan.

Kuvassa 3 ja 5 on kuvattu vasemman ja kuvassa 4 ja 6 oikean korkeusvakaajan servon
komentoasentoeron ja saranamomentin suhteen jakaumaa. Kun suhde on pieni (jakauma
painottuu lahelle nollaa), tarkoittaa se, ettd vaikka tarvittava saranamomentti on suuri, virhe on
silti pieni. Pdinvastaisessa tapauksessa (suhde on suuri) virhe on suuri, vaikka tarvittava
saranamomentti on pieni. Kuvissa vaaka-akselilla virheen ja saranamomentin suhde A6/ HM
kasvaa oikealle, pystyakselilta voidaan lukea kunkin luokan on suhteellinen osuus koko
joukosta.

AB
HM

Kuva 3. Vasemman korkeusvakaajan servon komentoasentoeron ja saranamomentin suhteen
jakauma ennen héiri6ta. Padosa arvoista, noin 95 %, on ldhelld nollaa, vaikka osa on nollasta
poikkeavia.

Ad
HM

Kuva 4. Oikean korkeusvakaajan servon komentoasentoeron ja saranamomentin suhteen

jakauma ennen hairiota. Miltei kaikki arvot ovat lahella nollaa.
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Kuvien 3 ja 4 mukaan kummakin, oikean ja vasemman, ohjausservon toiminta oli normaalia
kun molemmat moottorit olivat kdynnissé. Vaikka koneella tehtiin voimakasta liikehdint,
molempien servojen virheen ja tarvittavan saranamomentin suhde oli pieni, l1ahella nollaa. Tama
tarkoittaa, ettd vaikka ohjausservo eikd ohjainpinta saavuttanut haluttua asentoa, se voidaan
hyvaksya, jos lentotila on sellainen, ettd ohjainpinnan liikuttaminen vaatii suurta voimaa.
Téllaisessa tilanteessa ohjausservon suorituskyky tulee vastaan vaikka servo ei olisikaan
viallinen.

0 - —_ e - — - - L

Ad
HM

Kuva 5. Vasemman korkeusvakaajan servon komentoasentoeron ja saranamomentin suhteen
jakauma juuri ennen vikailmoitusta. P&4dosa arvoista, noin 94 %, on l&hell& nollaa, vaikka osa
on nollasta poikkeavia.

T T T T T

004p '

0.02p |
o -__-l-_l | [ N T - - | -

"W n 0 40 ] []

° As "
HM

Kuva 6. Oikean korkeusvakaajan servon komentoasentoeron ja saranamomentin suhteen
jakauma juuri ennen vikailmoitusta. Jakauma on suurelta osalta oikealla, mika tarkoittaa sit4,
ettd servon suorituskyky on puutteellinen.
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Kuvista 5 ja 6 voidaan ndhda, ettd oikean ohjausservon toiminnassa on vikaa. Kuvassa
komentoasentoeron ja saranamomentin suhteen jakauma on selvésti oikealle painottunut, mika
tarkoittaa sitd, ettd vaikka tarvittava saranamomentti on pieni, ohjainpinnan asentovirhe on
suuri. Téallaisessa tilanteessa ohjausservon suorituskyky ei riitd vélttdméattd normaalissakaan
lentotilassa.

Yhteenveto

Tarkastelun tuloksista voidaan paatelld, ettd korkeusperasinservon vikaantuminen on
mahdollista havaita tallennetusta perdsinservo- ja lentoarvodatasta perdsimen voimantarvetta
tutkimalla. Tamé&n mahdollistaa koneen aerodynamiikasta saatava tutkimustieto ja
lentoarvodataa analysoimalla saatavat lentoarvotiedot seka ohjainten komento- ja asentotiedot.
Nyt tehdyssé tarkastelussa havaintojen syy voi olla myds hydraulijarjestelméssd, koska toinen
moottori oli sammutettu ja hydraulipaineen tuotto ndin ollen mahdollisesti pienempéa kuin
molempien moottoreiden toimiessa. Oli syy sitten hydraulijarjestelméssa tai perdsinservossa,
tulokset osoittavat, ettd perasinservon toimintakyky oli kyseisessé tapauksessa rajoittunut. Jos
perasinservon vikatapauksissa hydraulijarjestelman vika voidaan sulkea pois dataa
analysoimalla, vika voidaan kohdistaa varmemmin perésinservon toimintaan.
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Heat release caused by the smouldering combustion of
the binder of rockwool

Perttu Leppanen®, Manuela Neri and Jari Makinen

Summary. Recently, numerous fires have started in Finland around roof penetrations of metal
chimneys. One reason for the fires is the smouldering combustion of the binder of rockwool used at
the roof penetrations of metal chimneys. The charring of the binder produces heat which can
increase the temperature in the penetration to over 100 °C. Tests which were performed on
rockwool demonstrate the heat release.
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Summary. Steel fibre reinforced concrete (SFRC) is a highly promising building material offering
durable structures alongside with the minimisation of steel consumption and construction time. Though,
its reliable application in civil engineering requires a deeper study due to complex material properties
defining its failure and related to volumetric dispersion of fibres, and a bond between the fibres and
concrete. The different fibre alignments in concrete matrix lead to anisotropic behaviour, which specifies
the tensile strength and the crack intensity of the composite. SFRC crack initiation and development,
and failure depend on the strength of the bond and interaction between the steel fibres and concrete.
The present paper focuses on the modelling of SFRC linear-elastic state considering and evaluating the
orientation distribution of fibres. In addition, the bases of SFRC failure are introduced.

Key words: steel fibre reinforced concrete, fibre orientation, constitutive equation, bond strength

Introduction

A strong interest in fibre reinforced cement-based composites (FRCC) currently appearing in
many countries can be explained by the increasing concern of construction industry on obtaining
effective solutions by more durable concrete structures and structural parts. The reduction of
steel consumption as, for example, to satisfy the serviceability limit state (SLS) with reinforced
concrete structures involving crack width control, as well as the minimisation of time and labour
required for placing the reinforcement bars become extremely significant. A possible solution
would be the use of steel fibre reinforced concrete (SFRC), which is a highly promising building
material. The use of steel fibres may allow to replace the secondary or minimum reinforcement
by steel fibres thus reducing the steel consumption. In addition, the use of steel fibres leads to a
significant reduction of construction time by avoiding reinforcement placing phase, as well as to
less dependence on skilled labour. Although, compared to the traditional reinforcing solutions,
the reliable use of SFRC in civil engineering requires a deeper study as the production of the
composite may be reasonable to move from the construction site to the concrete factory.
SFRC is made by mixing of a fresh concrete mass with various combinations of steel fibres:
either with only one type of fibres or with a mix of different types of fibres (different lengths
and geometry). The present research is concentrated on the study of concrete reinforced with
hooked-end steel fibres, figure 1. The steel fibres reinforce concrete matrix increasing its tensile
strength, crack resistance, and fracture toughness. One of the most important properties of
SFRC is the ability to control crack opening, which is due to volumetric dispersion of fibres
and bond between the steel fibres and concrete. However, the volumetric dispersion of fibres
leads to anisotropic material properties, which depend on the orientation distribution of fibres
in concrete matrix. Thereby, the modelling and the quantification of the spatial orientation
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hooked-end steel fibre used
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REINFORCED CONCRETE, (SFRC)

—

hardened

concrete{aggregéte Vi
< -end  concrete

mass bind hooked-end
steel fibres
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Figure 1. Concrete reinforced with hooked-end steel fibres. The dimensions of hooked-end steel fibres
used.

distribution of fibres is a starting point for the development of material model for SFRC. At the
same time, one of the key aspects in crack initiation and development, and, further, in failure
state of SFRC is the strength of the bond and interaction between the steel fibres and concrete.
In this paper we are focusing on modelling of SFRC linear-elastic behaviour considering and
evaluating the orientation distribution of fibres.

Assumptions for linear-elastic material model of SFRC

The concrete matrix surrounding steel fibres has a brittle failure in tension. A typical volume per-
centage (concentration) of fibres, for example, in elevated floor slabs is 1% — 2% per cubic meter
of concrete. Increasing the amount of fibres may, in some cases, not be economically reasonable
since the amount of ordinary reinforcement varies between 1.25% — 1.5%. A high concentration
of fibres usually causes clumping since only up to 2% of steel fibres can be incorporated into
fresh concrete mass using conventional practice of concreting with modern super-plasticizers [1].
The fibres can provide an effective reinforcement if their contents is in between 2% — 6% [1]. In
general, if the volume percentage of fibres stays below 2%, the functionality of fibres is limited in
controlling the opening of cracks, and the failure is brittle and may appear by the propagation
of a single crack. The described brittle failure mode was also noticed in the tested full-size floor
slabs used in the study [2, 3]. Based on the bending test, the load-deformation curves exhibited
brittle failure of four out of six slabs. The behaviour of four slabs was linear in the first loading
stage, i.e. the formation of the first crack, and dropped sharply after the achievement of the
peak load indicating a drastic opening of the first crack. Thereby, the linear-elastic state was
selected to the first step in modelling of SFRC material properties.

The tensile strength as well as the cracking intensity of SFRC depends on the alignment of
fibres. The problem to solve within the study was to measure the fibre orientation from the
test-samples extracted from the full-size floor slabs. The results of measurements showed that
the fibre orientation distributions vary in three dimensions [2, 3, 4]. This fact supported the
assumption about the anisotropic behaviour of SFRC and indicated the necessity of a theory
capable to model the spatial material properties of SFRC.

Orthotropic liner-elastic model for SFRC

To define the orientation of a fibre in space, the spherical polar coordinate system was employed:
the inclination 6§ and in-plane ¢ angles. It was assumed that the effective elasticity of SFRC
should include two terms: concrete matrix contributing isotropically and short steel fibres in-
fluencing anisotropicly. The meso-scale for the representative volume element (RVE) of SFRC
was chosen based on the measured fibre orientation distributions in the tested floor-slabs. The
measurements revealed that the orientation of fibres varies in three-dimensions and has a local
character within the structural element [3].

The modelling started by assuming a hyperelastic material, where the first differentiation of
the strain-energy density function W produces the 2" Piola-Kirchhoff stress tensor, Sij, and the
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second differential gives the 4*" order elasticity tensor, Cijr [5]. The advantage of the described
approach is the symmetry of the 2"? Piola-Kirchhoff stress tensor, and a minor and major
symmetries of the 4% order elasticity tensor. The anisotropic influence of fibres is modelled by
the orthotropic model with three principal material directions. The structural tensors {Li}i:1’273
are employed for specifying the orthotropic material symmetry [0].

The strain-energy density function for the orthotropic material can be represented as a func-
tion of its principal traces—isotropic tensor function, where the arguments include the structural
tensors [0, 7, 8, 9]. The strain-energy density function for an isotropic case can be obtained from
the orthotropic one since the direction dependent structural tensors are vanishing. Considering
only the second-order terms in the isotropic tensor function for the orthotropic material symme-
try, the orthotropic elastic material with three symmetry axes can be defined as the combination
of mixed traces, such as:

Wi heino (B L) = Z " tr(EL) tr(ELY) + Z G tr(EL'ELY) (1)
t,j=1 7.]752

where E is the Lagrangian strain tensor. The latter model presents the orthotropic St. Venant-
Kirchhoff material [7]. The further differentiation leads to the orthotropic 2"¢ Piola-Kirchhoff
stress tensor [5]:

3 3
SE ortho = iIﬁ/]E;‘:ZMC)(E, L) =3 49 t(BL)L' +2 Y GYVL'EL/ (2)

o irj=1 i

which is linear with respect to E. The egs. (1, 2) include Lamé constants %/, G, which are
given in terms of Young’s modulus Y and Poisson’s ratio v. They are direction dependent
referring to material symmetry axes and planes, respectively. As it was noted, for an isotropic
material the structural tensors in egs. (1, 2) are vanishing and the elasticity constants become
equal for all directions, i.e. v =~%, G = GY.

The structural tensors and the direction dependent elasticity constants in egs. (1, 2) for
the case of SFRC are created utilising the orientation state of fibres, which is evaluated by the
orientation tensors, Oy, . ,,, and the orientation distribution function (ODF), f(n), where n is
a unit vector representing the orientation of a rod-like particle in space [10, 11].

The symmetric orientation tensors are calculated as the l-order outer products of the vector
n with itself, n,, ® ... ® n,,, and then integrating the result with the ODF. The symmetric

irreducible part—traceless, ‘nu1 ®R...Q® nm‘ , of the [-order orientation tensor called as the [-order
alignment tensor, A, .., can reconstruct the ODF [10, 11]. The ODF is given on a unit sphere,
5?2, and belong to square-integrable functions and thus can be decomposed into the series of main
spherical harmonics, where the alignment tensors are acting as the expansion coefficients and the
symmetric irreducible tensors, ‘nu1 ®...Q nul‘, calculated considering all possible directions of
a rod-like particle on a unite sphere, i.e. n € (6,¢),60 € [0°,180°], ¢ € [0°,360°] and forming the

complete orthonormal basis, act as main spherical functions [10, 12, 13, 11], such as:
N
fm) = Ao 1+ (2—DNA, 4 My @ .. @ny, (3)
=1

where Ay represents the zero harmonic and Ay, ,, are the harmonics (alignment tensors) ap-
proximating the deviation of the original function f(n) from its mean value, and they read
as:

Ay = 47T f() 1-d%n, (4)

(2l +1) ‘
Ao = A1 f( ): nul @ ny, -d*n (5)
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where (! is the factorial and (2 — 1)!! denotes the double factorial. It is worth to note, that if
the expansion coefficients (ATSs) in a complete orthonormal basis are known, then the original
function f(n) can also be considered as known [14].

In the study the 2"? order alignment tensor is used to define the material symmetry axes of
one meso-volume element of SFRC. The structural tensors {L‘};—1 2.3 are calculated employing
the normalised eigenvectors d', d?,d?® of the 2"¢ order alignment tensor thus representing the
symmetry axes of SFRC and modelling the orthotropic influence of fibres. The orientation
distribution function f(n) is utilised to estimate the contribution of fibres in the directions of
the eigenvectors thus defining the orthotropic meso-elasticity constants of the composite, i.e.
74, GY. The latter is implemented by transforming the elasticity of an individual fibre in its
local coordinates and defined by the Young’s modules in its longer axis into the symmetry axes
defined by the d',d?,d? and then weighting with the ODF of fibres.

Hereinafter, it is assumed that % ~~ a%, which allows to use the linearised hyperelasticity
for the case of SFRC meaning that E ~ €. In addition, a complete bond between the steel fibres
and concrete is expected. The orthotropic linear-elastic material model for one meso-volume
element of SFRC is developed by the superposition of the isotropic and orthotropic St. Venant-
Kirchhoff models, as follows:

3 3
s = ybm ('yI tr(e®) + 2Gs(c)) +v¥ Z v tr(e L)L + 2 Z GILEWLI | . (6)
ij=1 ij#i

concrete, isotropic

fibres, orthotropic
The differentiation of eq. (6) gives the orientation-weighted orthotropic meso-elasticity of the

composite, which reads as:

3 3
> = VO (IeI+26 T+ VD (S YLl + Y 2GY(LIQL)T | . (7)
,J 1,j7#1

concrete, isotropic

fibres, orthotropic
During the study the 2" order alignment tensors were calculated based on fibre orientation
distribution measurements from test samples [2, 4]. This enabled to reconstruct the ODFs of
fibres and calculate the respective orientation-weighted orthotropic meso-elasticities [15, 16].

Discussion: bases for the failure

The developed orthotropic linear-elastic model for SFRC can be extended to cover the failure
state, which would mean the involvement of a failure function. The advantage of such a material
model is that it will enable to simulate and analyse the load-bearing capacity of SFRC members.
The failure function should include bond strength characteristics, such as: adhesion and me-
chanical anchorage (in case of deformed fibres). Whereas the mechanical anchorage is important
in post-cracking behaviour, the adhesion is essential for gradual debonding of fibres and, as a
consequence, the crack initiation and development of cracking. The adhesion is relevant for the
micro-cracking state, when the steel fibres have their best performance delaying the micro-crack
opening [17]. The adhesion layer—interfacial transition zone (ITZ)-is forming between the fibre,
cement paste and aggregate 18, 19], figure 2. The quality of the adhesion is influenced by the
microstructure of the I'TZ, which is rather inhomogeneous and considerably differs from the bulk
concrete matrix. In the formation of the ITZ the hydration of cement (clinker, clay) and aggre-
gate mixture have major roles [1]. The mechanical and physical properties of the ITZ involving
its porosity, thickness, extent, continuity or discontinuity, and activation when stress is applied
are the subjects still requiring further research [1, 19, 20]. The outcome of the study devoted to
the quantification of the mechanical and physical properties of ITZ will lead to the formulation
of a damage function, and thus it will be developed an improved orthotropic material model for

258



bulk concrete matrix,

Figure 2. Representation of adhesion layer—interfacial transition zone (ITZ)-around a fibre.

SFRC.

Conclusion

The orthotropic linear-elastic material model developed for SFRC can be successfully tested
employing numerical computation methods. The material model has a continuous formulation,
which makes it attractive for implementing to the finite element programs. The results of
computer simulations with different fibre orientation distributions will improve understanding
the effect of fibre orientation under different stress conditions.

The further option in material modelling is its extension to cover the failure regime, which
will enable the evaluation of load-bearing capacity of SFRC members. SFRC failure mechanism
is largely determined by the physical and mechanical properties of the interaction between
the steel fibres and concrete matrix. The physio-chemical adhesion plays an important role
in crack width control while the mechanical anchoring is relevant for post-cracking behaviour.
The quantitative and qualitative evaluation of the bond strength characteristics in SFRC will
strengthen the reliability of SFRC in load-bearing structures.
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Abstract. The goal of the current research is to develop a novel wood material model for
optimization of the mechanical pulping process. The novel material model will be based on the
earlywood and latewood compression models presented in this paper. Spruce samples were
subjected to dynamic and quasi-static radial compression at 20-135°C. An image-based full-
field strain measurement method was employed. The in-plane strain components were
calculated with 4-node quadrilateral elements and numerical integration. Earlywood was
modelled by a linear model defined in three parts. Hooke’s law was used for latewood. High
strain rate compression models for earlywood and latewood are presented.

Keywords: wood compression model, dynamic, quasi-static, earlywood, latewood

Introduction

Wood compression behaviour should be taken into account when designing the mechanical
pulping process and machinery. The most common raw material for mechanical pulping in the
Nordic countries is Norway spruce (Pieca abies). A characteristic feature of Norway spruce is
the distinct differences in mechanical properties inside the annual ring. During compression,
earlywood lumen can be completely collapsed while there is no visible change to the latewood
fibres. A compression model that takes the contribution of earlywood and latewood into account
is therefore needed. Wood is an anisotropic material. If the sample is small and cut far enough
from the centre of the three, the properties can be considered orthotropic. The planes of
symmetry are radial, tangential and longitudinal (or axial). The stiffness and strength are
greatest in the longitudinal direction of the tree [1].

No wood model suitable for mechanical pulping simulations was found. Most wood models
are limited to elastic compression or do not take earlywood and latewood contributions into
account. Elastic earlywood and latewood compression is taken into account in the models
presented in [2] and [3]. The model presented in [4] is not limited to elastic compression but
does not take earlywood and latewood contributions into account.
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Previous research in the field has shown that strain-rate, temperature and moisture content
have major impact on the wood compression behaviour [5, 6]. This means, that in order to use
the results in mechanical pulping, the measurements need to be conducted on wet wood at high
strain rate and high temperature. High strain-rate measurements of wood compression have been
conducted previously but none that analyses earlywood and latewood properties. Previous
research on earlywood and latewood has been conducted at quasi-static and medium strain rate
conditions and mainly room temperature. One of the most important findings was that
earlywood is anisotropic while latewood can be considered isotropic [7]. The strain amplitudes
in earlywood were more than twice as large as in latewood [8, 9]. The location of maximum
strain is located about one fourth into the annual ring [8, 10]. The Young’s modulus measured
of Norway spruce with moisture content 7 % is for earlywood 744 MPa in the radial direction
and 210 MPa in the tangential direction. The Young’s modulus for latewood is 1230 MPa in the
radial direction and 1250 MPa in the tangential direction [11]. There is no difference in
softening temperature for earlywood and latewood [12].

In this paper, the conducted measurements are presented first and then the simple
compression model. Only the results for the high strain rate measurements are presented in the
results section. The overall results and future work are summarized in the discussion section.

Materials and methods

Extensive high strain rate and quasi-static radial compression measurements have been carried
out on native and mechanically pre-fatigued Norway spruce samples. The high strain rate
measurements were conducted in the encapsulated split-Hopkinson pressure bar (ESHD) with
the possibility to control ambient temperature and pressure presented by Holmgren [3]. The
average strain rate for the ESHD measurements was in the range 700-1200 s™. The quasi-static
measurements were conducted in an Instron E1000 tensile testing machine (TTM) that can
apply forces up to 1000 N. The TTM measurements were carried out both at room temperature
and at elevated temperatures. The TTM measurements were conducted both in air (20°C) and
submerged in water (20°C and 80°C). The complete measurement program is presented in Table
1.

Table 1: Number of samples measured at different temperatures and with different loading

devices.
Temperature (°C) Native Pre-fatigued Loading
20 4+8 4+8 ESHD + TTM
80 4 4 TT™M
100 4 4 ESHD
135 4 4 ESHD

The Norway spruce samples in the high strain rate measurements were 11.2 - 11.9 mm in the
longitudinal direction, 11.3 - 12.1 mm in the tangential direction and 5.4 - 6.5 mm in the radial
direction. Two different sample sizes were used in the quasi static measurements: cubes with the
side 5.0 + 0.8 mm and cubes with the side 12.0 £ 0.8 mm. The moisture content of the samples
was approximately 30 %, which corresponds to fibre saturation where the cell walls are moist
but there is no free water in the lumen. Part of the samples was pre-fatigued by 20 000 strain
pulses at 500 Hz in a device described in [13]. This pre-fatigue treatment can be considered to
be intensive.
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The wood samples were imaged during the compression trials. High speed photography was
required for the high strain rate measurements. An image based full field strain measurement
was used, where the in-plane strain components were calculated with 4-node quadrilateral
elements and numerical integration. Average earlywood and latewood contributions were
identified from the full field data. The image based analysis method is described in [14].

Three regions can be identified in the stress-strain curve for wood: an elastic region, a
plateau region and a densification region. The high strain rate measurements showed the elastic
and plateau regions well. The initial densification region is seen in all quasi-static measurements
but only in the room temperature measurements at high strain rate. The earlywood stress-strain
curve showed the same characteristics as average wood while latewood showed only the elastic
region.

Compression model

Previous wood compression models that take the contributions of earlywood and latewood into
account are limited to elastic compression. Our goal is to develop a wood compression model
for large plastic deformations with earlywood and latewood contributions taken into account.
This work has been started by defining separate models for earlywood and latewood
compression. More work is needed to combine these to a wood compression model.

Latewood was assumed to follow Hooke’s law, whereas earlywood was modelled by a
simple linear model defined in three parts, giving the 5 parameter model in Equation 1

Eicew EEw S €1
oew =1 E1e1 + Ep(epw —&1) &1 <Epw <&
Eie1 + Eolen —61)+ Esleew —2)  eew > &, (1)

where E;, E,, Es, & and &, are material parameters and egy is strain in earlywood. E;
approximately corresponds to the Young’s modulus and g; the yield limit. The densification
limit &, was expected to be of the order 0.5 as seen in [15, 16]. The model was reduced to a two
part model for the measurements that did not reach the densification region. The material
parameters were optimized by the least squares method in Matlab for all four parallel
experiments at once.

Results

Only high strain rate measurements have been analysed so far. The results measured at 20°C
and 135°C are presented in [17]. The measured stress-strain curves are compared to the model
at different temperatures for earlywood in Figure 1 and latewood in Figure 2.

The densification region was barely reached in the measurements at room temperature in
Figure 1a and not at all at 100°C and 135°C in Figures 1b and 1c. At elevated temperatures, the
maximum stress is reduced due to wood softening. The optimized material parameters and sum
of squared differences (SSD) are presented in Table 2.
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Figure 1. Measured earlywood stress-strain curves (x for native and o for pre-fatigued wood)
compared to model (solid line for native and dashed line for pre-fatigued wood) at a) 20°C, b)
100°C and c¢) 135°C, note that the scale varies on the c-axes.
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Figure 2. Measured latewood stress-strain curves (x for native and o for pre-fatigued wood)
compared to model (solid line for native and dashed line for pre-fatigued wood) at a) 20°C, b)
100°C and c) 135°C, note that the scale varies on the c-axes and that the maximum strain is
smaller than in Figure 1.
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Table 2. High strain rate material parameters for all temperatures, where Nat is native wood and
Fat pre-fatigued wood.

€1 5% El Ez E3 ELW SSDEW SSDLW

mm/mm mm/mm MPa MPa MPa MPa MPa MPa
Nat 20°C -0,009 -0,33 367 5 13 355 6.0 18.6
Fat 20°C -0,021 -0,07 100 27 6 190 7.4 375
Nat 100°C  -0,07 - 26 0,03 - 72 15.1 10.9
Fat 100°C  -0,41 - 4 0,7 - 52 2.1 3.8
Nat 135°C  -0,05 - 16 0,4 - 37 14 0.5
Fat 135°C  -0,22 - 4 0,3 - 34 3.9 1.6

Discussion

Simple compression models for earlywood and latewood have been fitted to high strain rate
measurement data at various temperatures. The models agreed well with the measurement data,
indicating the applicability of the chosen simple models for earlywood and latewood
compression. The fit of the model for native wood at 20°C is reduced significantly when the
parameters are rounded. Figure 1 is plotted with rounded values, four decimals for native wood
at 20°C and according to Table 2 for the other measurements.

The slope of the plateau region was approximately the same for pre-fatigued and native
earlywood; E; for fatigued wood was almost the same as E, for native wood at room
temperature. There was not enough data for reliable results in the earlywood densification
region. The major effect of the pre-fatigue treatment for earlywood was in the elastic region, E;
was reduced 73-85 % by the pre-fatigue treatment. The stress strain curve for pre-fatigued
earlywood at 20°C had four regions: an elastic region, a region where the pre-fatigued fibres
collapse, a plateau region and a densification region. The plateau region and the densification
region were combined in the optimized results.

Increase of temperature reduced the E; stiffness of earlywood more than pre-fatigue
treatment. The increase of temperature from 20°C to 100°C reduced E; by 93 % for native
earlywood and 96% for pre-fatigued earlywood. The increase from 100°C to 135°C reduced the
stiffness E; for native earlywood further by 38 %. The increase from 100°C to 135°C did not
affect E; for pre-fatigued earlywood.

The pre-fatigue treatment reduced the latewood stiffness E, by 48 % at 20°C, 28 % at
100°C and only 8 % at 135°C. The increase of temperature affected also latewood stiffness
more than the pre-fatigue treatment. The increase of temperature from 20°C to 100°C reduced
the stiffness by 78 % for native latewood and 73 % for pre-fatigued latewood. The increase
from 100°C to 135°C reduced the stiffness by 49 % for native latewood and 35 % for pre-
fatigued latewood.

The presented work is a good base to build the wood compression model on. Future work
will focus on combining high strain rate and quasi-static measurements to make dynamic
compression models and to combine the earlywood and latewood models.
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Summary. A set of constitutive equations described by Seifert et al. for modeling cast iron behavior

are tested on Wartsila’s experimental data of nodular cast iron. The model is based on phenomenological

classical unified viscoplastic framework. Emphasis of the paper is on modeling the observed stress-strain

hysteresis asymmetry. The Gurson-Needleman-Tvergaard porous plastic model combined with Mori-

Tanaka model for spherical voids looks initially promising for this task. The model had to be extended

gvith a porosity-independent asymmetry mechanism, asymmetric backstress, to match the experimental
ata.

Key words: nodular cast iron, asymmetric hysteresis

Introduction

The present paper concerns cyclic plastic experimental observations and constitutive equations
capable of describing nodular cast iron materials. The temperature behavior of nodular cast
iron is quite similar from grade to grade, but over the measurement range from 23 to 450 °C the
behavior is quite complex. At 250 °C a significant inverse strain rate sensitivity is observed. In
[1], the classical unified viscoplastic framework was extended to cover dynamic and static strain
aging phenomena. The stress-strain hysteresis was observed to be slightly asymmetric as well.

Thermomechanical behavior of nodular cast iron was studied in [2] where the classical unified
viscoplastic framework was adopted with Gurson-Tveergaard-Needleman (GTN) porous plastic
yield criterion and Mori-Tanaka model for spherical voids in which effective elastic parameters
are affected by the porosity.

The main objective of this paper is the modeling of the asymmetric hysteresis in the classical
unified viscoplastic framework.

The main experimental observations

The typical observed asymmetry in nodular cast iron stress-strain hysteresis is shown in Figure
1 with the numerical elastic modulus F' and hardening modulus K at the strain reversal points.
The material is EN-GJS-500-7 at 450 °C. Trying to fit a symmetric model causes the model to
overshoot at the compressive side and undershoot at the tension side. The numeric values for
elastic and hardening moduli are gathered in Table 1.
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Figure 1: Typical nodular cast iron asymmetry. Solid line and dashed line denote the quantities
at tension and compression stress reversal points, respectively.

Table 1: Elastic and hardening moduli at tension and compression stress reversals.

E [MPa] K [MPa|
compression tension compression tension
165000 148000 13800 6800

Constitutive framework

Following [2], the stress evolution for isothermal, small strain, additive strain decomposition and
non-rotating framework can be written as

d':C*:(éel)+aa(;':C*_1:0', (1)

in which C* is effective elasticity tensor and f is porosity caused by the graphite inclusions. The
effective elasticity tensor is defined as

C*:K*I®I+2G*<I—;I®I> 2)

where the effective bulk and shear modulus are

f ) f
K'=K|1- and G*'=G|[1- . (3
< 1_315)4{{4(;(1_ ) 1—%(1—f)

The Gurson-Tvergaard-Needleman (GTN) yield criterion has succesfully been used for mod-
eling monotonic ductile failure of porous materials. The derivation is based on a spherical void
in a spherical ideally plastic matrix volume element

2
F= (‘]2) + 2q1 f cosh <q22£1]\/[> - (L+af?), @

oM
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Jo is the second invariant of the deviatoric stress tensor, I is the first invariant of the stress
tensor, ojs is the current flow stress of the matrix material and q1, g2 and g3 are parameters.
Tvergaard proposed values g1 = 1.5, g2 = 1.0 and ¢3 = q% which shall be used here as well.

Evolution of the porosity is split in two parts: growth of existing voids and nucleation of
voids. The growth is defined as

for = (L= f)tr (7). (5)
Two models have been proposed for the nucleation. Both of the models are based on normal
distribution function and the first one uses inelastic strains as the evolution driving force

A 1 /tr(e) —en\? op
Jnuet = m exXp <_2 <3N> > tr (6 ) (6)

which was designed to describe void nucleation at larger strains. Lower strain nucleation model
is controlled by the hydrostatic stress o,

nucl = X -3 ms
: SNV 2T P 2 SN

in which oy, ex, sy and fy are model parameters. These models are the basis of modeling the
asymmetry of the cyclic plastic hysteresis. The total evolution of porosity is then

f:fgr+fnucl- (8)

Kinematic hardening is defined as a sum of symmetric non-linear backstresses X;

N
2
X=(01-% Z 3Cicti. (9)
1=1 N\~
-X,
The plastic flow direction g—g is denoted as n in equation (10). Here the evolution of underlying
variable «; is defined as
&; =p(n — Dicy), (10)
with p being the plastic rate norm
2
p= gé“p : €P, (11)

With addition of the backstresses into equation (4) the stress tensor has to be translated with
the backstress

F(o) = F(o—X). (12)
The associated inelastic strain rate is defined as

oF

P = N\ 13
¢ do (13)
The matrix material viscoplasticity is modeled using a Norton type power-law formulation
: oy — R\"
g = (07 (14)

in which M and n are viscoplasticity model parameters and R is the isotropic hardening param-
eter which is considered constant here. The macroscopic viscoplasticity is obtained by assuming
the equivalence of microscopic and macroscopic inelastic work

(0 —X):eP=(1—f)ouiu. (15)
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Finally, the current flow stress of the matrix material is solved from the consistency condition

. OF oF . oF oF ;
F=—:i04+—=:X+—ouy+—f=0. 16
oo 0X o0 "M T oyt (16)
In the numerical simulations the author observed that the model worked better using rate-
independent consistency condition F' = 0 instead of (16). If the asymmetry provided by porosity
and Gurson yield criterion are not enough, one can introduce an asymmetric kinematic hardening
model [3], which was used to describe grey cast iron

. D*
XZ‘ZC;]')<’I’Z—31XZ‘>, (17)

in which the parameters (Cf,D}) are switched between tensile values (C!,D!) and compres-
sive values (Cf,Df) at set tr (o) value. This would add an additional, porosity-independent,
asymmetry mechanism.

Modeling hysteresis asymmetry

A 1D-version of the model was implemented in an implicit Euler integration scheme. The
objective was to test whether the porosity evolution equations (5), (6) and (7) are enough to
describe the observed asymmetry. The model fitting strategy is listed below

1. Set Young’s modulus F to the observed mean value of the compression and tension values.

2. Set viscoplasticity parameters arbitrarily M = 100 and n = 10 as we lack data to fit them.
The study could have been made using a rate-independent version of the material model
as well.

3. Fit kinematic hardening variables C; and D; with symmetric model and fixed porosity
f=0and fy =0 (von Mises yield criterion).

4. Fit initial porosity f and porosity evolution with isotropic hardening R being available for
changes as well.

5. Introduce the asymmetric kinematic hardening model if needed.

Fitting the porosity evolution laws is a more difficult task. A seemingly good fit can be achieved
with many sets of parameters and one cannot claim to have found the best set of parameters
and this is typically why using optimization has to be limited to smaller bits or weighted in a
clever way. One could look at the observed Young’s moduli and try to fit the porosity evolution
to that. The Gurson yield criterion (4) as well as the backstresses (9) are also connected to the
porosity evolution. The strain driven law (6) with a zero mean value gives a stable porosity
hysteresis where the backstresses are reduced when going to tension and increased when going
to compression, which corresponds well to the observed hardening modulus behavior. Porosity
stays unchanged in the elastic region with the strain driven nucleation law, so that the elastic
region size is increased after compression and reduced after tension, which also corresponds well
to the observed behavior. Porosity increase also accelerates further evolution of porosity due
to the pressure dependent part of the yield function (4) being linearly dependent on porosity.
Thus with increasing porosity the plastic deformation becomes more volumetric.

The hydrostatic stress driven nucleation law (7) could be a bit controversial. It is active even
in the elastic region and thus the size of the elastic region would be reduced after compression
and increased after tension, which is contradictory to the observations. On the other hand, if
one sets the mean value heavily to the plastic region combined with a small standard deviation

270



1.0r —  Experiment
- - Simulation

1.0rf —  Experiment
- - Simulation

0.5F 0.5

0.0+

0.0+

—0.5r —0.5r

Normalized engineering stress o
Normalized engineering stress o

-1.01 -1.01

i i i i i i
—0.010 —0.005 0.000 0.005 0.010 —0.010 —0.005 0.000 0.005 0.010

Engineering strain ¢ Engineering strain ¢
(a) Symmetric von Mises model fit. (b) Strain nucleation law fit.
Figure 2

the size variation of the elastic region should be neglected. This nucleation law could be used
to enhance the backstress-porosity interaction at either the tensile or the compressive end.

In [4] Seifert et al. used the strain driven nucleation law for EN-GJS-700 with parameters
fn = 0.04, sy = 0.001, ey = 0 and initial porosity f(0) = 0.02. They also used a bilinear
effective porosity in the Gurson yield criterion to model accelerated damage evolution above
critical porosity due to the interaction of graphite inclusions and the coalescence of voids.
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Figure 3: Strain nucleation and asymmetric kinematic hardening.

Both the size of elastic region as well as the effective elastic modulus are close to linear
with respect to porosity and a variation of approximately 0.05 would be needed to model the
observed Young’s modulus asymmetry. Slightly larger variation would be needed for the observed
asymmetry of the size of the elastic. Thus an effective porosity can be introduced in (4) which
linearly scales the porosity value f* = kf.
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In Figure 2b the strain driven nucleation law was fit to the measurements and the result
looks promising. The backstress shape follows the measured values much better as well as the
observed Young’s modulus asymmetry is captured. Slight overshoot remains at the compressive
side. Introducing the hydrostatic stress driven nucleation law (6) would not help the situation.
The asymmetric kinematic hardening was introduced to one of the backstresses for 10% difference
to the slope variable C' and the resulting fit can be seen in Figure 3.

As a conclusion, the porous plastic Gurson model combined with the Mori-Tanaka effective
elasticity seems to be a good foundation for modeling the nodular cast iron asymmetry. Porosity
is linked to everything which is a beneficial considering that there are less parameters. However,
in this case it was required to introduce another asymmetry-mechanism independent of the
porosity.
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Summary. In the present contribution, isogeometric methods are used to analyse statics and dynamics
of rod and 2D problems based on gradient elasticity. Typically, the aim of the generalized theories of
elasticity is to provide length scale parameters taking into account the effect of the microstructure of
the material on its mechanical behaviour. The current models, in particular, include one length scale
parameter enriching the classical constitutive equations and resulting in fourth order partial differential
equations instead of the corresponding second order ones based on the classical elasticity. In our approach,
the solvability of the problems is first formulated in a Sobolev space setting and then the problem is
implemented by utilizing an isogeometric NURBS based discretization. Computational results of the
current approach cover different boundary condition types and are compared to analytical solutions or
other type of reference solutions such as standard finite element approximations.

Key words: isogeometric analysis, gradient elasticity theory, rod problem, 2D plane strain problem

Introduction

With the development of mechanics of microstructures it has become clear that classical linear
theory of elasticity is not capable to describe multi-scale phenomena as effects of meso-scale,
micro-scale or nano-scale in primarily macro-scale problems. A lot of improvements of classical
elasticity theory have been done in order to explain such effects. One of the first significant
contributions was done by Mindlin [3]. The simplest possible variant of his gradient elasticity
tbeory implies the existence of an additional term in the definition of the potential energy density

W: . )
W:§U"€+592VO'"'V€, (1)

where € is the classical strain tensor, o — the classical Cauchy stress tensor and g is the gradient
coefficient with dimension of length.

Equations of motion within a framework of the gradient elasticity theory are the partial
differential equations with high order derivatives and they can be solved analytically only in the
simplest cases. It is convenient to use isogeometric analysis (IGA) in order to obtain the solution
of such equations. IGA can be considered as the "next generation” of the finite-element methods
family. It has been under development at a quick rate during last 10 years. The main difference
between classical FEM and IGA is using of non-uniform rational B-splines (NURBS) as basis
functions instead of Lagrange polynomial (or some special basis function like Hermit polynomial
for the beam elements) of the classical FEM. There are a lot of advantages of IGA methods, but
in context of gradient elasticity the most useful one is that it provides C?~! continuity across
the elements boundaries.
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Governing equations

Static equation of rod

Consider a straight prismatic rod of constant cross section A and length L under a static dis-
tributed load p and a displacement u along longitudinal axis z. According to [4], the governing
equilibrium equation of this rod can be written as follows:

AE(W" — g*u™) +p=0. (2)

As one can see the gradient theory brings into existence an additional micro-structural term
g*u™® containing the fourth derivative of u with respect to . For g = 0 this term vanishes and
equation (2) reduces to the classical case.

Dynamic equation of rod

In order to predict wave propagation in rod of gradient-elastic material it is necessary to solve
next equation below:
Eu” o gQEu(4) — pu o phzil”, (3)

with p mass density, i second derivative with respect to time t. Besides the micro-structural
term there is additional micro-inertia term ph2ii” in the right-hand side of the equation (3) with
h denoting the micro-inertia parameter, second used gradient elasticity constant.

Dynamic equation of 2D problem

In this paper, the dynamic 2D problem means the vibrations of a plate in the plane strain
state. Following designations are used: displacements u = ue, + ve, and 2D nabla-operator
V= exa% + eya%. According to [5]

(1 - V) (uV3u+ A+ p)VV -u) = p(is — h2Var). (4)

Numerical results

Problems described in the previous section can be solved by using numerical methods. Isogeo-
metric analysis (IGA) has been used for this purpose. NURBS basis functions are the rational
extension of polynomial B-spline functions. For 1D case B-spline basis functions can be written
as follows:

Nip(§) = i]\f@p_l(g) L Sy =€

Sitp — &i Eitpr1 — &it1

Nw(@:{l if & < €< s

0 otherwise.

Ni+1,p—1(§) f07" p= 172737“'

Corresponding NURBS basis functions is presented below:

N p(&)w;
2 N (Qw;

with 1 < ¢ < n, n is the number of NURBS and p it the polynomial degree. For more details
see [1].

Numerical results for some simple benchmark problems are given below. For verification of
solution results convergence curves have been obtained for different polynomial degrees(figure

1).

RY(§) = (6)
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Results of eigenvalue analysis of rod fixed on both ends are presented on Figure 2. The
analyses have been carried out using N = 128 degrees-of-freedom. g sq and h_sq designate
squares of gradient coefficients g and h resp. % is the ratio of numerical obtained eigen frequency
to exact eigen frequency of number n.

For more solution results of rod and 2D-problems see [2].
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Summary. In the present contribution, isogeometric methods are used to analyse statics and dynamics
of the plane strain problems based on gradient-elasticity. Typically, the aim of the generalized theories
of elasticity is to provide length scale parameters taking into account the effect of the microstructure of
the material on its mechanical behaviour. The current models, in particular, include one length scale
parameter enriching the classical constitutive equations and resulting in fourth order partial differential
equations instead of the corresponding second order ones based on the classical elasticity. In our approach,
the solvability of the problems is first formulated in a Sobolev space setting and then the problem is
implemented by utilizing an isogeometric NURBS based discretization. Computational results of the
current approach cover different boundary condition types and are compared to analytical solutions or
other type of reference solutions such as standard finite element approximations. Numerical results are
achieved by implementing the isogeometric methods into a commercial software Abaqus.

Key words: isogeometric analysis, plane strain problem, gradient-elasticity, Abaqus

Introduction

For centuries, classical continuum theories, such as theories of linear or nonlinear elasticity and
plasticity, have been widely used in various fields of science and engineering for modeling, ana-
lyzing and predicting the behaviour of solids and structures. The ability of classical continuum
theories for describing multi-scale phenomena, as effects of meso-scale, micro-scale or nano-scale
in primarily macro-scale problems, is very limited, however. On the other hand, small-scale
phenomena in micro-scale, or even nano-scale, structures have been modelled by using classical
theories.

One of the main motivations for further development of single-scale continuum mechanics has
been the fact that theories and computational methods for studying small scale phenomena, such
as molecular dymanics, are often inefficient in many applications eventually ruled by macro-scale
conservations laws. Therefore, classical theories have been extended in different ways towards
multi-scale capabilities — still preserving the most characteristic advantages of their homogenizing
nature.

The origins of generalized continuum theories can be traced back to the 1850s, while the
first major revival took place in 1960s. The second major revival in 1980s and 1990s was
focusing on simplified models taking into account only few high-order terms with corresponding
additional material parameters from the original generalized theories (see [1] for an overview
and references).

In this contribution, the static and dynamic gradient-elastic [2, 3, 4] plane strain problems
are studied by applying isogeometric [5] finite element analysis.
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Gradient-elastic plane stress and strain problems

Within the first strain gradient elasticity the equation of motion of the generilized continua can
be written as follows [6]

(1 - *A)[uAu + A+ p)VV - u] + f = p(it — h2Ad), (1)

where u is the displacement vector, f is the density of the body forces, A and p are the Lame
parameters, p is the material volume density, g? and h? are the micro-structural and the micro-
inertia parameters, respectively. For the linear elastic isotropic material Cauchy 7 stress tensor
can be written as

T =2ue + Mr(e)l, (2)

where the strain tensor € is taken as
1
€= §(Vu +uV). (3)

Double 2 and total o stress tensors are introduced as follows

3

w=g*Vr, (4)

o=1—g¢’AT. (5)

After certain assumptions regarding dimension reduction the above equations and formulae are
used for the static and dynamic analysis of the gradient-elastic plane stress and strain problems.

Numerical results

Let us consider a rectangular plane Q = (0, L) x (0, L) C R? in the following field of the volume
forces

f:fa:e:t+fyeya (6)
where
LN 29 y 29
fe(z,y) = 4? sm(27rz)[(2u + A)(1+4n ﬁ) — 24 cos(27rz)(1 + 87 ﬁ)]’ (7)
. Y 29 € 29
fy(z,y) = 4? sm(27rz)[—(2u +A)(1+4r ﬁ> +2u cos(27rz)(1 + 87 ﬁ)] (8)
The boundary conditions are taken as follows
u =0 on 09, (9)
0 0
aLZy:o and gzy:Oonyzo,y:L, (10)
0 0
(;;“’“:0 and %zOonx:O,m:L. (11)
The analytical solution of the static gradient-elastic equation
(1 - @A) pAu+ A+ p)VV-ul+f=0in Q (12)
with boundary conditions above is the following v = u, e, + u,e,, where
. € )
ug(z,y) = SHI(QT('Z)(l - cos(27rz)), (13)
. Yy €
uy(z,y) = s1n(27rz)(—1 + cos(27rf)). (14)
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Figure 1. The magnitude of the displacement field distribution
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The numerical results was obtained in Abaqus using Users Subroutines. This tool allows
us to modify the finite element formulation for implementing the isogeometric method and
use the Abaqus as a solver and a Post-Processor. In Figure 1 is shown the magnitude of the
displacement field distribution. Domain was divided into 64 elements and the NURBS basis
functions of order five was taken with C* continuity across the element boundaries. The curves
of the relative solution error with respect to L?(£2), H'(Q) and H?(2) norms are shown in Figure
2.

The benchmark problems such as the gradient-elastic solution of the Lame problem with 1
and 2 materials and the gradient-elastic solution of the MEMS specimen tension can be found
in [3].
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Summary. The presentation deals with the newest results on THM, based mainly on [1,2]. Our
THM investigation started ca. 20 years ago in Oulu during my visiting professorship and
researchership there in the Laboratory of Mechanics. That is the reason of the large No. of the
co-authors from Oulu. One of the nice back-bones of the co-operation is the Fenno-Ugric Days
of Mechanics (FUDoM), started in 1995 and celebrated the 6th one in 2013 [3,4,5]. Also the
Thermal Stresses (TS) Congresses give a useful summary on the results of the THM and on the
schools formed around them [6,7]. A good summary on the co-operation was the Helsinki
presentation [8]. A short overview on the results will be displayed based on the above
mentioned papers.

References

[1] Szekeres A: Thermo-Hygro-Elasticity, Entry in the Encyclopedia of Thermal
Stresses, Springer, 2014, p.5918-5924.

[2] Szekeres A: Cross-Coupled Heat and Moisture Transport: Part 1 - Theory, J.
Thermal Stresses, 35: 248-268, 2012. Part 2 - Application in Mechanics, Part 3 -
Application in Engineering, co-author Fekete B, (being prepared).

[3] Koivurova H, Szekeres A:Theoretical and Experimental Investigation on the
Diffusivities of Composites, Periodica Polytechnica, Ser Mech Eng 41 (2):151-
161, 1997.

[4] Szekeres A, Pramila A, Heller R: Theory and Practice of THM Tailoring of FRCs,
Some Results on Diffusivities. Proc. of 4th Int.Conf. Composite Engineering,
Hawaii, 6-12 July, 1997.

[5] Szekeres A, Pramila A: Heat and Moisturein Solids: Dynamical Sorption with
Microcracks, EUROMECH 436, Tallinn, 29 May-1 June, 2002.

[6] Szekeres A, Elesztos P, Enikov E: Thermal Stresses (TS), Thermomechanics
(TM), Thermo-Hygro-Mechanics (THM), TS 2009 Congr. June 1-4, 20009,
Urbana-Champaign, USA.

281



[7] Szekeres A, Fekete B: Thermo-Hygro-Mechanics (THM) and Engineering -
Framed by the Thermal Stresses Congs. TS 2013 Congr. May 31-June 4, 2013,
Nanjing, China.

[8] Szekeres A, Pramila A: THM Tailoring of FRC Materials and Structures - Theory
and Application in Mechanical Engineering, Seminar in the Inst. of Mechanics,
HUT, 22 Nov, 2002, Otaniemi.

282



Author index

Abe, S.
Alaraudanjoki, J.
Alinikula, M.
Anghileri, M.
Baharudin, E.
Balobanov, V.
Baroudi, D.
Belahcen, A.
Bjork, T.
Bjorkqvist, T.
Castelletti, L.
D'Ignazio, M.
Eik, M.
Eriksson, A.
Fedorik, F.
Fedoroff, A.
Freund, J.T.
Gustafsson, T.
Hakula, H.
Harjupatana, T.
Hartikainen, J.
Heinisuo, M.
Herrmann, H.
Hoffman, J.
Hokka, M.
Holopainen, S.
Holopainen, T.
Hosseini, B.
Huotari, M.
Hyttinen, J.
Hasa, R.
Jaamala, L.
Jalkanen, J.
Jelenic, G.
Jeronen, J.
Kantola, K.
Karvinen, A.
Kataja, M.
Kerokoski, O.
Khakalo, S.
Kilpeldinen, T.
Kiviluoma, R.O.
Kolari, K.
Korhonen, O.

130
222
136

70

63
273,277
112
201
160
261

70

236
255
1,244
18

112
154

83

123
222

51
30,136
255

97

210
57,188
85
273,277
195
130
166
204
24,36
7

77

154
142
222
228
273,277
85

216

51

237

283

Korkealaakso, P. 63
Korkiala-Tanttu, L. 237
Koskinen, M. 237
Kouhia, R. 51,57,77,130,201,244
Kuokkala, V-T. 210
Konno, J. 123,267
Laaksonen, S. 237
Laitinen, J. 248
Lehtonen, J. 123
Leppénen, P. 254
Liu, Q. 235
Lojander, M. 237
Loponen, T-R. 243
Lansivaara, T. 236
L&fman, M. 237
Malaska, M. 18
Malinen, M. 106
Mardoukhi, A. 210
Martikka, H.I. 160
Matikainen, M. 63
Matilainen, J-P. 229
Mela, K. 136
Mikkola, A. 63
Milanese, A. 70
Makinen, J. 91,243,244,254
Maatta, K. 195
Moilanen, C.S. 261
Mousavi, S.M. 42,148
Narra, N.G. 130
Neri, M. 254
Niemi, A.H. 125
Niiranen, J. 273,277
Nikander, R. 130
Nokka, M. 194
Nurmikolu, A. 228,243
Orelma, H. 183
Paavola, J. 42,100,148,235
Pietila, J. 91
Polojarvi, A. 166,172,178
Prato, A. 70
Pustogvar, A. 172
Puttonen, J. 229,255
Pollanen, I. 160
Ranta, J. 178



Rantala, T.
Rasilo, P.
Reivinen, M.
Repin, S.
Ristinmaa, M.
Romero, I.
Rouvinen, A.
Roning, J.

Saarenrinne, P.

Saksa, T.
Saksala, T.

Salmenperd, P.

Salonen, E-M.
Santaoja, K.
Sievénen, H.
Soini, J.
Soomere, T.
Sorsa, .
Szekeres, A.

Tahaei-Yaghoubi S.

Tiainen, T.
Tuhkuri, J.
Tuori, J.
Vaara, J.K.
Varpasuo, P.
Ylinen, A.

228
201
118
194
201

13

63

195
261

97
57,210
243
100,118
45

130

24

17

136
281
51,148
30,136
166,172,178
36

267
204
71,130

284



XIl Finnish Mechanics Days - Sponsors

43 A-INSINOORIT

EDR
MEDESO

ETIMADEN

AB ETIPRODUCTS OY

FEMdaia

PRESSUS Oy

RAMBGOLL

AVERTEX

Federation of Finnish Learned Societies



RAKENNUTTAMINEN - RAKENTESUUNNITTELU -
INFRASUUNNITTELU - KALLIO- JA YMIPARISTOSUUNNITTELU

ey 43 A-INSINOORIT




7) IE/I[EIEQJWESO NANSYS

Perfect engineering

How is the airflow affected it
you change the design?

Rent a wind tunnel.
Or try something new.

ANSYS simulation
software and services

For more information, please contact
Jani Ojala, +358 50 3599 002
jani.ojala@edrmedeso.com
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AB ETIPRODUCTS O0Y: COMPANY PRESENTATION

Ab Etiproducts Oy was founded in 1982 in Helsinki, and is a subsidiary of the Turkish state owned company
EtiMaden G.M, who is the world leading provider of boron products. Etiproducts’ mission is to be the
leading market provider of Turkish boron products in our exclusivity territory, and to supply the best quality
of boron products to our customers.

Our business exclusivity territory has expanded throughout the years, and consists of the Nordic countries,
Baltic member stated, Poland, Ukraine, Germany and recently Sub-Saharan African Countries. To succeed in
our mission, we have a established an effective logistic network, with warehouses in Finland, Sweden,
Latvia, Poland and South- Africa, which allows us to serve our customers in the best possible way.

HOW BORATES ARE USED IN METALLURGY?
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Borates are used in the production of steel and non-ferrous metals, amorphous metals, welding
fluxes, alloys, rare earth magnets and plating compounds. Boron is generally used in Metallurgy
(such as in abrasives, cutting tools, magnets and soldering) for the following purposes;

to reduce melting temperature (thus to lower the energy consumed)
to increase fluidity (as a fluxing agent)

to increase strength (hardenability) of the steel

to reduce the corrosion of the refractory material in the furnace

AR N NN

Boron is also used in the production of pure, strong metals to remove the oxygen and nitrogen that
is either dissolved in the metal or chemically bound to it. In steel and non-ferrous metal production,
borates act as a flux during the smelting operation helping to dissolve metallic oxide impurities
which are then removed in the slag.
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Suomen Rakennusinsindoérien Liitto RIL ry tuottaa ajankohtaista ja
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Rakennusfysiikka |
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ja tutkimukset
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Koneenrakentajan uusi workflow -

Vertex Flow

Vertex Flow:lla saat tuotetiedot koko

organisaation ja sidosryhmien kéyt-
t66n. Hyddynné suunnittelussa syntyvé
tuotetieto tehokk_aasti tuotannossa,
ostotoiminnoissa,—myynnissa ja varaosa-
liiketoiminnoissa.

suomessa kehitetyt Vertex Systems Oy kehittéa ja toteuttaa kotimaisia toimialakohtaisia

teollisuuden ohjelmistoratkaisut suunnittelun ja tiedonhallinnan ohjelmistoratkaisuja teollisuudelle.
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Esitykset - Presentations Torstai - Thursday 4.6.2015

Plenary | 9:00-10:10

e A stabilized, meshless method for the simulation of strongly coupled fluids and nonlinear solids, lgnacio Romero Technical
University of Madrid, Spain

e Finite Elements on Non-Linear Manifolds of Rotations or Complete Motion - Relationships between Objectivity, Helicoidal
Interpolation and Fixed-Pole Approach, Gordan Jelenic, University of Rijeka, Croatia

Session 1A: Structural Engineering - Rakennetekniikka (EFFF) 10:40-12:00

e The effects of initial moisture on damp problems of a timber framed wall construction — a numerical approach, Filip Fedorik,
Mikko Malaska,University of Oulu, Finland

e Numeerisen virtauslaskennan kaytto tuulikuormien maarittamisessa, Juha Soini, Jussi Jalkanen,Sweco Rakennetekniikka,

e Terasristikon paarteiden litoksen vapaan valin leikkausvoiman arviointi, Teemu Tiainen, Markku Heinisuo, TTY

e Seismiset analyysimenetelmét rakennesuunnittelussa, Jyri Tuori, Jussi Jalkanen, Sweco Rakennetekniikka Oy

Session 1B: Fracture & Damage Mechanics (English) 10:40-12:00

e Nonsingular fracture mechanics within generalized continua, S. Mahmoud Mousavi, Juha Paavola, Aalto University, Finland

e Continuum damage mechanics without the variable damage D, Kari Santaoja Aalto—yliopisto, Finland

e An anisotropic continuum damage model for concrete, Saba Tahaei Yaghoubi®, Juha Hartikainen®, Kari Kolari?, Reijo
Kouhia® *Aalto University; 2VTT; *TUT

e On the choice of damage variable in the continuum fatigue model based on a moving endurance surface, Timo Juhani
Saksala, Sami Holopainen, Reijo Kouhia, TUT

Session 2A: Multibody Dynamics (English) 13:00-14:20

e Real-time dynam|c analy5|s of mobile machines usmg semi- recurswe method W|th sparse matrix technique, Ezral
Baharudin®, Asko Rouvinen?, Pasi Korkealaakso?, Marko Matikainen®, Aki Mikkola®, 'LUT; 2Mevea Ltd

e Soft body impact against aeronautical structures, Alessia Prato, Marco Anghileri, Andrea Milanese, Luigi Castelletti,
Politecnico di Milano, Italy

e Two approaches for modeling hydraulic cylinder, Antti Ylinen,FS Dynamics Oy Ab, Finland

. 9n the effect of damping on stability of non-conservative systems, Juha Jeronen™?, Reijo Kouhia®University of Jyvaskyla;
TUT

Session 2B: Numeeriset menetelmat - Numerical Methods (Finnish)  13:00-14:20

o Numeerinen integrointi laajennetussa elementtimenetelmésséd, Tom Gustafsson, Aalto University, Finland;

e Fatigue strength of shrink-fitted aluminium fan on steel shaft, Timo Pekka Holopainen, Toni Kilpelainen, ABB Oy, Finland

e Raudoitetun betonirakenteen taivutuksen mallintaminen Ansys-ohjelmalla, Jari Juhani Pietild, Jari Makinen, TTY

e Modelling of the web--air interaction in paper making using the unified continuum model, Tytti Saksa®, Johan Hoffman®
*University of Jyvaskyla, Finland; *Royal Institute of Technology - KTH

Session 2C: Theoretical Mechanics - Teoreettinen mekaniikka (EEEF)
13:00-14:20

On kinematically inadmissible virtual displacements, Eero-Matti Salonen, Juha Paavola, Aalto University, Finland,;
Generating lines of curvature coordinates for finite element modelling, Mika Malinen, CSC - IT Center for Science, Finland
Computing minimizing curves on fixed rank matrix manifolds, Alexis Fedoroff, Djebar Baroudi, Aalto, Finland

Surface tension problems, virtual work and minimal surfaces, Mika Reivinen, Eero-Matti Salonen, Aalto University, Finland,;

SeSS|on 3A: Finite Element Methods (Engllsh) 14:50 15:50
Stochastic flnlte element methods for tolerance analy5|s Juho K6nnd', Jonatan Lehtonen?, Harri Hakula®Wartsila Finland
Oy, Finland; “Global Boiler Works Oy, Finland; Aalto University, leand

o A family of triangular shell elements, Antti H. Niemi, Aalto University, Finland

e Exploration of different boundary conditions in the sideways falling situation in hip fracture finite element modelling, Shinya
Abe', Nathaniel Girish Narra®, Riku Nikander?, Jari Hyttinen', Reijo Kouhia®, Harri Sievanen®,'Tampere University of
Technology, “University of Jyvaskyld, *UKK Institute, Finland;

Session 3B: Optimointi - Optimization (Finnish) 14:50 15:50

e Suunnittelutydkalu putkiristikoiden mitoitukseen ja optimointiin, Kristo Mela®, Mikko Alinikula®, Teemu Tiainen®, Markku
Heinisuo®, Ilkka Sorsa® *Tampere University of Technology, Finland; “SUBNIC Oy, Finland; *Ruukki Construction Oy,
Finland;

e Surrogate-based optimization of airfoil using open source software, Aku Karvinen, VTT, Finland

Session 3C: Beam Theory - Palkkiteoria (EEF) 14:50 15:50

e Dynamic analysis of higher-order shear deformable beams within gradient elasticity, Saba Tahaei Yaghoubi, S. Mahmoud
Mousavi, Juha Paavola,Aalto University, Finland

o Effective radia of threaded bars in bending, Jouni Tapani Freund, Kari Kantola, Aalto university, Finland;

e Dynamical warping of tube branch welded joints, llkka Péllanen?, Timo Bjork®, Heikki llmari Martikka® *Himtech Oy, Finland;
2SAV Oy; *LUT

Plenary Il 15:50-17:00

e  (All kinds of) instabilities in structural membranes, Anders Eriksson, KTH, Sweden
e Challenges of Climatic Changes for Coastal Engineering, Tarmo Soomere, Tallinn University of Technology, Estonia
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Esitykset - Presentations Perjantai - Friday 5.6.2015
Session 4A: Ice Mechanics - Jddmekaniikka (EFF) 9:00-10:00

e 2D FEM-DEM simulations on ice-structure interaction process in shallow water, Riikka Hasa", Arttu Polojarvi'?, Jukka
Tuhkuri*?, *Aalto University, Finland; Norwegian University of Science and Technology, Norway;

e Why simulate ice rubble shear box tests?,Arttu Sakari Polojarvi“?, Jukka Tuhkuri*?, Anna Pustogvar® *Aalto University;
University of Science and Technology, Norway;

e Areview on a peak ice load data from 2D combined finite discrete element method simulations, Janne Ranta, Jukka
Tuhkuri, Arttu Polojarvi, Aalto University, Finland

Session 4B: Matemaattiset menetelmat - Mathematical Methods (FFF)
9:00-10:00

e Cauchy-Navierin yhtalo ja kvaternioanalyysi, Heikki Orelma, TTY, Finland

e Transpositions and duals of high-order tensors. On theory and applications in mechanics, Sami Holopainen, TUT, Finland

e Guaranteed and computable error estimates of Uzawa iteration method for a class of Bingham fluids, Marjaana Nokka®,
Sergey Repin™?,*University of Jyvaskyla, Finland; 2St. Petersburg State Polytechnical University, Russia

Session 4C: Models and Analyses (EEF) 9:00-10:00

e Finger and toe photoplethysmographic pulse waveform analysis with means of logarithmic transformation, Matti Huotari,
Kari Maatta, Juha Roning, University of Oulu, Finland

e A model for anlsotroplc magnetostriction, Anouar Belahcen Reijo Kouhia?, Paavo Rasilo', Matti Ristihmaa®, *Aalto
University; Tampere University of Technology, Finland; Lund University, Sweden

. Terasbetonlkuonelementm mitoitus murtorajatilassa optimointitehtavana, Pentti Varpasuo®, Lauri Jaamala®, *Fortum Power
and Heat Oy, Finland; 2AF-Consult Ltd, Finland

Session 5A: Experimental Mechanics - Kokeellinen mekaniikka (EEEF)
10:30-12:00

e An experimental and numerical study of the dynamic Brazilian disc test on Kuru granite, Ahmad Mardoukhi, Timo Saksala,
Mikko Hokka, Veli-Tapani Kuokkala, Tampere University of Technology, Finland

e Wind-tunnel testing of Helsinki Olympic Stadium new roof, Risto Olavi Kiviluoma, Aalto University, Finland

e X-ray tomographic method for measuring 3D deformation and liquid content in swelling materials, Tero Harjupatana, Jarno
Alaraudanjoki, Markku Kataja, University of Jyvaskyla, Finland

e Betonisten ratapolkkyjen vasytyskuormituskokeet, Tommi Rantala, Olli Kerokoski, Antti Nurmikolu, TUT, Finland

SeSS|on 5B: Seismic & Soil Mechanics (EEEF) ) 10:30-12:00

Seismic analysis of a liquid-filled shell structure, Jussi-Pekka Matilainen, Jari Puttonen, Aalto University, Finland

e Performance-based seismic optimization design, Qimao Liu, Juha Paavola, Aalto University, Finland

e Shear bands in soft clays: strain-softening behavior in finite element method, Marco D'lgnazio, Tim Lansivaara, TUT,
Finland

e Changes of pore water pressure in clay during consolidation, Samuli Laaksonen®, Osmo Korhonen*, Mirva Koskinen?,
Leena Korkiala-Tanttu®, Matti Lojander®, Monica Lofman®, *Ramboll Finland Oy; *City of Helsinki; *Aalto University, Finland;

Session 5C: Mallintaminen - Modelling (Finnish) ) 10:30-12:00

e Rautatiekiskon sivukuluneisuuden vaikutusten mallintaminen, Tiia-Riikka Loponen, Pekka Salmenpera, Antti Nurmikolu, Jari
Makinen, TTY

e On the direct solution of critical equilibrium states, Anders Eriksson?, Reijo Kouhia®, Jari Makinen®, *TUT, Finland; ’KTH
Mechanics, Sweden

e Menetelma lentokoneen ohjausservon sisdisen vuodon havaitsemiseksi, Jouko Laitinen, TUT, Finland

e Heat release caused by the smouldering combustion of the binder of rockwool, Perttu Leggane , Manuela Neri?, Jari
Makinen®, *TUT; 2Universita Degli Studi di Brescia, Italy

Session 6A: Material models - Materiaalimallit (EFF) 13:00-14:00

e Orthotropic constitutive model for steel fibre reinforced concrete: linear-elastic state and bases for the failure, Marika Eik"?,
Heiko Herrmann?, Jari Puttonen®, *Aalto University, Finland; 2Tallinn University of Technology, Estonia

e Wood compression model for radial compression of earlywood and latewood, Carolina Sofia Moilanen, Tomas Bjorkqvist,
Pentti Saarenrinne, TUT, Finland

e Modeling asymmetric cyclic plastic hysteresis of nodular cast iron materials, Joona Kalevi Vaara, Juho Kénnd, Wartsila
Finland Oy, Finland

Session 6B: Isogeometric Analysis (English) 13:00-14:00

e Isogeometric analysis of gradient-elastic rods and 2D gradient-elastic dynamic problems, Viacheslav Balobanov, Jarkko
Niiranen, Sergei Khakalo, Bahram Hosseini, Aalto University, Finland

e Isogeometric Static and Dynamic Analysis of Gradient-Elastic Plane Strain Problems, Sergei Khakalo, Jarkko Niiranen,
Viacheslav Balobanov, Bahram Hosseini, Aalto University, Finland

e  Thermo-Hygro-Mechanics (THM) in the frame of the Finnish connection, Andras Szekeres, Budapest University of
Technology and Economics, Hungary
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Avaus - Opening

8:45-9:00 Location: Konsu

-00.10- Plenary |  Location: Konsu
9:00-10:10 Chair: Martti Mikkola
Kahvi - Coffee

10:10-10:40 Location: Konsu

1A: Structural Engineering
10:40-12:00 - Rakennetekniikka (EFFF)
Chair: Kristo Mela

12:00-13:00 Lounas — Lunch
2A: Multibody Dynamics
13:00-14:20 (English)

Chair: Marko Matikainen

1B: Fracture & Damage
Mechanics (English)
Chair: Jouni Freund

2B: Numeeriset
menetelmat - Numerical

Methods (Finnish)
Chair: Timo Saksala

. . Kahvi - Coffee
14:20-14:50 Location: Konsu
3A: Finite Element
14:50-15:50 Methods (English)
Chair: Rolf Stenberg

3B: Optimointi -
Optimization (Finnish)
Chair: Jussi Jalkanen

.en_17-nn Plenary Il Location: Konsu
15:50-17:00 Chair: Juha Paavola

Perjantai - Friday, 5.6.2015

4B: Matemaattiset
menetelmat - Mathematical

Methods (Finnish)
Chair: Juha Jeronen

4A: Ice Mechanics -
9:00-10:00 Jaamekaniikka (EFF)
Chair: Jukka Tuhkuri

. . Kahvi - Coffee
10:00-10:30 Location: Konsu
5A: Experimental
. .nn Mechanics - Kokeellinen
10:30-12:00' "\ aniikka (EEEF)
Chair: Mikko Hokka

12:00-13:00 Lounas - Lunch

6A: Material models -

13:00-14:00 Materiaalimallit (EFF)
Chair: Juho Kénno
Kahvi - Coffee

14:00-14:30 Location: Konsu

5B: Seismic & Soil
Mechanics (EEEF)
Chair: Pentti Varpasuo

6B: Isogeometric Analysis
(English)
Chair: Antti H. Niemi

Loppusanat - Ending

14:30-15:00 Location: Konsu

Plenaries in Konsu 3" floor

A Sessions in Vainoé Voionmaa, 8" floor
B Sessions in Yrjo Makelin, 6" floor

C Sessions in Unto Kanerva, 6" floor
Lunches in Theatre foyer, P floor
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ISBN 978-952-93-5608-9 (printed)
ISBN 978-952-93-5609-6 (PDF)

2C: Theoretical Mechanics -

Teoreettinen mekaniikka
(EEEF)
Chair: Kari Santaoja

3C: Beam Theory -
Palkkiteoria (EEF)
Chair: Arttu Polojarvi

4C: Models and Analyses
(EEF)
Chair: Baroudi Djebar

5C: Mallintaminen -

Modelling (Finnish)
Chair: Jari Makinen
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