Some corrections to the lecture notes " Variational Methods of Mechanics,
Spring 1999"

Page 5-9. Last equation (6) should begin as QJI- =,

Page 5-14. In formula (j) the symbol g should be replaced by the symbol s.

Page 5-23. In formula (8) the dash in the term — &V’ should be removed and transferred to
the term (—94V).

Page 10-4. In formula (7') the unit vector multiplying term dz/dt should be k.

Page 11-5. In the second formula (2") the last term should be 7,.k.

Page 11-7. In formula (9) the right-hand side should be ° T/
iy

Page 13-17. In formula (d) the second element in the column vector on the left-hand side

should be 6.
Page 13-19. In formula (k) the last two elements in the column matrix should be g and r,

respectively.
Page 14-6. Formula (d) and the text following it should read
0 0 0 O ¢ 3 0 3
(M), = éhf'hz 1 -1 0 -1 0 N fp 0 ¢ 2 0 h ' @
(128, +1)2|0 0 0 O (12,+16|0 -3 0 -3
1 0 1 0 0 A 0 2h

The matrices are not symmetric. It would be interesting to consider the effect of using only
the symmetric parts. However, ...

Page 15-5. Formula (5) should begin W =.

Page 15-10. In formulas (e) the symbol T should be replaced by the symbol K and in the last
formula the differentiation should be with respect to y.

Page 15-23. In formulas (22) and (23) the term {¥] [ should be replaced by the term A{y} I
Page D-14, line 8 from bottom. The term Jfp /dx; should be replaced by the term df /dx;.
Page D-23. In formula (1) the square root in the integrand should end befote the factor dx.
Page D-42. In formula (h) the latter term n1, d7/Jx inside the parentheses in the last integral
should be replaced by the term n,dT/dy.

Page D-64. The paragraph in the middle of the page should end with the formula K; = Kj;.
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PREFACE

The principle of virtual work (virtuaalisen tyén periaate) is probably the most
useful and the most misunderstood principle of mechanics. Shortly, the principle
contains the equations of equilibrium in statics or the equations of motion in
dynamics of a mechanical system as one scalar equation, however complicated
the system. The principle is very old but it has an enormous number of
applications. During the last decades its practical importance has been further
emphasized by the wide use of the finite element method (elementtimenetelmi)
in solid mechanics. The discrete equations of the finite element method are
usually generated via the principle of virtual work.

General mathematics literature dealing with the finite element method is
constantly involved with scalar equations called weak forms (heikko muoto) or
weak formulations (heikko formulaatio) or variationa! formulations (variaatio-
formulaatio). The principle of virtual work is in fact a weak form. Thus getting
familiar and understanding this principle opens the door for understanding weak
forms in other physical situations, for instance in heat transfer and fluid flow.

It is often stated that the virtual displacements are infinitesimal and that they
take place infinitely fast. Why must they be infinitesimal? If they take place
infinitely fast, does it mean that the corresponding accelerations and thus inertia
forces are also infinitely large?

The principle of virtual work is usually stated in the form: For a system in
equilibrium the virtual work of all the forces acting on the system is zero. The
so-called Fourier's inequality, however, says that if the virtual work of the forces
for any virtual displacement is zero or negative, the system is in equilibrium.
How should one understand this?

Virtual work is often denoted by the symbol W. In variational calculus the
& -symbol is quite generally employed for the first variation of a quantity.
Virtual work 8W does not, however, mean the variation of work.

This kinds of problems and even the rather exotic name of the principle often
trouble the student and easily make the principle to seem to have some mystic
properties. This text is an attempt to remove all this mystique and to show the
vast applicability of the principle in engineering mechanics.

The presentation is aimed mainly at applications in solid mechanics. However,
we start with particle mechanics. This is because

Particle mechanics introduces in a simple form concepts and
manipulations which are rather directly transformed to be
used similarly in continuum mechanics,

Important approximate discrete methods in continuum
mechanics — such as the finite element method — produce
equations similar to those in particle mechanics.



PART I

VIRTUAL WORK IN PARTICLE ME-
CHANICS

CHAPTER 1
INTRODUCTION

One way to classify mechanics is to do it through the material models used. The
most usual models are the particle model and the continuum model,

Particle (partikkeli, massapiste, ainepiste, hiukkanen) corresponds to the
concept of point in geometry equipped with mass. The latter is a positive
constant for each particle.

In a continuum (kontinuumi) the material is assumed to be distributed contin-
uously in space.

Neither of these models corresponds exactly to reality but they both have
important application areas. Depending on the model used, we speak about
particle mechanics (partikkelimekaniikka) and continuum mechanics (konti-
nuumimekaniikka).

To construct the theory needed to solve problems in mechanics we need roughly
the following ingredients:

1. Mathematics

2. Axioms of mechanics
3. Kinematics

4, Constitutive relations

Most of the mathematics needed are assumed to be familiar to the reader.
Certain concepts of variational calculus are explained later in some detail.

Axioms of mechanics or natural laws (aksiooma, luonnonlaki) give the most
important governing equations. For pedagogical reasons, we state different
axioms for the particle model and for the continuum model.

The continuum axioms are considered to be valid irrespective of the material of
the body considered. say, fluid or solid. Constitutive relations (konstitutiivinen
yhteys) are needed to describe more or less realistically the detailed material
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response of the material under study due to say stress and temperature changes.
Examples: Hooke's law, ideal gas law.

To represent the axioms and the constitutive laws mathematically we need
preparatory geometrial concepts concerning displacements and motion in
general, cailed kinematics.

It is important to emphasize the difference between the concepts of kinematics
and kinetics.

Kinematics (kinematiikka) studies motion as a geometric phenomenon without
considering the cause of the motion.

Kinetics (kinetiikka) studies motion taking into account the cause of the motion:
the forces. Kinetics is often also called dvramics (dynamiikka) and as its special
case we obtain srarics (statiikka). Kinetics can be considered as the end product
obtained by combining the four ingredients listed on page 1-1. In more detail,
the cause of motion can be something else than forces, for instance, say, some
heat input to a system.



CHAPTER 2
AXIOMS OF PARTICLE MECHANICS

We cansider system of particles (partikkelisysteemi), that is, an entity consisting
of several particles. The results we obtain are thus valid as special cases for just
one particle and for rigid bodies (jiykki kappale) or for systems of rigid bodies.
In a rigid body we assume the distances of the particles forming the body to
remain constant irrespective of the external excitation. We call the mechanics
dealing with systems of particles as particle mechanics (partikkelimekaniikka).

The axioms of particle mechanics, used here, are, Synge and Griffiths (1959):

(1) Law of motion (liikelaki): A particle of mass m, subject to a force F, moves
according to equation

W

where a is the acceleration of the particle (Figure 2.1).

f/
)

Figure 2.1 Force, mass and acceleration.

(2) Law of action and reaction (voiman ja vastavoiman laki): When two
particles exert forces on each other, these forces are equal in magnitude and
opposite in sense and act along the line joining the particles.

Using the notation of Figure 2.2, we obtain the formula
fj,' = —f,j . (2)
which does not however totally imply the law — this is just the information

about opposite force vectors — and we must additionally tell information about
the line of action.

12
1

Figure 2.2 Two forces.

(3) Law of the parallelogram of forces (voimien suunnikaslaki): When two
forces P and @ act on a particle, they are together equivalent to a single force

the vector sum being defined by the parallelogram construction (Figure 2.3).

Figure 2.3 Forces P, Q and F.

Remark 2.1. The law of motion is valid only in a Newtonian frame of reference
or an inertial frame (inertiaalikehys). Synge and Griffith (1959, p. 27). See also
the same reference for a more general form of the law of motion than the one
presented here. O

REFERENCE

Synge, J. L. and B. A. Griffith, (1959): Principles of Mechanics, 3rd. ed., McGraw-Hill, New
York.



CHAPTER 3

KINEMATICS

3.1 GENERAL

The most important concepts of particle kinematics are the path (rata), the

position (asema), the velocity (nopeus) and the acceleration (kiihtyvyys) (Figure
3n:

v /\ Position r=r(r)

Path Velocity y=F o
Acceleration a=v=F

Figure 3.1 Kinematical concepts.

The derivative of a quantity (-) with respect to time ¢ is denoted shortly with
()=d(-)/dt. The units of the quantities of Figure 3.1 are [rj=m, [v]=m/s,
(a]= m/s.

In rectangular cartesian xyz-coordinates we have

—F r=ritrj+rk
ll _t: S~ =xi+y+zk,
'E v=vi+v,j+vk @)
S = M+ yj + ik,
/ & T' Y9 a=ai+ayj+ak
4 =¥i+y+7k.

Figure 3.2 Rectangular cartesian coordinate system.

The unit base vectors i, f, k along the coordinate axes x, v, z form in this order a
right-handed orthogonal system.

The values of velocity and acceleration do not change if the position vector of a
particle P is measured instead of the origin with respect to any fixed point in the
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coordinate system. [n solid mechanics the equation r = r(¢) for the path of the

particle and the velocity and acceleration are represented usually instead of
formulas (2) as follows (Figure 3.3):

op
\? r="r +u(t),
o u \ P u=ud+u,j+uk
" A0\ =ui+vj +wk, %))
= v=ig=uni+vy +wk,
@ =i =i +if + wk,
Py

Figure 3.3 Displacement u.

Here u {[u] = m/s) is the displacement of the particle with respect Lo an initial or
reference state (alkutila, referenssitila) (indicated with a forward superscript 0)
selected for the particle. The initial state is usually selected to be the state of the
body at the moment of time ¢ =0 when the forces under study do not yet act.

The change of displacement PP’ = Ar = Au shown in Figure 3.3 is also often
called simply displacement. Thus the exact meaning of the concept is only clear
after the initial and final state connected to the displacement are mentioned.

3.2 RIGID BODY MOTION

To describe the motion of a rigid body the concepts of translation and rotation
are in use.

q / A
(A - (2 b
4 A ) ~ /%A 5 .._.lPl
< p £ _——
P P
oL A
=37
0!
/
(a) (b)

Figure 3.4 (a)} Translation. (b) Rotation.
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Translation (translaatio, etenemisliike) is the motion of a rigid body in which
the orientation of the body does not change. Each particle of the body obtains
the same displacement. By the word translation we often mean also in addition
to the motion the corresponding displacement. Thus the displacement
PP’ = Arp = Aup (Figure 3.4 () of an arbitrary particle P of a rigid body gives
all necessary information about the translation.

Rotation about a fixed line — the rotation axis — (rotaatio eli pysrimisliike eli
kiertoliike kiintedn suoran ympiri) is the motion of a rigid body where the
particles on the rotation axis do not move. In Figure 3.4 (b) the rotation about an
axis passing through points O and Q is considered. A particle in initial state at
point P moves along a circular path (radius | rp,g Isine) to the point P’. The
notation rp,q refers to the position vector of P with respect to O. By the concept
of angular displacement or often also rotation (kulmasiirtymi, rotaatio) we
mean the directed line segment A’G ([A’8)= rad) whose magnitude is the value
of the rotation angle Af and the direction is along OQ and the sense is
according to the direction of movement of a right-handed screw in the
corresponding rotation.

Quantity A’@ is not a vector. If we for instance perform two consecutive
rotations about two rotation axes having different directions and going through
point O, it is easy to see that the final position of the rigid body depends on the
order of performing the rotations. This means that the rotations do not obey the
commutative law of vector summation and rotation cannot thus be considered as
a vector, It can be shown, however, that the smaller the rotations, the less the
final position depends on the order of performing the rotations. Infinitesimal or
differential rotation d'@ can thus be considered as a vector. With the help of
Figure 3.4 (b) it is rather easy to show remembering the meaning of the vector
cross product that the infinitesimal or differential displacement of a particle
situated at point P due to 4’8 is

drp=dup=d'9er,0. (1)

In this formula O may be any point on the rotation axis. With finite rotation the
formula for the displacement of an arbitrary point becomes considerably more
complicated.

According to the theorem of Chasles (Figure 3.5)

The general displacement of a rigid body is equivalent
to a displacement which is constructed by first
performing a translation and then a rotation about the
base point. (2)
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Figure 3.5 Displacement of a rigid body.

The base point (siirtopiste) is an arbitrary particle of the rigid body (in Figure
3.5 particle O) by which the translation is thought to be performed so that the
particle moves from the initial position (1) to the final position (2). The
translation vector Arg = Aug depends in general on the selection of the base
point but the amount of rotation needed A’® is independent of it.

The theorem of Chasles can be stated also in the form where the rotation is
performed first and the translation later or they are both performed
simultaneously.

Under a small time increment the motion of a rigid body is small and especially
the rotation needed in Chasles' theorem is also smali and with differential time
increment dt it becomes a differential rotation vector d’@. By adding to the
expression (1) due to rotation the differential translation dryy = dug of the base
point O we arrive at the formula

| drp =drg +d'8xrpp | (3)

or

| dup = dug +d’'Oxrpy . | (37

Thus when we know the differential displacement of one particle of a rigid body
and its differential angular displacement we can calculate the differential
displacement of any other particle of the rigid body by this formula.

The formula is used quite often as an accurate approximate one for small finite
displacements:

Arp ="Ar0 +A,0xrp‘ro. (4)

The angular velocity (kulmanopeus) @ ([@]= rad/s) of a rigid body is defined
at each moment of time by

o= lim 29-46 ()
ar—=0 At dt
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where d’@ is the differential rotation corresponding to the differential time
increment dr.

By dividing equation (3) by d¢ we arrive at the formula

[v,, =vg + @X rprg ] (6)

concerning the velocities of the particles of a rigid body.

The angular acceleration (kulmakiihtyvyys) @ ([a}= radlsz) of a rigid body is
defined by

9

Here we have no problems in the definition as the vector @(¢) is in principle
available at each moment of time.

Remark 3.1. The angular displacement (rotation) and the angular velocity in
the fully three-dimensional case are concepts which often cause some confusion
as they are not analogous ones with the concepts of displacement and velocity of
a point. The difference lies in the fact that a point always has a position vector
r(t) but unfortunately the orientation of a rigid body cannot be given by some
kind of "orientation vector " @. (In plane motion this is possible and the
situation is much simpler.) The notations A’ and d’ equipped with dashes are
connected here to this. Let us consider an arbitrary function f of time: f = f(r).
By the the notations Af and df we usually mean the change
Af = f(r+ Ar)— f(t) and differential change df = f(¢ + d¢)— f(r) of f during the
the time changes Ar and dr. But if we have no function of time — as here in
connection with orientation — we indicate it with the dash. Other sometimes
used notations in this connections in the literature are d or d . The orientation
of a rigid body in space in the fully three-dimensional case can be given with the
help of three independent (in the plane case with only one) scalar quantities,
perhaps the most usual being the Euler angles (Eulerin kulmat). 0

The Euler angles ¢(r), 8(¢), y{r) are indicated in Figure 3.6. We need two
coordinate systems. The XYZ-system is called the earth-fixed coordinate
system (kiinted koordinaatisto) and the xyz-system which is fixed with respect
to the rigid body is called the body-fixed coordinate system (kappale-
koordinaatisto). To describe the orientation of the body it is enough here to
assume for simplicity of presentation that the origins of the two coordinate
systemns coincide.
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Kuva 3.6 Euler angles.

The plane defined by the x- and y- axes intersects the darkened plane defined
by the X- and Y -axes along the so-called line of nodes (solmuviiva). The
& -axis of an auxiliary £7j¢ -coordinate system is put to coincide with the line of
nodes. The { -axis of the auxililiary coordinate system is put to coincide with
the z-axis so that thus also the xy- and &n-planes coincide. Quantity ¢ is the
angle between the £- and X -axes, 6 is the angle between the ¢ - (z-) and
Z -axes and y is the angle between the x - and £ -axes.

Let us assume that the xyz-coordinate system coincides originally with the
XYZ -coordinate system. Figures 3.7 (a), (b) ja (c) show how the Euler angles
can be interpreted as three consecutive rotations ¢, 6, y about the Z-, &-,
{(z)-axes. These rotations in particular in this order move the body to its final
position.

[(+)]
Kuva 3.7 Three consecutive rotations.

The signs of the Euler angles are determined by the directions of the rotations
needed. [f the rotation is directed along the positive Z- &- or ¢ -axis direction,
the angles are positive and vice versa. In the case shown in Figure 3.7 the angles
are positive. Thus if one particle of a rigid body is fixed, the position or
orientation of the body as a function of time is known when three functions
@), B(r) ja yir) are given.

3-6



Kuva 3.8 General description of the position of a rigid body.

In the general case the position of a rigid body is determined by the coordinates
Xo, Yo, Zg of an arbitrary base point O and by the Euler angles as described in
Figure 3.8. Thus six functions X (1), Y5(£), Zg (1), ¢(t), 9(¢), w(t) are needed.
This kind of description is used for instance for studying the motion of a ship or
aeroplane considered as a rigid body.

Remark 3.2. The notations and sign rules employed in connection with Euler
angles vary in a very annoying manner in the literature. Here we have followed
those conventions employed for instance in Goldstein (1971) and Symon
{1971). These are rather common in treatises on classical mechanics. The
conventional notations used, say, in vehicle mechanics unfortunately usually
differ from the ones described above. The essential point, however, is to
comprehend the lines of thought in the derivation of the expression for the
angular velocity given in the following after which it is easy to derive or check
the formulas obtained in some alternative representation. 0

Remark 3.3. In connectioin with classical Euler angles the z-axis has a
specific role as two rotations are taken about it in the procedure shown in Figure
3.7. If the angle @ is zero or 180°, the construction breaks down since just the
sum of ¢ and y is known but not separately the parts ¢ and . The problem
can be evaded for instance in a numerical solution so that when the z- and
Z -axes become near enough each other in direction, the coordinates are given
new symbols so that the old x -coordinate becomes a new y -coordinate etc. D

Let us consider Figures 3.6 and 3.7 and the change of the position of the body
during a time increment At from the position given by the angles ¢, 8, ¥ to the
position given by the angles ¢ +A¢. 8+ A8, w +Ayw. Figure 3.7 shows the
unit vectors e_. = K, e,~» =¢,, €.~ = k along each of the corresponding rotation
axes. If just angle ¢ would change. the angular diplacement would be Ade... If
just angle 8 would change, the angular displacement would be A8 €. Finﬁ]ly,
if just angle y would change, the angular displacement would be Awye ... The
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actual angular displacement A’f (we have not used the conventional symbal
4’8, 1o avoid possible confusion with the rotation A@e ) which takes the body
from the position ¢, 8. y to the position ¢+ Ad, 8+ A8, w + Ay is not the
vector sum of the quantities Age_., ABe,~ ja Aye.~ when the rotations are
finite. However, when the time increment Ar gets smaller, the rotations get
smaller and smaller and the equation

A’ﬂ= A¢ez- +A6€X' +AWEZM (8)

becomes more and more accurate as the vector summation rule is valid for
infinitesimal rotations. Thus in the limit exactly

' Age, +0Be,. +Aye.-
@= tim 3B _ jj 20, +40¢,- +Aye,
a0 At A0 At

. Ag A6 Ay
= lim{(—e, +—e ~+—e ~ 9
a.-To( AT AT T A ) 2

or

l m:@ez.-i-éex,. +lflezw.] (10)

The angular velocity expression (10) is not directly in a form suitable for
practice as the the unit vectors on the right-hand side are not of a one and same
coordinate system. Usually we want to have expressions given in the body-fixed
coordinate system. The relations

e, =sin@sin i+ sinfcosyj+ cosOk,
€ - = CO§ Wi —sin yj, (1D
ezw =k v

can be derived using Figure 3.7. When these are substituted in (10). there is
obtained

W= ito,j+ok,| (12)

where

. =sin@siny-¢+cosy -0,
@, =sinBcosy - P —siny -6, (13

@, =cos8-9 + .

In matrix form



W, sin@-siny  cosy O]9

@, }=|sinf-cosy —siny O[6 (14)
@, cosf 0 1|y

or shortly
{w}=[BNIy). (15)

The argument y in the [B]-matrix emphasizes that the elements of the matrix
are expressed in the Euler angles.

3.3 RELATIVE MOTION

The two coordinate systems in Figure 3.9 are in motion with respect to each
other. It can be shown that the relationship between the accelerations a and a,
measured by the observers I and R, respectively, is

a=a +ag+a&Xs+

+ax(mxs)+2Zoxy,, (0
where
2
a=| Y0\ cxre vk,
de I
d%s e s
a =7 =X+ ¥f + 7k,
dr R
2
a = dﬁ] Rl +io+ 3K, @
I

ds a0.n. 59 o
vos|— | =X+ g+ ik,
dr jo
Figure 3.9 Two coordinate systems.
The content of most of the notations is obvious. Quantity @(@g,;) is the angular
velocity of the xyz-coordinate system with respect to the XYZ-coordinate
system. Quantity a(ag,)=(d@/dr); is the corresponding angular acceleration.

Formula (1) has use for instance when motion is considered in a non-inertial
coordinate system.
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It should be noticed that the construction of a coordinate system demands in

practice a more or less — preferably a more -~ rigid body. The angular velocity
@ is in fact the angular velocity of a rigid body to which the x vz -coordinates

are fixed.

3.4 REFERENCES
Goldstein, H. (1971): Classical mechanics, Addison-Wesley, Reading, Massachusetts.
Symon, K. R. (1971): Mechanics, third edition, Addison-Wesley, Reading, Massachusetts.
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CHAPTER 4
KINETICS
4.1 GENERAL

We consider certain general concepts some of which actually belong to
kinematics but which have been included here nearer to their applications.

4.1.1 Particle system

The term body or material body (kappale) in mechanics is the general name
given for a system under study consisting of certain material particles. Thus for
instance a given amount of water is in the language of mechanics a body. In
particle mechanics, the synonym for a body is a particle system or shortly a
systent.

¢
,-—-n-\ " __.-_‘ -t
/ N l’- /}_’ Rf.'
ALY AN r g2 N
- / =\ [] (A 60
! \ = LANREL RN
i’ \ rﬁ/A N
] * . A l - -..‘\ \
AT 1 £. i .
\ o4 1 : \ § ok )\\
‘\ - ” A ‘I
\
~. N, 7
\‘.- -‘_’
(@) (b)

F; = the resultant of the external forces acting on particle
N
fi= E f;j = the resultant of internal forces acting on particle i
J=lj#i
R; = F, + f, = the resultant of the forces acting on particle
Figure 4.1 (a) Particle system. (b) Forces acting on a particle system.

Some notations used in the numbering of the particles and in naming the forces
are given in Figure 4.1. In the following the sum over the particles (1.2.---,N)
of the system is often denoted just with the summation symbol ¥ without the
limits.
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The concept of center of mass (massakeskio) appears in many of the formulas
for particle systems Often the name center of gravity (painopiste) is also used.
The center of mass is defined as a point C, whose position vector re =F is
determined by the formula

2

or
mx = Zm".t'- N
my=xmy,, (t

Figure 4.2 Center of mass.

where m; is the mass of particle { and where

@

is the total mass of the system. It can be shown that the position of C with
respect to the body does not depend on the choice of the coordinate system.

4.1.2 Constraints and generalized coordinates

The particles of a system are usually not fully free to move but some kind of
kinemeétical conditions or shortly constraints (rajoite) decrease the possibility of
motion and we then speak about constrained or guided motion (sidottu liike). (A
planetary system would be an example of an exceptional case where no
kinematical constraints are present.) References Gantmacher (1975), Goldstein
(1971}, Rosenberg (1977) contain good presentation of constraints. We follow
here mainly Goldstein.

Constraints can be classified in different ways. If a constraint can be expressed
as an equation connecting coordinates of the particles of the system and possibly
explicitly the time having the form

flr ry ) =0, {3

the constraint is called holpromic (holonominen rajoite). If this is not the case.
the constraint is called nonholonomic (epiiholonominen rajoite).

A rigid body is produced by the constraints
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(r; ~r)elr, —r)=s} =0, 4)

where the meaning of the notations is obvious. These are examples of
holonomic constraints.

A constraint is called scleronomic (skleronominen rajoite) if time does not
appear in it explicitly; if time appears in it, the constraint is called rheonomic
(reonominen rajoite). Constraint (4) is thus holonomic and scleronomic. If a
particle is constrained to move on a moving surface we have a holonomic and
rheonomic constraint.

Constraints containing velocities of the particles of the system are examples of
nonholonomic constraints. Similarly constraints in the form of inequalities —
these constraints are called sometimes unilateral constraints (toispuoleinen
rajoite) — are nonholonomic. For instance, a particle (gas molecule) bouncing
inside a container is subjected to nonholonomic constraints. We consider in the
following only bilateral constraints (kaksipuolinen rajoite), that is, constraints
in the form of equality constraints.

Constraints change the problems of mechanics in two ways. First, the
kinematical quantities in the equations of motion of a system are not all
independent as they have to satisfy the constraints. Second, new unknown
forces, so called constraint forces, discussed in more detail in Section 4.1.3
emerge.

Let us consider first the case where we have & scalar holonomic constraints of
the form (3) or using for the sake of argument rectangular cartesian coordinates:

fj(x[1y|vZIyXZ;"'sz|t)=0' i=1,2,--k. {5)

Without constraints, the position or configuration (konfiguraatio) of the system
consisling of ¥ particles would be given in three dimensions by 3N quantities:
X1, % ,Z X3, . Zy. Using the constraint equations (5), we can eliminate & of
the coordinates and expresss them in the remaining 3N — k = n coordinates
which can be then considered as independent quantities that define the
configuration of the system. However, we need not use the original rectangular
coordinates for this purpose. It is enough to find n independent quantities,
denoted conventionally by the symbols ¢,.q;. --.q, and called generalized
coordinates (yleistetty koordinaatti), by which the old coordinates or the
position vectors of the system can be given in the form

{":="i(q|af12-""fin‘r)'l i=h2- N ©

or

X = X041 gy Gy ath
¥ '.‘*’;(fll“iz»"‘vqnsf)' i
Y=x0qga. gyt

fl
.Y

326 { ] (6"

Now the holonomic constraints (5) are taken care of automatically through the
representation (6). Usually the generalized coordinates can be selected directly
by inspection of the problem and there is no need to actually perform any
etiminations. The generalized coordinates are functions of time: g = g(t). In the
scleronomic case time ¢ disappears explicitly from the argument list. This is in
practice the most usual case. The number n is called the number of degrees of
Jfreedom (vapausasteiden lukumiiri). This is a fixed number for each holonomic
system; the generalized coordinates, on the contrary, can be selected in principle
in infinitely many ways.

Remark 4.1. In solid continuum mechanics, when the displacement formu-
lation is applied in connection with the finite element method, we end up with a
representation of the type (6) giving the (approximate) configuration of the body
in terms of a finite number of parameters called often nodul parameters
(solmuparametri) (or as commented in Remark D.20 also not very approriately
as degrees of freedom). From the classical mechanics point of view, however,
the nodal parameters are just one application example of generalized
coordinates. O

Especially in structural mechanics, where the values of the coordinates do not
vary very much, displacements are considered instead position vectors as is
indicated in formulas (3.1.3). Thus, the equivalents of (6) and (6"} are

ul.zu'(ql,qz,---,qn,rﬂ i=1,2,-- N (7)

or

= (g g Gnat),
Vi =Vi(q1.92. G t),  E=1.2,-- N (7
w; =wi(q) .42, g 1)

If form (6) is known, form (7) follows immediately — and the other way round
— a5

;= 1(q) Ga o G "1, = U Q) Gy G 0). ®

Generalized coordinates are used also in connection with rigid bodies. As the
number of particles in a rigid body considered as a continuum is infinite, we
cannot in practice identify the particles by numbering. For this purpose we equip
a rigid body with body fixed coordinates, say a,b.c, after which the values of
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the coordinates fix a particle (compare the Lagrangian representation in Section
10.2 and Example 4,2), Formulas (7) and (79, for example, would look then

u=u(a,b,C;QI~.q2"".qnyf), (9)
and

u=ul(a,b,c.q,.q, 4,1,
v=v(a,b,c.q,,92, " qn.1), (3
W= W(a,b,c:ql ,qz ;"';q_n ,f)-

Often, however, the parameters a,b,c are not indicated in the list of variables.

Example 4.1. We consider the extremely simple demonstration case of Figure (a), a
particle moving in plane motion in the xy-plane on an inclined plane of a wedge in
given motion.

L}

P
C
o
> x

Figure (a)
The posilion of the wedge is given by the measure b in the form
b=bsinor (a)

where 5 and @ are constants. The wedge thus performs harmonic motion with
amplitude b and angular frequency @. The system is here just the particle. One
constraint is that the particle is in plane molion:

z=0. (b)
The condilion that the particle remains on the inclined plane can be expressed as

y=c—-(x—b)lana ©
or

y+(x—bsinajtaner —c = 0. ' {(d)

The two constraints (b) and (d) are holonomic, see equation (5). The former is
scleronomic and the latter sheonomic. The original number of degrees of freedom of the
system 3¥ =3-1=3 is decreased to -2 =1 and we have a system wilh one degree of
freedom where for inslance x is the generalized coordinate. At a quick glance, one could
consider measure & as an additional generalized coordinate. This would indeed be the
case if the motion of the wedge would be free but here it is in a given motion.

The equivalents of formulas (6) and {6 are

4-5

r=.ri+[c—(.t—135inmr)tana]j (e)
and

x=ur

y=c¢—(x-bsinwtana. (e)

The measure s, for example, indicated in the figure, is clearly one aliemative possibility
to choose the generatized coordinate, The equivalents of formulas (6) and {6') are now

r=(:cusc£+5sin wni +(c - ssina)j N

and

x = gcos@ + bsinwt,
y=c-ssing,

(f

Example 4.2. The system shown in Figure (a) consists of two slender rigid bars pinned
at O and pin-connected at A and consirained to plane motion in the xy -plane.

By direct inspection, quantities @ =g, and
8, = g, are, for example, suilable generalized
coordinates for this problem. We have for bar
1

x=ajcosf, a

y=asing, {
and for bar 2

x=Icos@ + 58, ,

x =1cos8) +aycosb, (b)

y=Isinb +a,sinf,,

as the equivalents of (6"). Here { is length of
the bars and & and «; are Lhe chosen local
coordinates identifying the particles.

We have a holonomic scleronomic two
degree of frecdom system. As other
generalized coordinates, we could take say
X u ¥a and yg or y, and 8. If point O would

| have given motion, the sysiem would become
rheonomic.

Figure {a)

If the dashed position of the system is taken as the reference siate. the equivalents of (97
would become for bar !

u=acost —-ap. -
. c
v =g sinf,

and for bar 2

tt=1cos8 +a;coséy = -ay,

v=1[sind, +ay5ind;. a
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Using generalized coordinates, the conventional nonholonomic constraint
equations in the literature are of the form

n
2 a4 +b=0. (10)
j=

The time derivatives of the generalized coordinates, generalized velocities
(yleistetty nopeus), appear linearly. The factors a and b may be functions of
generalized coordinates and time.

(20—

X

Figure 4.3 Vertical disk rolling on a horizontal plane.

Figure 4.3 gives an example of a nonholonomic constraint, Goldstein (1971). A
disk rolls without slipping on a horizontal xy -plane so that the plane of the disk
is always vertical. The generalized coordinates giving the configuration of the
system (the disk) could be the ordinary cartesian coordinates x and y of the
center of the disk, the angle ¢ between a fixed material radius line from the
center and the vertical (rotation angle) and the angle 8 between the axis of the
disk and the y-axis. Thus four quantities are enough to fix the configuration.
From the rolling condition (the point of contact has zero velocity) follows

v=ap (11)

for the scalar velocity of the center of the disk, where a is the radius of the disk.

The velocity of the center is in the perpendicular direction to the axis of the
disk:

X =vcosé,

¥y=vsing, (12)
or

k—acos@ ¢ =0, (13)

v—asing-¢=0.

4-7

We have obtained two nonholonomic constraints of the type (10).

Nonholonomic constraints cannot be employed for further elimination of
kinematical variables.

Remark 4.2. We can denote right from the start all our kinematical quantities
describing the configuration of a system using the symbols q1.G- .-+ do they
satisfy the holonomic constraints or not. In some situatjon it may be in fact
convenient not to try to satisfy all the holonomic constraints in advance. A
holonomic constraint is then of the form

fa.qy,---,0)=0. (14
Differentiation this once with respect to time gives using chain differentiation

. df
—qt—qs++==0.
afll : 9‘12 2

> (15)

This of now of the same type as the nonholonomic constraint (10). However,
(15) can be integrated back to give (14) but for a truly nonholonomic constraint
itis not possible to transform it by integrations to a holonomic form. O

4.1.3 Classification of forces

The forces acting on a system can be classified in many ways depending on the
purpose.,

(1) External and internal forces. A force acting on a particle of a system is
called internal force (sisiinen voima), if it is generated by another particle of the
system; if this is not the case, the force is called external force (ulkoinen voima).

It is easy to prove the following simple but extremely important results (see
Figure 4.1)

X5=0,
2raxfi=0

(16)

or the resultant of the internai forces of a system is zero
and the moment of the internal forces of the system with
respect to an arbitrary point is zero, that is, the internal
forces form a zero force system (nollavoimasysteemi),

Gravitational forces and contact forces from particles outside the system under
study are examples of external forces. The same type of forces are internal if the
particles generating them belong to the system.
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4.2 EQUATIONS OF MOTION

The equations of motion (likkeyhtildt) of a general particle system are

.

i=120 N ()

A NI 4

Figure 4.11 Forces acting on particle i.

The external force F; is in general a function of the position and velocity of the
particle and explicitly of time: F, = F;{r;,v;,t). The pairwise intemal forces S
and f; are in general functions of the distance s, its change of rate § and
explicitly of time. Force f; is thus in general a function of positions and
velocities of all the particles of the system and of time: f; = f;(r;,ry .7y ..
V1:¥2,"Vy.t). As an example we may consider a truss modelled as particle
system with all its mass concentrated at the joints which are the particles. Each
bar connecting two joints gives a particle pair interacting with each other
through the bar forces. These may be given say by linear springs and linear
dampers.

Each equation (1} is a vector equation so in three dimensions we have a system
of 3N scalar second order ordinary differential equations with time as the
independent variable. The solution r(8),r (), ry(ty or oy (1), 15 (8) -,y (1)
contains 6N integration constants which are usually determined from the initial
conditions: r;(fy),v (f9). vy (tg) or wy(1g). ¥ (1y), ---,vy{ty) are given. To
find a closed form solution is clearly usually not possible. Further, the motion is
usually constrained and unknown constraint forces emerge.

In a staric (staattinen) or in a so called quasistatic (kvasistaattinen) case — this
is a case, where the motion may depend on time but the motion is so slow that
the term ma in the equations of motion may be neglected in comparison with
the other terms — equations {1} transform to equations of equilibrium
(tasapainoyhtil§)

i=1,2,--,N. (2)

These are usually algebraic equations with respect to the unknowns T P2y Fy
or i . U5 . --.uy and thus easier to solve than ([).

All problems of particle mechanics can be solved in principle — if at all
solvable — using the equations of motion (1). In is, however, conventional in
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mechanics to operate with additional quantities such as momentum, work,
kinetic energy. virtual work, etc. and with so-called principles or theorems
concerning them. It must be emphasized that no new axioms are taken into use.
The principles derived can often be employed very effectively to solve certain
problems. The same results would finally be obtained starting always from the
three basic axioms. The value of the derived principles is that as the
manipulations needed have been derived in a general form the treatment in
specific applications gets shorter.

4.3 MOMENTUM

p=mv. D

The momentum p of a particle systern is defined as the sum of the momentums
of its particles:

2

In the following manipulation, the equations of motion
F; + f; = my; (3)
are added together to produce one vector equation:
2F+Zfi=Zmp,,
d
z F: = d_t z mv;,

@

or the resultant of the external forces acting on a system
is equal to rate of change of the momentum of the
system.

This is called the principle of balance of momentum (liikemiilirin taseen
periaate). In the steps to (4), use have been made of the fact that the internal
forces form a zero force system and that the masses of the particles of the
system are constants.

By differentiating formula (4.1.1) concerning the definition of the center of
mass of a system, it is seen that the momentum of a system can be given in the
form (¥ =v-)



The division of forces into external and internal ones is the most important
classification basis in mechanics. This becomes apparent especially in the
principles of momentum and moment of momentum. In the following, the
reference to terms connected to external and internal forces will be denoted, if
needed for clarity, by the subscripts (or superscripts) ext and int, respectively.

(2) Constitutive forces and constraint forces. When a system has kinematical
constraints, each constraint must be associated with a corresponding constraint
force (force in a generalized sense) (rajoitevoima, reaktiovoima, pakkovoima,
tukireaktio) which guides the motion or the state of rest of the system to such
that the constraint is satisfied. Constraint forces differ from the other forces of
the system in the respect that the values of them cannot be evaluated from some
constitutive relations (konstitutiivinen yhteys) but they must be determined — if
at all possible — from the equations of motion or equilibrium, when the
accelerations and the other forces acting on the particles of the system have been
found. We shall call other forces than constraint forces acting on the system
constitutive forces (konstitutiivinen voima). (This terminology is not in general
use.)

The force of gravity mg according to the model of constant gravitational field is
perhaps the simplest example of a constitutive force. If a particle of mass m is
brought to the field, this force act on the particle independent of the mation of
the particle.

As a second example, let us consider the force according to the model of a
linear spring (lineaarinen jousi). The force S acting between the two end
particles of the spring is assumed to be given by the constitutive relation

N Rt O
- v
e T @

Figure 4.4 Linear spring.

Here k ([k]= N/m) is the spring constan (jousivakio} and s— % is the extension
{venymi} of the spring. When the positions of the particles are known. the
extension and thus the value of § can be calculated from (17). However, if we
introduce the rigid body model by putting the constraint: the distance s between
the end points of the spring is constant =", we cannot any more calculate the
value of § from (17). The constraint can be thought to be generated by letting
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the value of the spring constant to tend to infinity, meaning that the extension
tends to zero, and formula (17) gives the indeterminate value 0.0 for S.

Constraint forces are always connected to the exaggerated rigidities of some of
the models used in macroscopic mechanics, which do not correspond exactly to
reality. For example, the case of a rigid ball rolling along an inclined rigid plane
does not exist. More exactly, near the area of the apparent contact point, the
neighbouring molecules of the ball and the plane interact with certain
constitutive forces of electromagnetic nature. The practical assumption of rigid
bodies means that we have to model this interaction with an unknown constraint
force.

Because of the specific nature of the constraint forces, it is often useful to try to
formulate the equations of mechanics so that these forces do not appear in them.
This can be accomplished systematically by using Lhe principle of virtual work.

(3) Conservative and nonconservative forces. A force acting on a particle of
a system is called conservative force (konservatiivinen veima), if the work done
by it on the system depends only on the initial and end configurations of the
system and not on the path of the system between these configurations; if this is
not the case, the force is called nonconservative force (ulkoinen voima).

If a force F(r) is gencrated via a force field (voimakenttd), the force is
conservative, if there exists a function V(r) of only the point of action r of the
force such that

a

where VV is the gradient of V. Function V is called the porential energy
(potentiaalienergia) ([V]=1) of the force, The minus sign in the formula is not
essential but it is the usual convention. In rectangular cartesian coordinates.
where the dependence of V on position can be expressed also as V(r,y,z), the
scalar form of (18) is ;

IV v v
F=-go B=-% R=-5-

ax
As is seen from (18), an arbitrary constant can be added to the expression of the
potential energy without changing the value of the force. The point, where the
value of the potential energy is fixed — usually the value zero is taken — is
called darum (vertailupiste).

(19)

If we operate according to the convention of structural mechanics employing
instead of the position vector r the displacement u:

410



r=r+u, (20)
or
x="tu, y=%+v, z="z+w. (207

The potential energy Vir) is after substitution of (20) a function of u:
V = V(u) = V(u,v,w). The roles of quantities x, y, z are replaced by u, v, w. For
instance, formulas (19) transform to

v v A%
B e o F = F S == 2
b Yoov P ow @D

{1} Constant force F. In more detail a force with
constant magnitude and direction. Potential energy

i

; \_,' V=—(Fu+Fyv+Fw). (22)
F

! (2) Centrifugal force F =-m@Xx (@xs) or

F.=mo* (" +u) = mo? °x, 23)
F,= mwz(“y +V) =mo? oy,

ENE:
\L w=constant where the approximate forms are valid in the small
displacement theory. Potential energy

op
AT 2 l o 1 5
U V=—mo (®xu+-—u“+%v+-1v*)
e “ 2 2
P _"q' =—mm2(°xu+°yv). (24)
X, mm""e

(3) Linear reaction force F or in plane case

Fy ko k.ry {u}
=_ (25)
! {Fy} [kyx k.vy] v

83 | .
LSt ond
’ /t? Fy (F) =~ [kl {ul, (25"
l Y F‘j where [k] is symmetric. Potential energy
b 4

v=%mﬂ&nm. (26)

Figure 4.5 Conservative forces.

Figure 4.5 contains the expressions for three common conservative forces using
displacement formulation and taking as datums the positions in the reference
state. The extension of case {3) to three dimensions is obvious.

Systems contain often (macroscopic) forces, which cannot be given via a force
field but can only be defined in connection of bodies. Typical examples of these
are the constraint forces. This kind of forces are conservative if the work done
by them is always zero because then the work done by them clearly does not
depend on the path taken by the system. Constraint forces are usually
conservative. However, if the constraints depend explicitly on time —
rheonomic case — the work done by a constraint force needs not to vanish so
that in such a case the constraint forces are not conservative. Figure 4.6 gives an
example of this.

o~ -
" D A rigid body B — here the system under
- 1 study — rolls or slides along a rigid body
""-\\. A, which is in a given motion. The work
}\ done by the constraint force ¥ on body B
PN is not in general zero if body A is in
N(W motion.
N(t+al)

Figure 4.6 Nonconservative constraint force.

Figure 4.7 contains more examples of nonconservative forces. Forces depending
explicitly on time are always nonconservative. Forces depending on velocity —
such as friction forces and resistance forces — are almost always
nonconservative. So-called gyroscopic forces (gyroskooppinen voima) which
are always perpendicular to the velocity are the only conservative forces
depending on velocity since the work done by them is zero in real motion. The
most usual example of a gyroscopic force is the Coriolis force —2m@mxv,
appearing in a coordinate system in rotation with respect to an inertial frame
(see equation (42)).
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(1) Harmonic force

F l F= Fsinwtj. (27)
H'—
X The amplitude F and the angular frequency @ are
I ‘7 constants.
- (2} Foilower force, slave force F (seuraajavoima).
/ F The direction of the force is always in the direction of

the bar axis at the bar end.

(3) Resistance force

R=av (28)
or
M =
X R=pv*. 29)
//

The coefficients o and f are positive quantities and
v is the speed of the particle.

Figure 4.7 Nonconservative forces.

We have considered above mainly conservative and nonconservative forces
acting on a particle. The same treatment is naturally valid also with respect to an
external force acting on a particle of a particle system. The internal pairwise
forces demand further consideration,

The pairwise forces f;; and f; are conservative, if there exists a function V;(s)
— so-called internal potential energy (sisiinen potentiaalienergia) — depending
only on the distance s between the points { and j so that

s — v,
rv——"’ - ) S==—a;L, (30)
¢’ s S

Figure 4.8 Conservative internal force §.

where § is the scalar value of the pairwise forces so that a positive value
corresponds to "pull”. This means in other words that the forces are
conservative, if force § is a function of only of the distance 5, because the
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potential energy function V,, is then obtained as the integral function of S(s). To
simplify the notations, § and 5 have been left without indices referring to points i
and j. If the positive sign of force S is defined so that "push” is positive, formula
(30) must be equipped with a minus sign.

If § is the constraint force associated with rigid body model (5="s), forces f,j
and f; are clearly conservative, because the total work done by them is always
zero (see Example 4.3).

Figure 4.9 gives the internal potential energy expressions for a linear spring and
for the gravitational forces between two particles, The datum, where the
potential energy is zero, is taken to be for the linear spring its natural lengrh
{lepopituus) ° — the length in which the spring force is zero — and for the
gravitational case the state s ==,

(1) Linear spring. Force

S=ki(s-"s), (31)
Vol S ext Wwhere s—’ is the extension of the spring and & is the
k spring constant. The internal potential energy
./S eg" 1 2
» » V= 2 k(s—")°. (32)
Sexh A S
S
Sexh
(2) Gravitational force between two particles. Force
m;m;
S=y—51, (33
" s
/ where ¥ is the constant of gravitation. The internal
N potential energy
mi /S V=y (34)
—

Figure 4.9 Conservative intemal forces.

In struclural mechanics the internal potential energy is often called strain energy
or elastic energy (muodonmuutosenergia, kimmoenergia).

So-called linear damper (lineaarinen vaimennin), where
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Sexh

./
se Lﬂc/./r - SQK" -
‘."’ 8 S S=cf (35)
Sexh

Figure 4.10 Linear damper.

and where $=d(s-%)/dr is the extension rate (venymiinopeus) and ¢
([c]= N/(m/s)) is called the coefficient of viscous damping (vaimennusvakio) is
an example of a nonconservative internal force. It should be added that the
conventional models of a spring or a damper can be considered as a system of
two massless particles where the symbolic figure of a spring or a cylinder piston
pair gives the type of interaction force between the particles. This has been
emphasized in the figures by denoting certain forces with the subscript ext
(Sext = 5).

Conservative (nonconcervative) forces and quantities associated with them will
be denoted, if needed for clarity, with superscripts ¢ (n). Conservative forces
have useful properties in connection of energy principles and the principle of
virtual work.

(49) Monogenic and polygenic forces. The fact that time is considered
"freezed” in the principle of virtual work means that we can define a more
general type of force than the conservative force — called monogenic force
(monogeeninen voima), Lanczos (1974) — having from the point of view of
the principle of virtual work the same useful properties as the conservative
force. An external force F(r,t) or a pairwise internal force S(s,r) is monogenic,
if there exists function V'(r,f) or V,-Jf (5,1} so that

6o

or

=24 (37

Monogenic force differs from a conservative force in the respect that it may
depend explicitly on time. We shall call function V' in lack of anything better as
"time dependent potential energy”. If a force is not monogenic, it is called
polygenic (epimonogeeninen). For instance, the harmonic force (27} is
monogenic and its time dependent potential energy is

V' =—Fsinwt-v. (38)
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(5) Real forces and apparent lorces. A force acting on a particle will be
called here a real force (todellinen voima), if the force is generated by another
particle, that is, if the force has a pairwise opposite force according to the law of
action and reaction. Often quantities having the dimension of a force, called
apparent forces (nidenniisvoima) are defined in mechanics purely computa-
tionally. These forces are not generated by any mass and they have no pairwise
opposite forces. From the point of view of a system, apparent forces must be
considered as external, As examples, we may mention the gravitationat force as
a real force and inertia force and the Coriolis force as apparent forces. Apparent
forces will be denoted with superscript A. However, especially in connection of
inertia forces the superscript [ will be used.

The concept of inertia force is considered in more detail in Section 4.6. The
concept of apparent force emerges naturally when the equations of motion are
written in a non-inertial coordinate system. Consider Figure 3.9 with the
XYZ -coordinate system as an inertial frame and the xyz -coordinate system as
a non-inertial one. If a real force F acts on particle P, the equation of motion is

F=ma (39)

or employing equation (3.3.1)

F=m(a, +a, +axs+ax(@xs)+2oxv) (40)
or finally
| F+F* =ma,, (41)

where we define the apparent force

| FA = —mdy, —MAXS —mOX (@X5)=2maxv, . 42)

In some applications it is convenient to operate in non-inertial frames and then
in forming the equations of motion (41) we must add the apparent forces to the
real ones.
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)

When this is substituted into (4), there follows the equation of motion of the
center of mass (massakeskion liikelaki) (7 = ac)

®

or the center of mass of a system moves as a particle
having the total mass of the system and to which the
resultant of the external forces is acting.

4.4 MOMENT OF MOMENTUM
4.4.1 Principle of balance of moment of momentum

The moment of momentum or angular momentum (liikemifirimomentti,
kulmaliikemiérd) L ([L]= kgm /s) of a particle with respect to the origin is
defined as

g

The moment of momentum L of a particle system (with respect to the origin) is
defined as the sum of the moments of momentum of its particles:

| L=erxm;vi. (2)

The equation of motion
F + fi=my; )

for each particle { is manipulated by multiplying (vector product) from the left
by the position vector and by adding all the resulting equations together to
produce one vector equation:

IrxF+Enxfi=Zrxmy,,

ZrxF =-9-Zr-><m-v- - XF xmy;,

L, xF-=——Zr Xmv

i

@

or the moment of the external forces acting on a system
is equal to the rate of change of the moment of
momentum of the system.
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This is called the principle of the balance of the moment of momentum

(liikem#iriimomentin taseen periaate). In the steps to (4), use have again been
made of the fact that the internal forces form a zero force system, that the
masses of the particles of the system are constants and that 7, = v, and m,v, are
paraliel vectors so that their vector product is zero.

In this principle the moment and the moment of momentum must be evaluated
with respect to a given point, called reference point or moment point (referenssi-
piste, momenttipiste). Equation (4) was derived keeping the origin as the
reference point but it is easy to prove that the principle is valid if the reference
point is an arbitrary fixed point A, in which case

M= E !Ax L= Zr,Ava (5)

or if the reference point coincides continually with the center of mass C, in
which case

M= Zrlcx L=Zr”C Xm,-v,. (6)

It necessary for clarity, M and L can be equipped with a subscript such as O, A,
C etc, referring to the reference point.

4.4.2 Rigid bedy

Due to the kinematical constraints of the rigid body model, the expression for
the moment of momentum can be given specific detailed forms.

The rigid body is usually considered as a continuum. The formulas valid for a
discrete particle system can be written directly for a continuum using the steps

m; '—)dm,

Tl @

To a typical particle { (mass=m,) corresponds a typical continuum element
(mass=drm). To summation corresponds integration. The notation | fdm in use
in mechanics means in words the integral of quantity f over the mass of the
body.

Thus the expression for the moment of momentum L =X r, x m;v, for a particle
system becomes

L=[rxvdm (8)

for a continuum.
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For the evaluation of the moment of momentum it is convenient to use a
xyz -coordinate system with its origin at the center of mass C. From the formula
(3.2.6), the velocity of a generic point of a rigid body is (¥ s v)

v=V+oxs, %)
where s is the position vector from C to the continuum element:
s=xi+y+zk. (10

When this is substituted into (8), there follows

an

where
L=L-=Li+Lj+Lk (12)
with
L=l -lLo -T.o,
L= 0, + I”,a)y —fﬂmz , (13)
L=-TLo -To+lo,

Here the well-known moments of inertia (hitausmomentti) and products of
inertia (hitaustulo) appear:
—leu? 2 = =
Lo =[(y* +2%)dm, I, =1, =[xydm, (14
These expressions are used also in connection with an arbitrary rectangular
cartesian coordinate system so we have not equipped the symbols with the

overbar which refers here to the case where the origin of the system is at the
center of mass.

The matrix equivalent to L is

(L}=[7]{w) (15)
with
i.u _itjv _]_rz @,
U=|-1, T, -I.| (ol= W, (16)
“i:.r "‘Tzv l—:.: @,
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4.5 WORK AND ENERGY
4.5.1 Work done by a force

The differential work or elementary work (differenliaalinen tyid) d’w
([d"W]=Nm =J) done by a force F acting on a particle is defined as

0

where dr is the differential displacement of the particte during a differential
time increment d¢ (Figure 4.12 (a)). The differential work can be expressed also
as

d’'W = Pdr {2)
where
P=Few 3)

is called the power (teho) ({P]=1/s = W) of the force, that is, work divided by
time: P =d'W/dr. In rectangular cartesian coordinates,

F==#8i+F,j+Fk,
dr = ddd +dyf + dzk, 4)
v=vd+v jrv k=1x+3+k,

and the differential work and the power obtain the expressions
d’W = Fdx + F,dy + F,dz, (3
P=Fv +Fv,+Fv, (6)

FZ’/Q

dr

F// ‘l'/’;m (k)
=

F (k) \
(a) (0}

Figure 4.12 (a) Differential displacement. (b) Finite displacement.

respectively.

When the particle moves during a finile time interval Ar from time r = 4 to
t =1t from point | to point 2, the work (tyd) ([W]=Nm =1J) done by the force
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F is defined as sum of the differential works along the path of the particle
(Figure 4,12 (b)):

2
W= [Fedr=["Fode=["Par. 7
1 fy f
The first form is a line integral along the particle path and the last two forms are
ordinary integrals along the time axis.

The differential work dene on a particle system is defined as the sum of the
differential works done on the particles and similarly for the finite work. Thus

d'W=2d'W =XZR; «dr; =3 F, «dr; + ¥ f; - dr; ®)

and
W=E“§=J:R;°d’:=ff}-df:+fﬁ-dn )

where in the latter the points | and 2 refer for each particle to the endpoints of
its path. The differential work d’W consists thus of the differential work of the

extemnal forces d’'W,, and of the differential work of the internal forces d’W,,,:

[ d'W=d'W, +d'W, (10)

where

d chl =2 F .dr;,
Wi = 2.f; +dr; =~ Sds. (1n

The last form of the last equation is explained and derived in Example 4.3.

Equation (9) can be presented similarly in the form

| W= W +Woot | (12)

where the meaning of the notations is obvious.

Finally, we can write for the power
P=Fou +hn (13)

where
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Fou =L F oy,
Pu=2f v —-—ESr (14)

Again, the last form of the last equation is explained in Example 4.3,

Example 4.3, We consider the work done by two pairwise forces f; and f; acting on
particles i and j in Figure (a).

Figure (a) - Figure (b)
We obtain from Figures (a) and (b) the kinematical result

Fjpi=rj —rn, (a)
and by differentiation

dryy; =dr; —dr,. (b)

The differential work done by the forces Jyand Jiiis
,wlm_j;:l dr+f j}, dl’-+fj,-'df:,
= .)‘}1 (d'r —dr)= f:ﬂ I (e
To further develop this expression, we denole (Figure (b))
ri=se,  fi=-Se {d)

where e is a unit vector directed from point i towards point j and and where § is defined
similarly as in Section 4.1.3. Expression (c) becomes

d'W,™ = —Se - d(se) = - Se - (dse + sde) = — Sdse + £ — Sse « de (e)
or
d'W;™ = —Sds. (0

Use have been made of the well known fact that the differential (de) of a vector of
constant magnitude (e) is perpendicular to the original vector or zero.

When equation (F) is divided by the time differential dr, we obtain lor the power of
forces f, and f;,

P = -5, &)
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The total differential work d'W'™ done by the internal forces and similarly the tota!
power P'™ of internal forces are obviously obtained by summing all the contributions
from the particle pairs considered above. Thus

W =Y sds (h)
]

and
P =Y S5, @
i

The summalion notation with indices ij means here the sum over all the particle pairs
{with each pair only once). To simplify formuias, 5 and s have not been equipped with
indices but this should nol cause confusion.

Formulas (h) and (i) are considerable more illuminating than the corresponding middle
forms in (11) and (14).

First, il is realized thal the work and power of the imternal forces do not depend on the
chaice of the frame of reference because Lhe extensions ds and the extension rates # are
naturally the same (they depend only on the change of shape of the system) in different
coordinate systems. In conlrast, the work and power of the external forces clearly
generally depend on the choice of the frame of reference if the frames are moving with
respect of each other. In coordinate systems, in rest with respect to each other, the work
and power of external forces, however, are the same.

Second, in a rigid body the work and power of internal forces are zero, because in the
rigid body model the distances between particle pairs are assumed to remain constants.
This result is an jmportant advantage in connection of applications of rigid body
mechanics. On Lhe other hand, it is obvious thal in some cases the rigid body model is in
this respect unrealistic. A notable case for this are impact problems where local
deformations near the areas of contact are not negligible and the work of internal Forces
must somehow be taken into account even if the rigid body model would be quite
accurale say in the cvaluation of momentum and moment of momentum.

4.5.2 Kinetic energy

The kinetic energy (liike-energia, kineettinen energia) X ([K]=1J) of a particle is
defined as

.’(=%mv-v Iy (15)

2

Here v is the speed (vauhti) of the particle, that is, it is the magnitude 1v | of the
velocity vector v,

The kinetic energy K of a particle svstem is defined as the sum of the kinetic
energies of its particles:

1 i
K:EEm,v,-vi =EZm,-v'-2. (16)
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The kinetic energy is thus a non-negative quantity. It disappears only if all the
velocities of the particles of the system are zero. The value of the kinetic energy
depends on the choice of the frame of reference if the frames are moving with
respect to each other.

4.5.3 State function

Using the terminology of thermodynamics, e.g. Ziegler (1983), work is not a
state function or dependent state variable (tilafunktio, tilanfunktio). For a
particle system the independent state variables (tilamuuttuja) would be for
instance the position vectors and velocities of the particles of the system. They
determine the state (tila) of the system and they are then considered as
independent variables from the point of view of the state. (What kind of
quantites is included in a definition of a state depends on the application and on
the specific models used in the thermodynamic theory at hand.) The state
functions are thus functions of the state variables. For example, the kinetic
energy K of the system depends only on the velocities of the particles of the
system (the masses of the system are fixed through the selection of the system)
so K is a state function.

The work done on a system (calculated starting from a given reference state)
depends in general on the paths of the particles during the evaluation and work
is thus not a state function. A state function is a property of a system.
Correspondingly, for example, we may say that a system has such and such
amount of kinetic energy but we cannot say that it has such and such amount of
work.

The above is connected to the use of notation d‘W (or often dW or dW or W)
and to the term differential work (and not the differential of the work) which
emphasizes that we are not dealing with the differential of a quantity called
work but we have only an infinitesimal expression (infinitesimaalinen lauseke).
Similar notational conventions have been discussed already in Remark 3.1 in
connection of the infinitesimal angular rotation d’8 where a quantity 8 did not
exist at all. Here, however, is a certain difference because now we can still
define a quantity W(¢) connected o a specific process.

As a further explanation, let us consider Figure 4.13. It represents the work W
done on a system starting from a certain moment of time as a function of time. It
should be emphasized that in particle mechanics the only truly independent
variable is the time. Any quantity in particle mechanics can be represented in
the manner shown in Figure 4.13 as a function of time in a certain event called
in the wordings of thermodynamics as a change of state or process (tilan
muutos, prosessi). When discussing above the state variables as independent
variables, this was meant from the point of view of the state of the system. In
Figure 4.13 the change d'W would be the total differential of function W(r) but
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as the relationship W = W(r) depends on the path taken by the process, the
relationship is unknown in advance and this interpretation has no practical use.

W
Taw

—
at F

Figure 4.13 Work done on a system as a function of time.
4.5.4 Principle of balance of mechanical energy

In the following manipulation, the equation of motion

F+ f,=mp; (a7

of each particle i of the system is multiplied (scalar product) by the velocity ¥
of the particle and all the resulting equations are added together to give one
scalar equation:

LFevi+Xfiovi=Zmp;ev;,
di
P+ Bog = o Xmp, ev,,

as

or the total power of the external and intemnal forces
acting on a system is equal to the rate of change of the
kinetic energy of the system.

By integrating equation (18) between the time interval from ¢ = fHtot=t, we
obtain the equation

fa _ fa . _ iz _ _
.[,[ Pdt-frl Kdr-[rl K= K(t) - K(1;)

W= AK (19)
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or the total work done by the external and internal

forces acting on the system is equal to change of the
kinetic energy of the system.

Equations (18) and (19) have many varying names in the literature: principle of
energy, principle of work and kinetic energy, work principle, energy principle,
law of kinetic energy, etc. We will call both of them as the principle of balance
of mechanical energy (mekaanisen energian taseen periaate). The context shows
if the "power” form or the"work" form of the principle is used.

Remark 4.3. In continuum mechanics, one of the axioms is called the principle
of the balance of energy (energian taseen periaate), Chapter 9. It should be noted
that the principle of the balance of mechanical energy is obtained just by
manipulating the equations of motion and contains no thermal terms and is not
directly equivalent to the continuum mechanics axiom. D

Remark 4.4. Instead of starting the manipulation of the equations of motion by
the velocity vectors of the particles, we can start with

LF,odr; + L f; dry =X mp; odr;,
AWy +d' Wy = Zmp; evidr,

, , d. 1
d Wexl +d mm = Et'(‘z"zm,—vi 'v")dt,
d'W=dK 20)

or the total differential work done by the external and
internal forces acting on the system is equal to the
differential change of the kinetic energy of the system.

Dividing (20) by dr gives (18) and integrating (20) with respect to time gives
(19).0

4.5.5 Rigid body

Let us consider Figure 4.14 (a). The differential displacement of a point i of a
rigid body is according to formula (3.2.3)

dr; =dr, +d'0xr,, 5, @

where A is an arbitrary particle of the body and d’@ the differential angular
displacement of the body. The total differential work d'W,,, =d’'W of the
external point forces acting on the body is thus
d'W=3F edr,=LF «(dry +d'0xr,;,)=3F, «dry +LF, (d'0xr, )
=LF edry + 200 X F;«d'@=(ZF) edry +(Zr,;5 xF)+d'0 (22)
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or

dW=F.dr, + M, .d'8. (22)

The summations above refer to the external point forces. Use have been made of
some of the calculation rules of the scalar triple product. According to this
formula, each force system having the same resultant and moment produces the
same differential work on a rigid body. The formula is naturally valid also for
distributed forces.Due to the kinematical constraints of the rigid body model, the
expressions of work and kinetic energy obtain specific detailed forms.

Fn

'FiIA '
4 \L)
T i

(ay (b)

Pl

-~

Figure 4.14 (a) Forces acting on a rigid body. (b) Coordinate system for
kinetic energy evaluation.

Dividing (22) by d¢ gives a corresponding form

|P=Fevy+M, .0 23)

concermning the power. Finite work is obtained by integration of (22) or (23).

For the evaluation of the kinetic energy of a rigid body it is convenient to use a
coordinate system with its origin at the center of mass similarly as in Section
4.4.2. Again, from formula (3.2.6), the velocity of a generic point is

v=¥+wmxs. (24)

When this is substituted in the kinetic energy expression for a continuum
1
K=§-Iv-vdm (25)

there is finally obtained the formula
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K=

mv? +%[m|T[7] (o). (26)

4
2

Here ¥ is the speed of the center of mass and {@) and [J ] have the meanings
explained in Section 4.4.2, If a rigid body is performing rotation about a fixed
point, an alternative kinetic energy expression contains only the latter part of
(26) and [/] is then evaluated in a coordinate system with its origin at the fixed
point,

4.5.6 Conservative systems

The work done by conservative forces is of quite different nature from the
general case.

The differential work done by an external conservative force F; acting on
particle i is

d:“/[_cxl = F; ’drf '_vV‘.cxl -dr,-
=(

3Vicxt ] av:_cll . a‘IEEXl . .
+ + k)« (dx;i +dy,j +dz;k

o, i Fw J 2 Yo (dxi +dy;j +dz;k)

av_exl av_:xt av_exl
i i

drx; + ——dy; +
ax oy oy

H

=~ dz;) (27)

or

l dr“,icxt - _dvl_c.xl l (28)

or the differential work done by a conservative force is
equal to minus of the total differential of the potential
energy of the force due to the change dr; of the
argument r; and not just an infinitesimal expression.

Similarly, finite work done by an external conservative force F, is
2 2
WICKI = L d:“,'_cxl = _Il dv:.ell - __[Vicxl (’,'2) _ KCI[ (r” )] (29)

or

l %cxt =— AV l (30)

or the work done by a conservative force is equal to
minus of the change of the potential energy of the force
due to the change Ar; of the argument r;.
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If the pairwise forces fj and f; considered in Example 4.3 are conservative,
the differential work done by them is

. dvln(
4w = ~Sds = - s an
or
drwi_nl — _dv_il'll
= v, (32)
Similarly,
A 2 s 2 X B .
‘Vt_}ﬂl — jl dIW‘}nl = _II d‘/l:}l'll = _[ViJlinl (52) _ ‘/':;rll (S] )] (33)
or

2

The verbal interpretation of formulas (32) and (34) is similar as in the case of
the external conservative force. Let us remark that we have considered only
those conservative forces which can be expressed via a force field. However, as
the work done by the other kind of conservative forces such as constraint forces
is zero, the formulas are valid in general.

If all the forces acting on a system are conservative, the system is said to be a
conservative system (konservatiivinen systeemi). The tota] work done by
conservative forces is

W= Wy + Wy, =-ZAV™ - T Ay
u

=AY ATV - 6BV T o
or
(36)
where
V=Veu + Vinr.
Vo =2V, an
Vin = %Aq}m-
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Here Vis called the (total) potential energy of the system (systeemin (kokonais)-
potentiaalienergia). It consists of the potential energy of the external forces V

- 3 L] N - - . ] ext
(systeemin ulkoisten voimien potentiaalienergia) and of the porential encrgy of

the internal forces of the system V., (systeemin sisdisten voimien potentiaali-
energia). Vi, is often called the strain energy (muodonmuutosenergia,
kimmoenergia) of the system. The datum for each potential energy can be
selected arbitrarily.

For infinitesimal changes in a conservative system, the equivalent of (36) is

d'W=~-dv. (38)

For a conservative system, the principle of balance of mechanical energy (19)
obtains the form

22

or in a conservative system, the mechanical energy
(mekaaninen energia) K +V is conserved.

This is called the principle of conservation of mechanical energy (mekaanisen
energian sdilymisen periaate). This feature of certain quantity preserving
(conserving) its value is in fact behind the term “conservative” force.
4.6 INERTIA FORCE METHOD
In the following manipulation, the equations of motion for a particle system,

F, + f; =ma,, (N

are written in the form

/ a
J B T (F+fivF=0] @
\ - /
A £c 7
\\. . 7
-

Figure 4.15 Forces acting on a particle.

where the apparent force
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F;I =-ma; (3)
is called inertia force (hitausvoima). The content of these equations is called
often the inertia force principle or perhaps more properly the inertia force
method (hitausvoimaperiaate tai paremminkin hitausvoimamenettely):

A particle system is in equilibrium under the force
system consisting of the real external and internal
forces and of the apparent inertia forces. (C)]

The inertia force method transforms a problem of dynamics superficially to a
problem of statics. However, as the resulting equations are still the original
differential equations (1) in disguise, the inertia force method can only be of

some help in forming the governing equations and not in the actual solution of
them.

If the sclution of a dynamics problem is obtained, the inertia force method can
be applied sometimes conveniently in a post-processing manner for instance in
the determination of internal stresses in a link of a mechanism at a certain
moment of time by employing familiar procedures of statics.

Remark 4.5. Quite often in the literature concerning solid mechanics the
starting point is statics and only later the more complicated case of dynamics is
treated. In this way one gets familiar with new concepts in a relative simple
context, which are then elaborated on. In this approach we step from a statics
problem into a dynamics problem by just introducing the inertia forces into a
statics formulation through the substitution (sijoitus)

F:=F+F . ()

This practise will be used also in this text at some places. O
4.7 REFERENCES

Gantmacher, F. {1975): Lectures in Analytical Mechanics, Mir Publishers, Moscow.

Goldstein, H. {(1971): Classical mechanics, Addison-Wesley, Reading, Massachusetts,

Lanczos, C. (1974): The Variational Principles of Mechanics, Universily of Toronto Press,
Toronlo.

Rosenberg. R. M. (1977): Analytical Dynamics of Discrete Systems, Plenum Press, New
York.

Ziegler. H. (1983): An Introduction to Thermomechanics, 2nd. rev. ed,, North-Holland,
Amsterdam.

4-33



CHAPTER 5§
VIRTUAL WORK
5.1 VIRTUAL WORK DONE BY A FORCE

The virtual work (virtuaalinen tyd) 6'W ([6’W]=Nm =J) done by a force F
acting on a particle is defined as

% o
/‘{j’aF
-

Figure 5.1 Real differential displacement dr and virtual displacement &r.

where Jr is called virtual displacement (virtual displacement) of the particle. It
is an infinitesimal quantity where the §-notation is employed instead of the d-
notation to indicate that it is a virtual, assumed, imaginary displacement, a
product of a thought experiment. Virtual displacement is assumed to take place
without any time increment. When calculating virtual work, F is the actual force
acting on the particle preserving its magnitude and direction "during” the
virtual displacement.

Most of the expressions of Section 4.5 valid for real differential work obtain
here analogous forms with d” or d replaced by & or &. For instance, in
rectangular cartesian coordinates,

F=Fi+Fj+Fk,

2

or =8xi + 8yf +6zk @
and the virtual work obtains the expression

&8'W = F.5x + F.8y + F,0z €))]

Remark 5.1. As explained in Section D.2.2, the §-notation refers to the first
variation or shortly just variation of a quantity. A virtval displacement &r is
thus the variation of the position vector r of the particle. The notation §'W is
used similarly as in Section 4.5.3 for d'W because it is not a variation of a
quantity called work. It is just an infinitesimal expression. O
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For a system of particles the virtual work done by the forces acting on the
particles is defined as the sum

S'W=38W =SR,-6r,=3F-5r, +Lf -6r,. “

The virtual work 6’W consists thus of the virtual work &§’W,,, of the external

forces and of the virtual work §°W;, of the internal forces or

(5W =W + 6 Wi | )

where

6'Wex =L F,; » 013,
&'Wy =Z f;+8r; =-3% 58s. (6)
if

The last form of the last formula can be derived similarly as in the case of
differential work in Section 4.5.1. The quantity &s is the virtual extension
(virtuaalinen pitenemd4), that is, the differential change of the distance s due to
the virtual displacements 6r; and Jr; (see example 5.1).

Example 5.1, We consider the virtual work done by two pairwise forces Sy and £
acting on particles i and j in Figure (a).

el

Figure (a) Figure (b)

The reatment is completely similar to the one in Example 4.3. Thus we obtain
immediately the expressions

Fite =0 ~ T >
§rjy, = br, = or;, "
BW™ = fy - 81t fj 8 ==+ 81+ fi; - 8,

= fji+(8r, = dr)= £, + 81,y “
e )
8'W,™ = ~5Se . B(se) = =Se + (5se+ 55e) = —S5se - ¢ — Sse « Je, (e)



6'“{;’“ ==58s. (H

Expression (6) is obtained thus from the summation of contributions (f).

5.2 PRINCIPLE OF VIRTUAL WORK
The equations of motion of a particle system are

F+fi=ma;,, i=12,-- N mn

or in component form form
(E)x +(.f|),r =ml(ai)x U
(F)y +(f)y =map),, (1)
(E)z +(fi)z =mi(ai)z'

We again manipulate these to obtain new forms. Equation (1) is multiplied
scalarly by an arbitrary vector

W; =(wi)xi+(wi)yj+(wi)zk (2)
and all the resulting equations are added to give an equation
LF +fi)ow;=Zma; +w,. 3)

An equivalent equation is arrived at by multiplying equations (1) by arbitrary
scalars (w;),, (w;)y. (w;),, respectively, and by adding the resulting equations
to give

LA + el m) e + TR, + AN, + KA, +(R)Jw), +

[(F)x + (2)J(wa) o+ +[(Fy), + (fy), Jww), =

my{ay) (wy) e +mya))y (wy), +my(ap), (w), +

my(ay) (wy), +-+mylay) . (wy), . (39
Because the vectors w; or the components (w;),, (w;)y, (w;), are completely
arbitrary, equation (3) is equivalent to equations (1). We can namely make first

say the selection (w;), # 0, all the other components equal to zero, to give an
equation

[(Fi )x + (fl ).t ](WI )x = (al ):(w! )x )
and thus as (w))_ is arbitrary, the first equation (1", etc., is arrived at.
Equation (3) can be considered to represent some kind of weighted average

equation of motion for the whole system with the multipliers w; acting as
weights. The usefulness of the equation increases if we take the interpretation
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w; = or, ()]

or
(wi).t = 51',- ’
(Wi)y =5y[‘, (5')
(W'- )Z = 52,'.

Now equation (3) can be written as (see (5.1.4))

| 6’W=Zm,-a,—-6r1-—| ®)

or equation (6} is valid with respect to any virtual
displacements of the system.

This is called the principle of virtual work (dynamics version of it) (virtuaalisen
tybn periaate) or also the principle of viriual displacements (virtuaalisten
siirtymien periaate). We also shall call this as the virtual work equation
(virtuaalisen tytn yhtild).

Remark 5.2. The derivation above was performed on purpose by manipulating
the equations of motion instead by the virtual displacements &r; first by
arbitrary vectors w;. This was done in an effort to avoid some of the mystique
often connected to the principle of the virtual work. In mathematics, the term
"virtual” does not usually appear. So what is the mathematical content of the
principle of virtual work?. The answer is simple. Equation (6) or (3) or (3"} is a
linear combination (lineaarikombinaatio} of the equations of motion of the
svstem. One could think that a large amount of information disappears as from
3V equations only one scalar equation (6) is produced by the manipulation.
However, the virtual work equation is only apparently just one equation,
because the virtual displacements can be selected in it in many ways to produce
several independent equations. In contrast, in the derivation of the energy
principle in Remark 4.4 much information really vanishes as strictly only one
scalar equation is finally produced as the infinitesimal displacements dr; used in
the derivation are those comresponding to the actual motion of the system and
not to be selected at the free will of the applier. The explanation for taking the
"weights " w; as quantities having the dimension of displacement, which are
infinitesimally small and which can be imagined as displacements of the
particies of the system would demand involved justifications. Here we may just
be satisfied to say that this interpretation has proved to be extremely useful in
practice. Still one further fundamental difference between the concepts of real
and virtual work is that in the latter we have no use for a finite, integrated work
quantity. 0
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Remark 5.3. From the way of derivation of the principle of virtual work it is
now obvious that time must be considered “freezed” when the principle is
applied, because no time increment can be associated in the mathematical
manipulation of forming the linear combination of the equations of motion. It is
also understood that to say — as is sometimes seen — that the virtual
displacements take place infinitely fast is not a particularly succesfull way to
indicate that time is freezed as it may raise the question about the corresponding
inertia forces connected to the displacement. Similarly, no changes of the
magnitudes or directions of the forces depending on the virtual displacements
should occur as due to the derivation the forces must be those acting at time
comesponding to which the linear combination is formed. As an example of this,
let us consider Figure 5.2.

Figure 5.2 Particle moving on a rough surface.

A particle — a system — moves on a rough surface under gravity. Even if we
take the virtual displacement so that the particle will lift from the surface or it
will go inside the surface, the normal force N and the friction force uN keep
their original values when the virtual work is evalvated. In evaluating the real
work for such a displacement, completely different expressions would result.
For instance, if the displacement would lift the particle from the surface, ¥ and
UN would immediately vanish and only the gravity would do work on the
particle. 0

Remark 5.4. Sometimes the principle of virtual work or the principle of virtual
displacements is termed the principle of virtual power (virtuaalisen tehon
periaate) or the principle of virtual velocities (virtuaalisten nopeuksien periaate).
Then the interpretation (5) is replaced by the interpretation

i ="i- 0))

where v is an arbitrary quantity having the dimension of velocity. By taking
v{"™ = 8r, /5t where 8t is an infinitesimal time, we in Fact operate with the
principle of virtual work with all the terms divided by 8. This form of the
principle has the advantage that in using quantitities v,'™ emphasizes that the
principle concems the system at a certain moment of time and we have no need
to speak about virtual displacement "happening”. 0
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Remark 5.5. In some cases we will write the virtual work equation (6) using

the inertia force concept discussed in Section 4.6 to have a nice standard form
"something on the left-hand side equals zero™:

| 8'W™ =5 Wy + 6 Wige +8'W =0, | ()
where
O'W' =2 F «6r,=—Zma; . or; 9

is the virtual work of the inertia forces. The star superscipt in formula (8) is used
to remind that the inertia force method is employed. 0

In sratics the virtual work equation (6) simplifies to the form

a0,
or
8 W,y +8' Wy, =0. (107

We realize that the principle of the virtual work in the dynamic case could have
been derived with shorter notations by starting from the equilibrium equations

F.+f=0, i=12,-- N (1D
to obtain first {10) and then the substitution

F:=F+F (12)
or

W,y :=8'W, +6'W! (13)

discussed in Remark 4.5 would have given (6).

It may be mentioned that in some presentations the virtual work of internal
forces is defined with an opposite sign to that used here. Then for instance the
statics virtual work equation (10") would look

’ 5'Wim = 6'Wex: 2 (14}

This may convenient in some applications but it is not theoretically well
grounded.
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53 CONSTRAINTS AND VIRTUAL WORK

If the motion of the particles of a system are constrained in some way, as is
normally the case, the virtual displacements can be classified with respect to the
constraints as follows:

FEP [ & Kinematically admissible virtual displacement or
”%,%v 5T virtual displacement satisfying the constraints
5\,;‘& (kinemaattisesti luvallinen virtuaalinen siirtymi),
N
FRYV |G
Xﬂ Kinematically inadmissible virtual displacement

& or virtual displacement violating the constraints
N / "}\ (kinemaattisesti luvaton virtuaalinen siirtymai).

Figure 5.3 Classification of virtual displacements.

Kinematically admissible virtual displacements are infinitesimal displacements,
which satisfy the constraints valid for real differential displacements. Further,
time must be considered freezed for possible given motions, see also Remark
5.6. Kinematically inadmissible virtual displacements are infinitesimal
displacements, which violate the constraints valid for real differential
displacements. Figure 5.3 shows schematically one admissible and one
inadmissible virtual displacement. The constraint is that the particle must move
or rest on the inclined plane.

The previous classification is associated with the following important result:

The virtual work done by constraint forces is equal to
zero in a kinematically admissible virtual displacement
of the system. (0

This is taken as an axiom in some presentations, for instance Lanczos (1974).
Here we can see this to be valid just from case to case basis. For instance in the
case shown in Figure 5.3, where a frictionless contact is assumed, it is seen that
the constraint force N is perpendicular to the kinematically admissible virtual
displacement, which must be tangential to the inclined plane, and thus the
virtual work of the constraint force disappears.

It is often advantageous to try to eliminate the constraint forces from the
formulation of a problem. On the basis of statement (1) it is seen that this can be
accomplished by selecting the virtual displacements as kinematically
admissible. (There are however exceptions to this. The notable exception is
Coulomb friction. For instance in the case shown in Figure 5.2 the friction force
UN, which is a constitutive force would do a nonzero virtual work in a
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kinematically admissible virtual displacement and would thus bring the
constraint force A indirectly into the formulation.)

Remark 5.6. The elimination of the constraint forces from the resulting virtual
work equation when using kinematically admissible virtual displacements can
be explained also as follows. The constraint forces — as all forces — appear
linearly in the equations of motion or rest; see for instance Example 5.2,
equations (c). The elimination of the constraint forces would take place the way
elimination is done in mathematics in general when dealing with a system of
linear equations: suitable linear combinations of the equations are formed. But
as discussed in Remark 5.2, the virtual work equation is in fact a linear
combination of the equations of motion or equilibrium. In a kinematically
admissible virtual displacement the principle of virtual work "wisely selects just
the right combinations”. 0

Remark 5.7. Usually in the literature the term virtual displacement refers to a
kinematically admissible virtual displacement. But if we want to find out
constraint forces using the principle of virtual work, we have to employ
kinematically inadmissible virtual displacements. 0

5.4 GENERALIZED FORCES
5.4.1 General case

We now turn to the use of generalized coordinates in connection with the
principle of virtual work. Only the holonomic case is considered here. Thus the
positions of the particles of a system can be given in the form

n=riq.q2. 4,0, i=12,- N, M

where the generalized coordinates can be varied arbitrarily without violating the
constraints. Variation of (1) using the chain rule and remembering that time as
the independent variable is freezed gives

- Or; :
6rl=“$:,‘l£-6qjv l=l,2,"‘,N, (2)
i= 7

or using component forms



a
8x; = Za:' dq; ,

=199

9yi
15 9q '
anj % @)

az;
2 —L8q; .
j=1 aq} ’

It is immediately realized that by using these expressions we are due to the
starting point (1} in fact applying kinematically admissible virtual displace-
ments.

The virtual work done on the system obtains the form

5w afwm +5'W, +5'wI

‘ZF 2_5% +2f: Z 5 5‘?; ""ZFI'za_an @
=1

= 1" j=199;
N
S -—)5% +)2(Ef on, 5% +SOH -——)5
=l =l j=1 =i jel =l
or
j=1
where
Q Qexl +Q|nl +Qj (5)
with
ext = EF; .
Q; aq}
anl_zf; ’_'——ES-'— (6)
ij ki aqj
t ar ar.
o - A S Lon
Q7" =L F, EPS Tma, 2,

The quantities Q; are called generalized forces (yleistetty voima). The
important formula (4) thus represents the final expression for the virtual work
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when generalized coordinates are employed. The formula can also be considered
as the definition for the generalized forces. A generalized force needs not have
the dimension of a force, its dimension is determined by the fact that each
product 0, Sq must have the dimension of work. Thus, for example, if the
generallzed coordmate is an angle or a volume, the corresponding generalized
force has the dimension of a moment or of a pressure.

The last form of the second formula (6) foliows from the last form of the last
formula (5.1.6). We can write s =s(g,,9;,--,¢,,) so that

= O
65: Z—aq a (7)
=199 !

Continuing similarly as above gives the last form. The summation over the
particle pairs is indicated by the indices I as j is now reserved for numbering of
the generalized coordinates.

If the inertia force concept is not directly used, we write instead of (4)

sw=3 0,5, ®
j=1
where
Qext anl- (9)

Remark 5.8, The generalized forces Q™ can often be determined conveni-
ently in an alternative way by drawing the virtual displacement pattern conse-
cutively due to each variation b'q by determining from the figure the corres-
ponding virtual work §'We*, whereafter the generalized force is obtained due
to definition (4) from

5rwexl

chl (10)0

The next step is based on the principle of virtual work and on the fact that the
virtual displacements can be selected arbitrarily. When expression (4) is
substituted into the virtual work equation W™ = (), there follows

2.0;8g; =0. (11)

i=l
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The generalized coordinates are independent and thus their variations can be
selected in an arbitrary way. We thus obtain from the one scalar equation (11) in
general several equations (Take first say &q, #0, 8q, = 0,6¢;=0,,8q,=0
to give Oy 8g; = 0 and thus finally Qj =0, etc.)

(0 =07 +0/" +0]=0.] j=12,n. &

These are the equations of motion of the system expressed in the generalized
coordinates. Constraint forces do not (usually) appear in them.

In statics the inertia forces disappear and the equations of equilibrium are
arrived at:

(0207 +0 =0,] j=12,mm. a3

Remark 5.9. Virtual displacements have been considered above as the vari-
ations &r;(t) of the position vectors 7;(t) of the particles of the system. The
same result is obtained by starting from the variation of the displacement vector
u;(¢) as because of the representation n(r):"r&r»)# u, (1),

Or; (1) = Su; (1). (14
or

(SI'-(.')= 5:1,-(:),
Oy, (1) = dv; (1), (14)

The equivalents of formulas (2) and (2') are

6ui=2ﬂ5qj, i=1,2,,N, (15)
o1 99;
i
and
= Ju;
ou; = Y —Lég;,
=99
Sv; = iﬂaq. (15"
l =1 aqf !
& O,
ow, = ) —L8g;
;g;aq, }
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and expressions (6) change accordingly with respect to the notations. If one
operates instead of position vectors with displacements, the generalized
coordinates can be then called generalized displacements (yleistetty siirtymi);
see also Remark 4.1. 0

Remark 5.10. A precise mathematical definition of a kinematically admissible
virtual displacement is that it is the difference between two possible differential
displacements satisfying the constraints of the system. In the case of
representation (1) we have

= o ar.
d = _"d q _!1
7 E,«?q,- 9 +>r (16)

and using the following notations for some other possible differential displace-
ment:

= o o - ar,;
=Y — 4 dg. 41, 17
7 E,I 7 4 +o (17)

we have the difference
n arl

j=199;

8r;=dr, —dr; = 8q; (18)

with qu =dg; —dg;. It is seen that this definition automatically removes the
contribution of the time derivative term in a rheonomic case. D

5.4.2 Rigid body
A kinematically admissible virtual displacement of a rigid body is of the form
(5"‘-=6rA +5'8Xr”A. (19)

This is analogous to formula (3.2.3). Quantity 6@ is a virtual angular
displacement of the rigid body. A kinematically admissible virtual displacement
of a rigid body is such that the distance between any two particles remain
constant; no gaps are allowed to appear. As then 8s =0, the virtual work of
internal forces of a rigid body is zero in a kinematically admissible virtual
displacement. This result is in accordance of statement (5.3.1) as in a rigid body
the internal forces are constraint forces.

Example 5.2. We consider the same simple case as in the kinematical study of Example
4.1: a particle moving in plane motion in the xy-plane on an inclined plane of a wedge
in given motion. The system is the particle and the plane is assumed frictionless and the
particle is also under the influence of gravity.
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Flgure (2}
The position of the wedge is given by the measure b in the form
b=bsinar, (a)

where b and  are constants. We have a one degree of freedom holonomic rheonomic
system. The measure s is taken as the generalized coordinate,

The equivalent of formula (1) is
r =(scosa + bsinwe)i + (c - ssina)j, (b}
or

x=5cos + bsinad,
¥y=c=ssind.

®)

We first write the equalions of motion using the frec body diagram of Figure (b). There
is obtained

e |

N/ — Nsina =mkX,
T Ncosa—mg=mj. ©

ok
Flgure (b}
The kinematical relations (b") give by differentiations
x = .‘r'ius-a - ba?sinor, @)
=-§sina.
The four equations (c) and (d), which describe the problem with appropriate initial
conditions, conlain four unknown functions; x{7), y(1). (), N{1. An alternalive
formulation is arrived at by eliminating the constraint force N, A linear combination is
formed by multiplying the first of (c) by cos¢r and the second by —sina. This produces
an equation

mgsing@ = m¥cos - mjsina, =

which does not any more contain the constraint force. Further substitulion of expressions
(d) into (¢} and some arrangement gives finally a differential equation
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¥ = gsina + bw? cosasinwr. (n

Its solution is found to be
| - .
5= A+Br+535ma-rz—bcosasmmr. (e)

The inlegration conslants A and B can be determined from the initial conditions, which
are not considered in detail in this study. The other unknowns x, y, and N are then found
easily from equations (b}, (d). and (c) by substilutions.

It may be mentioned, that according to the terminology of structural mechanics, the set
presented by equations (c) and {d} is called a mixed formulalion (as bolh forces and
displacements apppear as unknowns) and the problem presented by equation (F) is called
a displacement formulation (only displacements appear as unknowns),

We now consider the problem using the principle of virtual work. The equivalent of
formula (2} is

or= %6;=(cosai—sinaj)6.r. (h)
s
whereas Lhe real differential displacement is (formula (16))
drzg—rd:+%dt=(cosa£ —-sinaj)d.;-l-l;a)cosa)ridr. (i)
s

The difference of the expressions is seen in Figure (c). In the real motion the wedge
moves during the the time increment df and the displacement dr given by (i) is not in
general parallel to the inclined plane. The constraint force N does non-zero work in the
real motion and it is thus also non-conservalive (compare with Figure 4.6), The
displacement &r given by (h) is, however, seen to be parallel to (he inclined plane and
the constraint force ¥ does no virtual work.

? FBD

mc)L_dF

L A
K

Figure (c)
From (d), the acceleralion of the particle is
a ={jfcosa - bw’ sinwi—gsina; . D)

We now g‘::nerate the equation of motion according to formula (12). The generalized
forces are (formula {(6); a one particle system has no internal forces)
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o' = F-?=[Nsintzi+(Ncosa—mg)j]-(cosai—sinaj)
s .
= Nsinorcose — Ncosasina + mgsina = mgsing,
Qll‘ll =0

1_ gl 8r__ a!'
o =F Ir "'“'as (k)

=—m[(¥cosa ~ bo? sinwi)i - §sinee - (coseaxi — sina )

=—m(5cos® @ - bw* cosarsin @t + §sin? x)
=~m(¥ - b’ cosasinar).

When calculating the generalized force Q°*, we could have written directly
Q™ =-mgj-dr/ds as we know from the theory that the contribution from the
constraint force N will vanish, The expressions above, however, show clearly how the
application of the principle of the virtual work automatically eliminates Lthe constraint
force N from the formulation (compare with the manipulation to arrive at formula (f)).
The equation of motion is thus

0" amgsina -m{3 - ba’ cosasinw) =0, m

which is after some arrangement equal to (f).

Example 5.3. We consider the system of Figure (a), whose kinematics was studied
already in example 4.2,

The pins at O and A are frictionless.
Forces G act at the midpoints of the
bars, whose lengths are /. The direclions
of the forces remain constant irre-
‘ spective of the position of the system.

The equilibrium position of the system
is determined by the prnciple of virtual
work.

The only forces doing non-zero virtual
work in a kinematically admissible
virtual displacement are the constitutive
external forces

F=Gi,
F, =Gi, ()
B=Hj.

Figure (a)

The displacement of points 1, 2, 3, where the forces act. are according to formulas (c)
and (d) of Example 4.2

uy =(éc0561 —%)H—%sinﬂ,j.

uy =(lcos8, +écos&2 ‘3?!)1'*'(15‘“& +%5i" 62)J, ®)

uy = ({cosf) +1cosf; - 2D)i +(Isin6; +1sin8,); .
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The generalized forces are according lo formulas (6) (see Remark 59)

3 .
— O _ it
Q=0 ,-§|P: 20,

=Gi -(—ésin61i+-;—c059|j)+

+Gi~(~IsinG,i +1cosf )+
+ Hf «(~{5in 8, i + Icos@,f)

= —G%sinﬂl - Glsin@) + Hlcosl, = —?%sinel + Hlcos8,,

0 =05 = $E. M
2 = i 391
=Gi0+
+Gi-(—%sin91i+%cos92j)+ (c)
+ Hj «(—1sin@, i +Icos8,f)
= -Gésinﬂl + Hicosf, = —%sinez + Hlcos#,.
The equations of equilibrium (13) are
Q Eﬂ-ﬁsinﬂl +Hlcos@) =0,
@ @
o= -—2—sin82 + Hlcosf, =0,
and their solution is
9, =arclan£{-. e, =arctan-2—H. )
G G

The altemative approach based on free body diagrams of the two bars would consist of
six cquations of equilibrium having as unknowns four constraint force components
corresponding to pins O and A and the two angles 6,and &,.

5.5 VIRTUAL WORK DONE BY CONSERVATIVE AND MONOGENIC
FORCES

If an external force F; is conservative (see Section 4.1.3)), the virtual work done
by it is

or

afwiexl. = E .6’_‘ = _VVI_CII. .6’,[ —
aV‘_ext . avl_cxl . (9V,-Hl
ox; H ay; I dz;
QV;’“ a;r_exl lav‘cxt
i

= ~(otn+ S+ ) (n

i

==

k)« (8x,i+ 8y, j +8z,k)




(ﬂmcxt = —5Vf” @

or the virtual work done by a conservative force is
equal to minus the variation of the potential energy of
the force due to the change dr; of the argument r; and
not just an infinitesimal expression. 3

The derivation is completely analogous to that used in obtaining the result
(4.5.28).

For conservative pairwise forces Jij and f;;, we obtain

. avv_i_l'll
S'wint _ _ =—_ ¥ _
=58 = -5 4)
or
6:“,:‘_}1“ = —SV,:;-N. (5)

The verbal interpretation of formula (5) is similar to that for formula (2).

For a conservative system we obtain similarly

®

where 6V is the variation of the total potential energy Vir,ry,-,ry) due to
the variations of r{,r, ,---,ry and not just an infinitesimal expression.

If generalized coordinates are employed, V becomes through the relations
(5.4.1) a function of the generalized coordinates (see Remark 5.11):

V=V(q1.92..4,)- M

Taking the variation, formula {6) can now be expressed in the form

ngv
SW=-% 5.
,Elaqj % ®

Introducing formula (5.4.8) defining generalized coordinates and remembering
that the variations dg; are arbitrary, gives the expressions

_—, j:l'z’...,n‘ (9)
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which can be used conveniently to evaluate the generalized forces
corresponding to conservative forces.

In all the formulas above we can finally replace the symbol V for potential
energy of conservative forces with the symbol V’ for the time dependent
potential energy of monogenic forces to obtain a more general theory. As
mentioned in Section 4.1.3, this is due to the fact that time is considered freezed
in the principle of virtual work. As an example, let us consider the time
dependent potential energy

Vi=V'gq1.q97, . qnt) (10
of a system. Its differential change in a real motion is
v’ av’

n
dvV'=- dg; + —dt 11
_,El aq_, qj ot (11)

but its variation is simply
n r
5V’=—Zi‘i— ;- (12)
j=l an

It is thus realized that the derivations presented above proceed quite similarly
even if time is explicitly present in the expressions for potential energy.

Remark 5.11. Time can emerge into the expression of potential energy even
for a conservative force when the constraints are rheonomic. For example, in
Example 4.1 the potential energy of the gravity force acting on the particle is
V = mgy. If x is taken as the generalized coordinate, the final expression for the
potential energy is V=mg[c—(x-bsinwNtan]. This looks like a time
dependent potential energy of a monogenic force can can be dealt with without
problems in an analogous way. 0

Remark 5.12. It should be finally emphasized that Lagrange's equations,
Hamilton's principle and the principle of stationary potential energy to be
introduced in the following are all just special forms of the general principle of
virtual work. O

5.6 LAGRANGE'S EQUATIONS

In the dynamic case the equations of motion (5.4.12) derived by the principle of

virtual work and written here in the form Q_?’“ + Q}’“ = —Q} or
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Q Ym r].ari J=12,n (1
oq;

demand the calculation of the accelerations # from formulas (5.4.1): n=
ri(4).93,-*.gp.t). This may be a rather heavy task if the original expressions
are complicated. The right hand sides of (1) can be manipulated into another
form which does not any more contain accelerations. The manipulation is as
follows:

Zmr- -Z[ ( r-ar rr!.',- ]

aq; aqj dt dg;
d, . . .
= Z['&;(mi'} . 4 y—mf; . aqj
-z%ai(—mr ’)‘?a;“”"‘ )
_d g
().'. —my; v)-———(E —my; »¥;)
T 24; og;
d oK BK
=———— (2)
Here between the first and second lines the following formulas
on _di  dan _of ©)

which can be shown to be valid, have been used.

Introducing (2) into (1) gives the Lagrange’s equations of motion or shortly
Lagrange's equations (Lagrangen yhtilst)

@ =—o=Ti|  j=l2m, )

For the kinetic energy K =21/2-m; «v; of the system, only the expressions
for the velocities

== — 4.+, =1,2,-- ¥
i=h ,El 9, G+ ar ! ©)

of the particles are needed. On the other hand, the additional operations
indicated in (4) must be performed. The kinetic energy expression is of the form
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K=K(q1.92, ", qn:91:G2. 140 1) (6)

The quantities g; are called generalized velocities (yleistetty nopeus). When
forming the partial derivatives in (4), the arguments shown in (6) are to be
considered independent. Only when applying the operator d/dt, it should be
realized that both the g; and the §; are in fact functions of t. The Lagrange's
equations are thus finally a set of ordmary differential equations of second order
with time as the independent variable, As a special case we have the
conventional equations of motion (F), +(f;), = m;¥;, etc.

If the system contains conservative or monogenic forces, the corresponding
generalized forces can be evaluated also via the potential energy V or V” using
formulas (5.5.9) or its counterpart with V replaced by V'. In that case
Lagrange's equations (4) obtain the specific form

d dL JL
n_ - Y , i=1,2,.n, o
of =+ % | n )
where
L=K-V (=K-V') 8

is called the Lagrangian function (Lagrangen funktio) and Q] is the generalized
force due to nonconservative {(polygenic) forces. If all the forces acting on a
system are conservative {monogenic), the left-hand sides in (7) disappear.

Exnmple 5.4. We consider the simple problem of a particle movmg ona wedge in given
motion considered in Example 5.2 (Figure (a)). Now the Lagrange's equation is used 1o
derive the equation of motion.

From Example 5.2,

x =gscosc + bsinar,
y=c—ssing.

[
C

LN %

(a)

Flgure (a)
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Application of differentiation similarly as in (5) gives

I =jfcos+bacosws,

y==5sina ®)
and the kinetic energy of the particle
K= %m(,&" +7%) = %m(fz cos® @t + 2icosabmcoswe +
+ b2 cos® mt + 5% sin? &)
= %m(.s"2 +2icosabwcoswt + b2w? cos? ). (c)

Here lhe kinetic encrgy happens nol to depend on the generalized coordinate. The
potential energy of the gravity force is

V = mgy =mg(c—ssina), (d)

when the plane y=0 is taken as the datum. Gravity force is conservalive and the
constrainl force N does no virtual work so we can use form (7) with Q" zero:

ACICEpCT py
PP &
with
L= %m(.i-z +2icosabarcoswt + b2 cos® 1) - mg(c - ssina). 0
We have

aL . r
= = mi+mcosabarcoswt,
A

dJdL

—== =m5¥-mcosaba’sinwt, (E)

dr J5

aL_ mgsina

e
and Lagrange's equalion (¢} becomes

m3 ~ meos o b’ sinar - mgsina =0 (h)
or again

.'s’=gsina+l;m2 cosasin . (i)

5.7 HAMILTON'S PRINCIPLE

The starting point in the derivation of the principle of virtual work was equation
(5.2.3%

X(F+f)ew—Zma;+w; =0, (0
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where the interpretation w; = dr, was taken for the weights w;. The derivation

was applied at a fixed moment of time. Nothing prevents us to take the weights
as functions of time: w; =w,(r). When equation (1) is integrated over the time
interval [t,t, ], we arrive at an equation (we denote for shortness R =F +f)

J-‘Z[ER,' -W,--Zm,-a,--w,»]dr= 0, (2)
f

where the quantities w;(t) are completely arbitrary. When again the
interpretation w; () = &r;(r) is taken, we obtain in more detail

J':Z[ER,‘ -5!‘,—Zm,i‘: 05’f]df=0. (3)
1

In addition to the real path r,(+) of a particle i, we thus imagine that the particle
could have taken a varied path r,(f)+ 8r,(r), which is considered in Hamilton's
principle to such that it coincides with the real path at t =1, and t = t, (Figure
5.4), that is, we take

ori(t)=0, &r(t,)=0. (4)

Figure 5.4. Actual and varied path of a particle.

The integrals sz m;F; « 8r;d¢ are transformed by integration by parts:
1

= [ it e Gride= [ 5o 87, de = | m . 6, (5)
1 1 !

Essentially formula (B.1.1a) has been used with x —¢. It is not difficult to see
that the formula is valid in an analogous form even when the two functions g
and A are vectors and when the ordinary product is replaced by the scalar
product. This can be proved by first writing F «dr, = ¥,6x; +--- and then
applying the conventional integration by parts formula to the ordinary products.
It should be further noticed that m; is constant in time and from the rules of
variational calculus d(6r;)/dt = &F;. Further, using again rules of variational
calculus:
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miﬁ-ﬁr‘,:&(%—m;ﬁ-f;):&q. )

When we take into account that the last term in (5) disappears because of (4),
equation (3) obtains thus the form

_[’" (5K+X R, +6r)dt =0. %)
1
If the forces acting on the system are conservative (monogenic)

SW=IR;-0r=-0V} (=-6Vf (8)

and equation (7) becomes Hamilton's principle (Hamiltonin periaate)

aj'zLd:=o. (9)
1

or when the forces acting on the system are
conservative (monogenic), the systems moves so that
the functional [Ldt, where L=K-V (=K-V),
obtains a stationary value. The admissible functions
must satisfy the kinematical constraints present, and
they have to coincide with the values corresponding to
the actual paths at the moments of time ¢ =¢, and ¢t =t,.

When we employ generalized coordinates, the stationary condition gives
Lagrange's equations as the Euler equations.

If all the forces acting on the system are not conservative (monogenic),
Hamilton's principle cannot any more be given as a pure variational principle
but must be presented in the form

5[”Ld:+j”5'w" dr=0, (10)
] II

where §'W" is the virtual work done by the nonconservative (polygenic) forces.

Because problems of dynamics are initial value problems with respect to time,
the condition at the future value ¢ = t, of time is physically unnatural. However,
this condition does not prevent the application of the principle, see Example
D.19. In numerical solution in dynamics, it seems that the Hamilton's principle
has little to offer compared with the direct application of the principle of virtual
work.
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5.8 VIRTUAL WORK IN STATICS
5.8.1 General

The principle of virtual work is presented in statics in many varied forms
depending on the reference.

The virtual work equation (5.2.10) or

| 5 Wexy +6' Wi =0 | ()

can be stated first as a special case of principle (5.2.6) valid in the dynamic case:
If a system (a body) is in equilibrum, the virtual work done by the forces acting
on it is zero with respect to any virtual displacement of the system. But second,
reversing the argument, we can start by assuming that the virtual work equation
is valid with respect to any virtual displacement of the system to derive the
equilibrium equations similarly as was explained in the dynamic case on page 5-
3 to arrive at the equations of motion.

We can combine the statements above in one theorem:

A system is in equilibrium, if and only if the virtual
work done by the forces acting on it is zero with respect
to any virtual displacement of the system. (2)

A system is said here to be in equilibrium (tasapaino) or in a state of equilibrium
(tasapainotila), if the resultants of the forces acting on every particle of the
system are all zero. It should be noticed that this definition does not necessarily
imply state of rest of a system. For instance, according to this definition, a
particle moving with constant velocity on a horizontal plane is a system in
equilibrium.

The most usual applications deal with kinematically admissible virtual displace-
ments. In this case the virtual work of constraint forces is zero, and there
remains only the virtual work of the constitutive forces. We have thus the
following theorem:

When a system is in equilibrium, the virtual work done
by the constitutive forces acting on the system is zero
with respect to any kinematically admissible virtual
displacement of the system. 3

This is the most usual form of the principie of virtual work in statics (although
the term "constitutive force"” is not in general use). It should be noticed that the
"if and only if"-form of the principle (2) is no more here, as we cannot test for
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any concievable virtual displacement because of the satisfaction of the the
constraints. This fact does not limit the applicability of the principle.

In statics the principle of virtual work is applied in some cases so that the
internal forces (in a continuum the stress field) are selected on purpose to differ
from the real internal forces. For a statically indeterminate structure several (=
number of statical indeterminacy, for a continuum an infinite number)
independent distributions of internal forces can be taken which satisfy the
equations of equilibrium with the given external forces. This kind of internal
force system is called statically admissible (staattisesti luvallinen) and the whole
force system can be called an equilibrium system (tasapainosysteemi). Because
of the constitutive relations present in each specific case, only a certain statically
admissible internal force system corresponds to the real one. Remembering how
the virtual work equation was derived, we see that the principle of virtual work
is valid in statics for an arbitrary equilibrium force system. This is the starting
point for the principle of virtual forces (virtuaalisten voimien periaate) and the
principle of stationary complementary potential energy (komplementaarisen
energian stationaarisuuden periaate), which are, however, not considered in this
text, see e.g. Washizu (1982).

The so-called unit dummy load method (yksikkdvoimamenettely) is one
application of the principle of virtual work in the form discussed in the
preceding paragraph. The idea is to determine the displacements of the points of
a structure — provided the small displacement linear kinematical theory is valid
-— when the deformations (for a continuum the strains) corresponding to the
displacement distribution are known. The virtual displacements and
deformations (strains) are taken to be the real displacements and strains. To
determine a certain displacement component of a certain point, a unit external
force is applied in the direction in question at that point. Any statically
admissible internal force system giving an equilibrium system with the point
load is determined. This can be selected for instance by making the system in
some way statically determinate by "cuts” and by finding the corresponding
internal forces. We can now evaluate the term &'W,, in (1) and the term §'W,,
becomes simply one times the unknown displacement, so the equation gives
immediately the value of the displacement.

Remark 5.13. Some comments are perhaps needed to make the unit dummy
load method more clear. First, it may seem contradictory that finite, even if
small, real displacements can be determined using the principle of virtual work
as it was emphasized earlier that the virtual displacements are infinitely small.
This is easiest to explain using notation, which is explained only later. In
Section 12.1.2 we find that for a continuum in the small displacement theory the
virtual work of the internal forces is given in the form
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§' Wy =~ 0664V, {4
where
. dbu,
5e L ddu + u,) 5)

i 5( da;  da

is the virtual strain and Ju; is the virtual displacement and the rest of the
notation is explained in Section 12.1.2, When the derivation of the principle of
virtual work is studied in detail, it is realized that it could have been performed
equally well using the notation

Wy ==, 05850V, (®)
where
1 Bu‘- au}
E‘J 2(30_, aa,- ( )

and it is nowhere necessary to consider the weighting function w to be
infinitesimal. In the large displacement case, the situation is more involved.

Second, there is strictly speaking no such thing as a unit force. Actually a force
having the general symbol F can be used and finally we divide by F to obtain
the displacement. This all is avoided by shortly operating with a "unit force" if
so wanted. 1f the supports obtain certain displacements, the corresponding
external virtual work must naturally be included. As the support forces
corresponding to the equilibrium force system are known, these contributions
can however be evaluated. O

Example 5.5. We consider the statically determinate plane truss shown in Figure (a).
Bar 5 obtains an elongation As say due to a lemperature rise in the bar. We determine
Lthe vertical displacement of joint 4 upwards due to the elongation.

y 3 T8 5

(SR ¥
~

17 1]
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n |oo
_stc\
™
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-

Figure (a)
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For a truss, the principle of virtual work is
L[(F),Ou;+(F), 6y~ LN&s =0, (a)
i <y

where the meaning of the notation is rather obvious and is explained in more detait in

Section 6.4.1. When we apply this (o real displacements and exlensions, it reads
ZUF) u+(F) v~ ZNAs=0. 3
i i

In the unil dummy load method here only bar 5 has a non-zero extension and the only
extemal force doing virtual work is the force F shown in Figure (a). Thus (b) is in detail

Fvy— NgAs=0. (©
For a slalically determinate siructure, there is only one internal force distribulion

corresponding to the external force F. Because of the form of (c) we need only bar force
Ng. It is easily found for instance by the seclion method that

Ng=-Y2p, @
3
Substitulion in (b} gives
Fv, —':‘% FAs=0, ©
from which the vertical displacement is found 1o be
vy = i;z-As. ()

5.8.2 Principle of stationary potential energy

For a conservative system, the principle of virtual work (3): W =0 for
kinematically admissible virtual displacements obtains due to the result (5.5.6):
o'W =—8V the form

V=0 ®

or when a conservative system is in equilibrium, the
potential energy of the system has a stationary value.

This is called the principle of stationary potential energy (potentiaalienergian
stationaarisuuden periaate). Due to the way of derivation of this principle, the
potential energy V is to be considered as a function of the position (or
displacements) of the system and the variations of the position (or displace-
ments) must be kinematically admissible.

If generalized coordinates are used, V = V(g,,45,**,4,,)
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A v
dv=3 —&;
I 5% ©

and the stationary condition can be expressed also in the form

v

—=0,| j=12,--n (1)
qu

These equations are the equilibrium equations of a conservative system. Their
solution gives the equilibrium position (tasapainoasema) of the system.

5.8.3 Principle of minimum potential energy

The equilibrium position of a system is said to be stable (stabiili) if small
disturbancies do not cause the system to move far from its equilibrium position.
If this is not so, the equilibrium position is called unstable (epistabiili).

To study the stability of a system in a general case would mean a consideration
of the nature of the solution of a dynamics problem. For conservative system,
however, an alternative possibility exists. It can be shown that

The equilibrium position of a conservative system is
stable, if and only if the potential energy of the system
has at it an essential minimum. (an

This is called the principle of minimum potential energy (potentiaalienergian
minimin periaate).

We do not prove this theorem. The proof is based on the facts that the
mechanical energy K+V of a conservative system is constant (formula
(4.5.39)) and that the kinetic energy K is a non-negative quantity,
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CHAPTER 6
APPLICATIONS IN STATICS

We consider here the use of the principle of virtual work the analysis of elastic
plane trusses including large displacements and deformations. This should be
considered as an introduction in a relative simple setting to some of the concepts
needed in the more complicated continuum case.

6.1 KINEMATICS

As mentioned already in Section 4.2, a truss can be modelled roughly as a
particle system with all its mass concentrated at the joints, which are then
considered as the particles of the system and the bars of the truss just indicate
the kind of interaction between the particles. In the following, we will call the
particles joints.

We consider the kinematics of a typical bar connecting two joints i and j in
Figure 6.1.

Reference
skate

Figure 6.1 Initial and current position of a bar.

As before, the reference or initial state is indicated with the left superscript 0.
The general expression for the square of the length of the bar is

st = —x)t + 0y - ). (1)

The coordinates of the current state are connected with the coordinates of the
reference state and with the displacement components by

xi=" v x =" v, @
-0 _0
Yi=X v, ¥=y vy

Substitution of these into (1) gives
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st =("x; ="x; + —u;)? +(°yj—°yi+vj - (3
In the initial state the displacements are zero by definition and thus

%% =("x, =)+ = %)% (4)
To shorten the formulas we denote

Usp=t =t Sy=" =0 (5)
and obtain

st = o2 +2°%, (uy — )+ —u;)t 4

+%55 2%, (v ~v)+ (v — )% (6)

02252 4. %2

The axial strain (venym4, suhtecllinen venymi) E ([E] = 1) is defined by

s2-%2 =2E%2 €
or
152-%%2 1 5.,
E=———=—[()* —1]. 8
e =l - ®)

The definition (7) is a special case of the general form of the definition
(ds)? - (d%)* = 2E;d"; d'%; 9)

of the Green-Lagrange strain tensor or shortly the Green strain tensor (Green-

Lagrangen venymiitensori tai [yhyemmin Greenin venymitensori) Ej;, which is
discussed in more detail in Section 10.2.4.
Expression (8) can be put in the form
_ L {s+%)(5="%) _ 1(s+%)As _12%-As _As 10
E_E 02 _5 0.2 —E 0,2 __n;' (10)

The approximate expression is valid in the cases where the extension As = s—"'
is small compared to the original bar length % in which case s=". This
approximation produces the formula



E=—=——=—] (11)

for the so-called infinitesimal strain or engineering strain or small strain
(infinitesimaalinen venymi, insintdrivenymd, pieni venymé) &.

We need the strain expressions as functions of the displacement components.
Substitution of (6) into (8) gives

=l2 qu‘(“; —u;)+ —u,-)2+2 “sy-(vj V) +(v; —vl-)2
2 052
"sx usy 1 2 2
=0—S2—(uj —Hi)+?(1’j —V")"’"W[(uj —u.-) +(Vj —V‘-) ]. (12)

E

Similarly as in the continuum case, the Green strain is seen to consist exactly of
linear and quadratic terms in displacement components. The small strain
expression is obtained from (12) by dropping the quadratic terms:

%y sy Lol Sy
£=?(uj ”W)""{,‘;z‘(‘{,' “V,')=U—S[Ts(uj -“i)+o—s(Vj =) (13)
or
£= nis[cos ‘a-(u; —u;)+sin ‘a-(v; - )] (14)

In applying this formula, the angle e in the reference configuration must be
measured so that it is the angle between the directed line starting from point i
and towards peint j and the positive x -axis and positive in the counterclockwise
direction from the x -axis.

We record still one expression for the bar length for further use:

5=, +u; —w))? +(%, +v; —v)? ]2 (15)

6.2 STRESS

The rather complicated concepts concerning stresses in large deformation
problems are considered in more detail in Chapter 11. Figure 6.2 shows a cross-
section of a bar in the reference configuration (Figure (a)) and in the current
configuration (Figures (b) and (c)). The complications emerge because in the so-
called Lagrangian representation used in solid mechanics, "the mathematics
happens in the reference configuration but the physics happen in the current
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configuration”. A differential material cross-sectional area element d’4 in the
reference state transforms to a material area efement dA in the current state. The
conventional engineering stress concept is the so-called Eufer stress or Cauchy
siress or engineering stress (Eulerin jannitys, Cauchyn jinnitys, insindéri-
jénnitys) o giving the differential force dF acting on the area element dA by

dF = ¢dAn, (1)
where n is the unit normal vector to the current area element. Thus, the normal
force vector N in the bar (for notational clarity, we use here instead of the
symbol § the symbol ¥ to avoid confusion with the second Piola-Kirchhoff
stress tensor symbol S;) is

N=0An (2)

assuming constant stress distribution over the current cross-sectional area.
on
)
é d°A
b

A

(0) (b)

Figure 6.2 (a) Cross-section in the reference configuration. (b) and (¢) Cross-
sections in the current configuration.

In large deformation theory, the second Piola-Kirchhoff stress tensor (toisen
lajin Piola-Kirchhoffin jannitystensori} or here shortly the Kirchhoff stress
tensor (Kirchhoffin jinnitystensori) is the most widely used stress concept. The
differential force vector dF acting on the area element dA in the current
configuration is given by

dF = 5dAG. (3)
G is a basis vector in the same direction as n but not of unit length:

ds 5
G= —o—n = o—n o (4)
d’s s
The Kirchhoff stress S is thus referred to the original area and as G is not a unit
vector, it is a rather complicated quantity, The normal force vector ¥ in the bar
is obtained — assuming again constant stress distribution — from
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N=SUG. N &)
The scalar bar forces are thus
N=cgA (6)

using the Euler stress and
N=2-S% M
S

using the Kirchhoff stress.

6.3 CONSTITUTIVE RELATION

We assume here elastic material with a linear constitutive relation between the
Kirchhoff stress and the Green strain:

S=CE. (1)

€ is a material constant (Young's modulus).

6.4 LARGE DISPLACEMENT THEQRY
6.4.1 Virtual work equation

The principle of virtual work must be applied for the structure in the current
equilibrium position which is unknown in advance. Figure 6.3 shows a part of a
structure in the reference configuration and in the current equilibrium
configuration with virtual displacements superposed on it.

°)

(g}

Figure 6.3 (a) Reference configuration. (b} Current configuration.

The virtual work equation is

~8'W = =5 Wip — 5'W =0 (n

where here
~5'W,, = X N8, @)
[
and
—0'Weu = = ZI(F), 0u; +(F),8v;). (3)

Signs have been changed to obtain a conventional formulation. The summation
in the internal work is over the bars (or particle pairs connected by bars) and in
the external work over the nodes not constrained by supports.

Using formulas (6.2.7), (6.3.1) and (6.1.12) we arrive at

CA

N=oSU="CEU=""1F
s 5 5
_C%S_l_Z O, (1 —u,-)+(uj —ur,-)2 +2°sy (v; —v‘.)+(vj —v,-)2 @)
- ] 0 2 ’
The variation of (6.1.15):
s=[0, +uy — )% +(%, +v; —vp) P2 (5)
gives
55::1—[("& + 1 —u,-)(é'uj —5u,-)+(“sy +v; - v,—)(ﬁvj - dvp)l. (6)
Thus finally,
NS5 = c'}q12°sx (1 — ;) + —u,-)2 +2 %, v v+ —v,-)2 .
°g 2 DSZ
(%, +u; —ul-)(b'uj —5u,~)+(°sy +v; —v,-)(ﬁvj -y N

This is to be substituted in (2). The system equations are obtained by taking the
consecutive variations oy, 20, dv; #0, Su, 20, etc. for those nodes not
constrained by supports. Clearly very complicated equations with respect to the
unknown nodal displacements u,, v;, u,, etc. are arrived at. Aftecr the
displacements have been determined, the strains, stresses and bar forces are
easily evaluated in a post-processing manner.
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6.4.2 System equations assembly

We describe here some steps towards obtaining a systematic way to generate in
more detail the system equations in the spirit of the finite element method. Some
of the terminology appearing here is discussed also in Section D.3.4. In our
application we can consider the truss to consist of two kind of elements: line
(bar) elements and point (joint) elements. The line elements produce here the
internal virtual work contributions and the point elements the external virtual
work contributions. The line elements of the system are identified by numbering
them starting from one: 1, 2, ... and similarly for the point elements. A line
element has two nodes numbered locally as 1 and 2 and four locally numberd
generalized displacements (g.d.) ¢, =u;, g, =V, g3 =u,, q4=v,. A point
element has only one node which is numbered locally simply by 1 and two
locally numbered generalized displacements g, =i, ¢, =v,. We can now
derive the generalized force expression corresponding to the generalized
displacements present in the elements. The system equilibrium equations

_QJ’ =0, j=1v2|"'!n (8)

are then obtained by summation from the element generalized force
contributions. (We use the minus sign as a consequence from writing the virtual
work equation in the form -&'W =0.) Only the right places to put the
contributions must be known. The generalized displacements for the system are
numbered globally starting from one. The information for the assembly comes
from the correspondence between the local and global generalized displacement
numbers. Figure 6.4 gives an example.

) V1
1} ™ 3{ Uy

N T

Figure 6.4 Numbering of a truss.
The joints=nodes have been numbered as shown in the figure and based on that

{(each node has two generalized displacements) the global generalized
displacements have been listed as

[“?!T =[91.92.93.94 .95.96 979399 . 919 ]
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=[uy, vy 07,5, 13, Vy 1y Vg lig V5 ] (4D

The displacements of joints 4 and 5 have been included in the list although these
displacements are finally constrained.

The information of the line elements shown in the figure are collected in Table
6.1:

Table 6.1 Line element data

Line element number ~ Global node numbers  Global g.d. numbers
1 4 2 7834
2 21 3412
3 53 91056
4 23 3456
5 52 2103 4
6 31 5612
7 4 3 7856

For instance, the information concemning line element 1 tells that the local node
I is at the global node 4 and the local node 2 is at the global node 2. From this
we can infer the following correspondences for line element 1:

local g =i = globa.l g7 =Uy,
local gs =¥ = global Gg = V4, (10)
local g3 =u, £ global gy =,
local g4 =v; = global g4 =v,.

This kind of information is collected in the column titled "global g.d. numbers”.
A column titled "local g.d. numbers" consisting of rows all having the numbers
1 2 3 4 could be put in the table but this information would be superluous.

The point elements are numbered here simply according to the joint numbering
and we obtain a trivial Table 6.2:

Table 6.2 Point element data
Point element number  Global node number  Global g.d. numbers

1 | 12
2 2 34
3 3 56
4 4 78
5 5 910

For instance, we have for point element 3 the correspondence
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local g, =4
local g, = v,

global g5 = ug,
global g5 =v,. (L

1 1

We now determine the element contributions to the generalized forces from the
line and and point elements. No detailed indexing is used for simplicity as the
meaning should be clear from the context.

For a line element

—6'W =-0,89) — 0289, - 036q; - 0464,
=- (59" (Q)=—(Q}" (59). (12)

4l

Comparison with expression (7) and making the associations i=1 and j=2
gives

-0 =-B(%,+q3—q),
Gy =—B("sy +q4 - 3),

. (13)
~Qy=B("s, +q3—q)),
—Q4=B-("s, +q4 - q2)
with
_CUI12%, (- g)+(g3—q1) +2%, (g4 —93) + (g4 - 43)°
=52 a4
For a point element
~0'W=-0,5q, - 0,8q,
=-(8g)" 1Q) =~ (Q)" (8q). (15)
=l 2] x| 2x1
Comparison with expression (3) and making the association i =1 gives
—Q =-(F);,,
-0, =-(F),. (16)

When these expressions are applied in the assembly process, the local indices
must be replaced by the global ones in the manner described in (10) and (1 1).

The system equations in the finite element method are normally numbered in the
order determined by the nodal parameter numbering, that is, the first equation is
associated to the first nodal parameter, etc. Here the nodal parameters are the
nodal displacements or generalized displacements and the first system equation
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— @ =0 is associated with the first global generalized displacement qy. etc. The

assembly of the system equations can now be stated as follows. If the system
equations are written as

i=1,2,.n an

the left hand sides are obtained by the summation
formula

-0 =§~Q§”. (18)

where the summation is over the elements and element
¢ gives a contribution (or can at most give a non-zero
contribution) to the generalized force Q; if the element
local g.d. number r corresponds to the global g.d.
number .

As an example, the third system equation is obtained from

-0 =-0f" -0 -0 -0 -0 =o. (19

The superscripts refer to the element numbers and the point element number is
equipped here with an overbar. Line elements 3, 6, 7 and point elements 1, 3, 4,
5 give no contributions.

The support conditions (assuming given displacements here equal to zero)
g7 =us =0, qg=v4=0, gg=us=0, gp=v5=0, (20

can be introduced at the final stage to the system equations. In fact, if
kinematically admissible virtual displacements are considered, it is not
necessary to generate the four last equations.

6.4.3 Incremental formulation

In practice the system equations must be solved in an incremental and linearised
manner, For instance references Washizu (1982) and Bathe (1996) contain
detailed formulations for incremental solution procedures for large deformation
solid mechanics problems.

The loading path is divided in a number of equilibrium states. It is assumed that
we have obtained the solution at a state described by the left superscript ¢ and
we have to find the the next neighbouring equilibrium state denoted by the left
superscript ¢+ At. In the so-called total Lagrangian formulation (kokonais-
Lagrangen formulaatio) we have the relevant quantities to deal with collected in
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Table 6.3. It should be noted that As has here a different meaning than in
Section 6.1.

All the quantities in the table associated with the state 'Q are assumed to be
known from the analysis performed this far. The aim is to generate a set of
system equations for the basic unknown nedal displacement increments Aw; and
Av; which are further linear in them.

Table 6.3 Variables in the incremental total Lagrangian formulation

State 'Q State *Q
Bar force N N+ AN
Kirchhoff stress S S+AS
Bar length s s+ As
Green strain E E+AE
Nodal displacements u U+ Au
External nodal forces F F+ AF
Given displacements T 7+ Al

The virtual work equation for the state 'Q is

L N8s— ZI(F),6u; +(F),6v1=0. (21)
if i

The same for the new unknown state ‘*¥Q is

(N +AN)3(s + As) +
if
— Z{[(F); +(AF), 18w + Aup) + (), +(AF), 16(v; + Av)]}=0. (22)

It should be emphasized that here the virtual displacements are to be superposed
onto the unknown state Q. However, in taking the variation we can consider
the known values s and u at state ‘Q given and fixed so that

8(s+ As)=0As, O(u+ Au)=5Au 23)

(or simply we are free to select the virtual displacemen the way we please) and
(22) obtains the form

(N + AN)OAs — ZA(F) . + (AF), 164u; +[(F), +(8F,),18Av;]) = 0. (24)
1 I

The bar length increment from (5) is
As = ((("s, +u; —u;)+(Au; - Au))]? +

+[("sy +v; - vi)+ (A - AP+
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~ [, + gy —u)? 4%, +v; — )72, (25)

A truncated representation with respect to the displacement increments Au and
Av using binomial series gives

As = AV + A5 (26)
where

A5t = i[(“sx +iy =) = Aw) +(%5, +v; —v,)(Av; - Av,)]. 27
is linear and

As®) = éé[(Auj — Au)? +(Av; — Av)?) (28)

quadratic in the displacement increments. The variation is
5As = A5V + AP (29)
with
1
A5 = ;[("sx +u; ~ u,—)(5Auj - 8Ay;) +(°sy +v; - v,—)(&kvj -8Av;)] (31
and
1
SAsD = ;[(Auj — Au; Y(8Au; — BAu;) + (Av; — Av, )(BAv; — 8AV,)]. (32)

Substituting (29} into the virtual work equation (24) gives first

T NOAsY + T ANGASY + T NAS™D + T ANBAS +
~Z(I(F), +(AF),10Au; +[(F), +(AF}),164v;1) = 0. (33)

Neglecting one higher order term and arranging gives finally
T aNSAsD + T NBAS + 3 NS +

if if if
- Z((F), +(AF) JAu; +((F), +(AF),164v]) = 0. (34)

This is a valid form for a truss irespective the material law. Expressions (31)
and (32) are to be used in it. The system equations for the unknown
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displacement increments are obtained by applying the consecutive virtual
displacements 8Au; # 0, 88v, # 0, 8Au, # 0, etc.

For an elastic truss, considered here,

0
v=EA (35)
5
and thus
0, 1] o [1]
N+AN=C;A(3+A.9)(E+AE)= CDAsE+¥sAE+C°AAsE (36)
5 5 5 5

50 neglecting one higher order term and taking (30) into account gives

a 1]
AN=~—ClsAE+CA
O s

AsE. (37

We may apply here the linearized form As'} of As. For AE, the linearized form
from (6.1.12) is found to be

1
AEY = ﬁ["sx (Auy ~ Buy) + (u; —u;)(Au; — Augy) +
+ %, - (Av; - Av;)+ (v; —vi)(Av; - Av)]. (38)
So finally, the bar force increment is evaluted from

CA

by

L]
an=SA g0
°s

AsVE, 3%

The system equation are a linear set with respect to the displacement
increments. The assembly of the system equations is considered in more detail
in the next section.

After the new total displacements have been determined, the corresponding
srains, stresses, bar forces, etc should be evaluated directly from the
corresponding basic formulas.

6.4.4 System equations assembly

We continue to present more detailed element contributions similarly as in
Section 6.4.2. Some of the expressions become rather complicated.

(1) Term ANSAsY in (34) for a line element. To shorten the formulas we
denote
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5e="F, g sy=°sy +vi v, {40}

that is, s, and s, are the current x- and y-components of the directed line
segment ij and for instance

st =55 45l (41)
Using these notations, we have
AsN = l[.rx(AuJ- - A} +5,(Av; - Av))],
i)
8As) = l[s, (BAu; — 8Au;) + 5, (8Av; — 8Av,)], 42)
5

1
AED =?[51(Auj — Au;} + 5, (Av; — Av;)].

Further,
0 0,
AN = %mﬁ"(‘) + #As“’E
5 5
CA, s E
= o ?-F?)[SI(AHJ- —Alll-)'!'sy(AVj —Avt-)] (43)
and

CA 1 E
1
AN(SA.T( ) = TS*(TS-Z—"';T)[SX(AHJ: —-Au'-)+sy(Avj -‘A\Ji)]-

Making again the associations i =1 and j =2 similarly as in Section 6.4.2 gives
- Q] = _SxB!
-0, =-5,8B,
e (45)
- Q3 = +SIB,
-y = +s, B,
with
CA, 1 E
B= o ('us—z"‘s—z){‘sxﬁ‘h =5y8q; +5,.8q3 +5,4q,]. (46}
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It is seen that the generalized forces consist of linear terms with respect to the
displacement increments Ag. Thus we may write the result (46) in a more
compact form

—1Q) =[K](Aq) 47

4xl x4 ax)

where the meaning of the notations is obvious. The coefficient matrix is

52 SiSy =Sy il
2 2
CU 1 E | 5.5 5 -5.5, —§
(Kl==——(-z+=3)| *7 y X - NF (48)
5 %t 5 - -5, & S.Sy
2
—5.5, Sy 5.5, 55

In continuum problems this kind of matrix is often separated in two parts, the
first one consisting of terms that stay constant in each increment and to an
updated part. Here we simply update the whole coefficient matrix for each
increment.

(2) Term N&As? in (34) for a line element. We obtain
NéAs@ = %[(Auj — 8u; X BAw; — SAw;) +(Av; — Av;)(8Av; — 8Av)).  (49)
Thus
N
-0 = -?(A‘h ~4q)),
N
-0, = —?(A‘H ~Ag2),

N (50)
-y = +—;(A43 =Aqy),
-0 =+ (8g, - Aay),
or
—lgll=[‘{g]lﬁ?} (51)
with
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I 0 -1 0
N O 1 0 -l
Kl== :
K=l 0 1 o 2
0 -1 0 1

This matrix is called the initial stress stiffness matrix (alkujannitysjaykkyys-
matriisi), Washizu (1982).

(3) Term NSAs"V in (34) for a line element. We obtain

NSash =§[sx(5AuJ- — 88u;) + 5, (8Av; — 8Av,)]. (53)
Thus
_Ql =_££N:
5
_QZ =_£!'N0
N (54)
_Q3 =+_JN1
5
-0 =+s—"N.
5

These are constants with respect to the displacement increments and in matrix
notation

5.1/
_ syls
-l =-b)=-N ~s. /s 53
—s),ls
(4) Term
—[(F), +(AF;), 16 Ay; +I(F), +(AF,)y]5AV,~ (56)
in (34) for a point element. We obtain
-Q =~(R), —(AR),,
-0, =—(R), —(AR), (e3)

or in matrix notation

6-16



(O} =— (b} = (F); +(AR), 58
w w |(R),+(AR),[ (58)
The system equations are here of the form
~0;= L KyAg; —b;=0, i=12,n o9
j=l
or
% KyAg; =b;, i=12,n o
j=1
or in matrix notation
[K){Ag)=(b). b

axn  gx| nxl

The assembly process described in Section 6.4.2 can be here more specific. Now
the elements of the system matrices (systeemimatriisi) (K] and (b} can be
assembled from elements of the element matrices (elementtimatriisi) [K]'® and
(5)(9). After some study we arrive at the following assembly rules

K‘J’ = ZK,(-:)r
€
(62)

b,' = Zb,‘.t) .
z

Element e gives a contribution to term K‘-j at most, if the element has the local
g-d. numbers corresponding to global g.d. numbers i and j. The local numbers r
and s must then be given the numbers corresponding to i and j. Term b; obtains
a contribution at most, if the element has a local g.d number corresponding to
the global g.d. number i. The local number r must then be given the value
corresponding to /.

6.5 SMALL DISPLACEMENT THEQORY

In the small displacement theory there is no need to follow the updated
geometry of the structure and we can for simplicity drop without confusion the
left superscript O from all formulas. The kinematical expressions are linear in
the displacements. We deal with the engineering strain

As 1 5, >
=2y -+ 2, - v) W
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and stress . The axial force in a bar is

N=gaA (2)
and the constitutive relation for an elastic material is

o=CEt, (3)
The virtual work equation is simply

2 NBs—ZU(F); 81 +(F), %) =0 @)

with respect to the reference configuration and the final system equations are of
the form

[KTlq) = (&}. &)

AXA axl nxl

The element contributions can be picked from the expressions in the previous
section by dropping the terms depending on the updated geometry.

A line element produces a coefficient matrix (see formula (48))

2 2
5 S8y T P
2 2
(K]= CA 1 $15y 5, =55y Sy ®)
2 2 2 :
s 5 =y S8y Sy Se8y
2 2
=58, =5 Se8y 5y

and a point element a column matrix (see formula (58))
(Fch
b} = . 7
(b} {( F), (7
The assembly of system equations proceeds as explained in the previous section.
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PART II

VIRTUAL WORK IN SOLID MECHAN-
ICS

CHAPTER 8
INTRODUCTION

As mentioned in Chapter 1, when using the continuum model, we assume the
material of a body to be distributed continuously in space. The mechanics
dealing with the continuum model is called continuum mechanics.

Continuum mechanics is classified according to the state of the matter of the
body under study broadly as described in Figure 8.1 into two categories: solid
mechanics (kiinteiin aineen mekaniikka, solidimekaniikka) and fluid mechanics
(nestemekaniikka, fluidimekaniikka).

Conbinuum mechanics

3 '

Selid mechanics Fluid mechanics

Figure 8.1 Main division of continuum mechanics.

From the point of view of mechanics the division between a solid and a fluid
takes place according to the definition given in Figure 8.2.

No shear stresses T can exist in a
fluid without non-zero shearing
strain rates ¥, in a solid this is not
the case.

Figure 8.2 Difference between a solid and a fluid.

Thus shearing stresses vanish in a fluid at rest. In some limiting cases this
classification may depend on the time interval available and on the accuracy of
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observation. The mechanics dealing with materials having both the properties of
solids and fluids is called rheology (reologia).

Fluids are further classified according to their compressibility into liquids
(neste) and to gases (kaasu). In this text we only consider solids.

Although the axioms of continuum mechanics are the same for solids and fluids,
the final governing equations can be quite different. This is partly due to the
difference in the nature of constitutive relations but particularly because of the
way of describing the kinematics in solid mechanics and in fluid mechanics. In
solid mechanics, the conventional representation is the Lagrangian description
(Lagrangen esitystapa) and in fluid mechanics, the Eulerian description (Eulerin
esitystapa).

As some basic concepts have been considered in some detail in Part 1 of this text
in connection of particle mechanics, we often in this second part can find the
appropriate expressions simply using the steps described in formulas (4.4.7):

m; -—)dm,

5 ®



CHAPTER 9
AXIOMS OF CONTINUUM MECHANICS

The basic axioms of continuum mechanics are the following four:

(1) Principie of conservation of mass (massan siilymisen periaate): The mass m
of a body is constant or

m=0. (1)

resultant F of the extemal forces acting on a body is equal to the rate of change
of the momentum p of the body:

@

(3) Principle of balance of moment of momentum (lilkkem#tirimomentin taseen
periaate): The moment M of the external forces acting on a body about a fixed
point is equal to the rate of change of the moment of momentum L of the body
about the fixed point:

®

(4) Principle of balance of energy (energian taseen periaate): The work W,
done by the external forces acting on a body plus the heat W, received by the
body is equal to the change of the kinetic energy AK plus the change of the
internal energy AFE of the body or

| P +Pp=K+E.] )

In addition to these there exists the principle aof entropy growth (entropian
kasvun periaate) which we do not need in this text.

Principles (2) (3) and (4) are valid in an inertial frame. If they are applied in a
non-inertial frame, the terms arising from apparent forces given by {4.1.42) must
be included. Principles (2) and (3) were derived in Sections 4.3 and 4.4 as
consequencies of particle mechanics axioms. Here they are taken conversely as
axtoms. Principle (4) is often called also the first law of thermodynamics
(termodynamiikan ensimmdinen péilause). Some of the notations appearing
here are elaborated later on,

The principles above are formulated to apply for a finite body. To each principle
there corresponds an equation which can be called the integral form or finite
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form or global form of the principle (integraalimuoto, 44rellinen muoto, globaali

muoto). By certain mathematical manipulations one can produce from each
global form a differential form or local form (paikallinen muoto, lokaali muotu}
valid for an arbitrary differential continuum element.
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CHAPTER 10
KINEMATICS
10.1 GENERAL

The kinematics of the continuum model differs from the kinematics of the
particle system model in the respect that instead of the motion of a finite set of
separate particles the motion of a set of infinitely dense set of particles is
considered. This means that the number of independent variables grows from
one (time) to the number four (three space coordinates and time) in three
dimensions.

It should be emphasized that in the concept "particle" has in continuum
mechanics a different meaning than in particle mechanics. In particle mechanics
each particle has a finite definite mass. In a continuum, we cannot associate a
finite mass to a particle, as the mass density would become infinite. In a
continuum, a particle means a material point (ainepiste) or a continuum element
or physical point in contrast to a spatial point (spatiaalipiste). Each continuum
element or particle contains in fact — to be definable in practice — an
enormous number of other kind of "particles”: molecules. A body in mechanics
is a closed system consisting all the time of the same continuum particles. When
a body moves, the values of the coordinates of its particles change.

10.2 LAGRANGIAN DESCRIPTION
10.2.1 Motion

In the Lagrangian description or material description the independent variables
are the material coordinates or Lagrangian coordinates (ainekoordinaatti,
Lagrangen koordinaatti) 4, b, ¢ and time ¢. Quantities &, b, ¢ are the coordinates
of a generic particle of the continuum in the initial or reference configuration
(referenssitila) selected for the body (Figure 10.1). The reference configuration
is taken normally to be the configuration of the body at the moment of time ="
when an event under consideration starts. The quantities in the reference
configuration are often equipped with a left superseript 0; see Remark 10.1,

The relation

(1)

or
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x=x(a,b,c,t),

y=y(a,b,c,1), (1%
z=z(a,b,c.n)

gives the configuration of the body at an arbitrary moment of time ¢. Repre-
sentation (1) corresponds to the representation r; = r; (1) of particle mechanics.
As the continuum contains an unbounded number of particles, we cannot,
however, identify them in practice by numbering them. The values a, b, ¢ serve
for this purpose. The formulas above thus tell that a particle which had in the
reference configuration coordinate values a, b, ¢, has at time ¢ coordinate values
x ¥ 2.

Reference-
skate

Figure 10.1 Motion of a body.

Remark 10.1. The symbols used in the literature for the coordinates especially
when large displacements are considered vary quite a lot. Table 10.1 gives some
kind of summary of the notations to be used in this text.

Table 10.1 Some notations for coordinates

abce a, a; ay o O B | % %, Or,
xyz x| X3 X3 I I_V 1 I-Tl 1x2 !x3 !+Atx1 1+A&2 '*"3&3

The first and second row contain the symbols used in the reference and in the
current configuration, respectively. It depends on the case at hand which
symbols seem to be the most appropriate. Left superscripts are employed
extensively in Bathe (1996) and we follow somewhat that convention. In this
section the notations of the first column are used. 0

10-2



10.2.2 Material time derivative

Let us consider an arbitrary function of position and time £(°r,#) in the
Lagrangian description. An example could be say the density p(°r,r) of a
continuum. The differential change of the value of f (we employ here
rectangular cartesian coordinates so that f = f(a,b,¢,1)) due to the changes da,
db, dc, dr of the independent variables a, b, ¢, t is

AU YN PN |
df = aada+abdb+acdc+a’dr. (2)

In mechanics we are usually interested in the changes experienced by continuum
material elements. For instance, given the change of density of a certain
continuum material element (particle), we can determine from the appropriate
constitutive law the corresponding pressure change for that element. Thus when
calculating the change we must consider a certain particle and keep the values of
a, b, ¢ fixed in (2) so that

da=0, db=0, de=0. 3)

Dividing equation (2) further by the time increment dt and denoting d = D we
obtain the following expression for the rate of change of £

1/
Dt ot

f (4)

The term Df/Dt= f is called material time derivative or briefly material
derivative (ainecllinen aikaderivaatta, ainederivaatta) of f. Other names used are
total derivative, derivative following the particle, substantial derivative. As the
names imply, this derivative measures the rate of change experienced by a
certain fixed material element.

In words, the material time derivative of a function in Lagrangian represent-
ation is obtained as the partial derivative of this function with respect to time.
This result is valid also for vector or tensor functions. In operator form we have

D 4

=L, 5
Dr ot &L
Using (4), it is easy to show that the material time derivative obeys the
conventional calculation rules for derivatives such as, D(f + f,)/Dt =,
Df, /Dt + Df, /D1, D(f, )/ Dt =Df, I Dt - f, + f; - Dfy / D, ete.

Remark 10.2. The notation Df /Dr is more usual in fluid mechanics than in
solid mechanics. In fluid mechanics, when the Eulerian representation is used,
the material time derivative expression is essentially more complicated than in
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solid mechanics. In fact, it makes most of the the fluid mechanics equations
right from the start nonlinear. Let us also remark that the notation () where the
dot is to the right of the symbol is not very common for the material time
derivative: (It appears for instance in the reference Prager (1961).) Often just the
notation () is used. However, we reserve the notation () for quantities which
depend only on one independent variable (time t). O

Remark 10.3. We also need to measure the rate of change experienced by
material bodies. These derivatives may be again called material time derivatives.
However, the quantities associated with a finite body are functions of only of
time (integration over the mass removes the dependence on space coordinates)
and here the material time derivatives are just ordinary time derivatives and

Df _df _;
Dt 4 £ ©

This for instance explains the dot notations used in expressing the axioms in
Chapter 9.0

10.2.3 Displacement, velocity and acceleration

The path of a certain particle is obtained from relationship (1) or (1') by keeping
°r or a, b, c fixed and letting time ¢ change. The velocity v is obtained thus as
the material time derivative of function r or

_Dr_ar(’rp)

=r = 7
Dt ot 2

Let us remark that the symbols a, &, ¢ and x, y, z in (1'} could mean any
coordinates defining the positions of the particles. In the following they,
however, mean simply rectangular cartesian coordinates so that the a- and
x -axes coincide, etc., as is shown in Figure 10.1. When the corresponding unit
basis vectors are £, j, k, we thus obtain the expressions

r=ai+ b +ck (8)
and

r=x{ab,c,t)i+y(a,b,c.t)j+z(a.b,c.0)k. (9
As the basis vectors do not depend on time, a detailed expression is

.. L OX, v, k.~
sxityjezh=—i+—=j+—FL
P ! T (7)
=y it vk
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The acceleration a is obtained as the material time derivative of velocity:

14

Dv _ov(°r,t) _

Dt ot Dt*

_ _Qi _ (.0

ar

or in rectangular cartesian coordinates

a=x"i+y j+zk="—"i+
yJ o7

tx. 9%y . 9%

=azi+ayf+ak.

_97.1+§f-i—k

In practice the relationships (1) and (17) are written in the forms

or

x=a+ula,b,c,t),
y=b+v(a,b,c,p),
z=c+wla,b,c,t),

where

u=ui+v+wk

(10)

(10

(an

(119

(12)

is the displacement. Because % is a constant for a continuum particle, we obtain
for the velocity and acceleration the following alternative formulas:

. Du ou(’r,n)
V=l =—= ———=
Dt ot
or
v—u'i+v"+w'k-@i+ij+ﬁk
J at It ar
=y it i+vk
and
. D Bzu("r,t)
a=w =—F=——7
Dt ot
or
10-5

(13)

(13

(14)

2
a=u"i+v"j+w"k=a—

=agi+ayj+ak.

10.2.4 Deformation

i+&‘+—k
AT AT

(14)

In this section we follow mainly the presentation in Washizu (1982). We
consider the change of shape or deformation (muodonmuutos, deformaatio) of a
differential continuum element due to the motion. We first note that as in the

reference configuration
r=ai+bj+ck,
we have the formulas

l.=3‘b' ,_dr k ar

20’ 1w T

for the unit basis vectors.

Figure 10.2 Deformation of a continuum element.

The representation (1) or (11) or using rectangular cartesian coordinates:

rxi+ytzk=(a+u)i+b+v)j+(c+wlk
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(16)
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can be considered as a mapping which maps the domain °V in the reference
configuration into a domain V in the current configuration. Two arbitrary
infinitely close neighbouring points °P and °Q in the reference configuration
are mapped into peints P and Q in the current configuration (Figure 10.2).

In the reference configuration the position vector of point °Q with respect to
point °P is the total differential

dor =%da+%db+%nfdc=dai+dbj+dck. (18)

Formulas (16} have been made use of. Similarly, in the current configuration the
position vector of point Q with respect to point P is the total differential

or ar ar
—xdﬂ'l‘gdb*‘gc'dc (19)
or (see (17))
ox Jdx ax du du Ju
=— —d —_ = —_— —_— —_—
dx 3ada+ab b+3r:dc (1+aa)da+abdb+acdc.
D ane Dap s Do ¥ Hap+ P 2
dy—aada+abdb+ac c-aada+(l+ab) +5cdc' (20)

L P, L N - ow
dz—aada+abdb+acdc—- > da+8bdb+(l+ ac)dc.

It should be realized that we here consider the dependence of function r on the
position in the reference state at a certain moment of time and in calculating the
total differential we thus put dr=0.

As a special case we consider the motion of the vectorial material fibers

2 =i, Togy=jdb, dc=kde @0
ob dec

of a rectangular parallelepiped in the reference configuration (Figure 10.2).
They are mapped into the vectors

or or £5
—da= da, —db=G,db, —dc=G.de, 22
3222 = Co b b G0 o= @2)

where
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v . dw

or cu
G =Z=(+Z+Lj+ 2
4 da (+3a)l+30"+aak'
o au v e
Gb:%_abl+(l+ab)1+abk, (23)
Gcs%=%i+%j+(l+%)k.

G,, G, ,G, are usually not perpendicular to each other and not unit vectors
except in a rigid body motion. The rectangular parallelepiped material element
in the reference configuration is thus transformed into a parallelopided usually
no more of a rectangular shape.

We now try to charaterize the change of shape in more detail. The square of the
length of the material line element °P°Q in the reference configuration is

(d%)? =d°r «d° = dada + dbdb + dcdc. (24)
The square of the length of the deformed line element PQ or the the vector

dr = G,da+ G,db + G dc (25)
is

(d5)? = dr +dr = G dada + G, dadb + G, dadc +

+ Gbadbdﬂ + bedbdb ot Gbcdbdc +
+ G, deda + G pdedb + G, dedce, (26)

where the notations

Goa=6G,+G,, Gu=Gp, =G, +Gy,

27
have been used. In index notation
(d%)* = §;da;dg; = da,da; (24)
and
(ds)? = Gda;da; . (26
The general form of (26') is
(ds)* =d’r +G od’r. | @7
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G is called Green's deformation tensor (Greenin deformaatiotensori), Malvern
(1969). G;; is the index representation of it in rectangular cartesian coordinates,

Let us consider the geometrical meaning of the term G,m The squares of the
lengths of the line element °P°R in the reference and in the current config-
uration are (Figure 10.2), respectively,

(d%)? =(da)?, (ds)® =G, (da)?. (28)

Thus the relative change in length is

L5 ‘“_,/_ 1. (29)

The interpretation of the terms Gy, and G, is analogous.

Next we consider the line elements "P°R and °P°S (Figure 10.2), which are
before the deformation perpendicular to each other. When the angle between the
line elements PR and PS is denoted by 7/2—¢,, (@, is thus the angle
indicating the decrease of the right angle), we obtain from the definition of the
scalar product

G,,da-deb=|Ga|[Gb|dadbcos(g—¢ab) (30)
or

Gpdadb = \[G,, /Gy, dadbsin g, @31
so that

Gab = Gpa =[G a sy Sin By - (32)

This gives some kind of geometric interpretation for the term G,,. The
interpretation of the terms G, and G_, is analogous.

The six independent components G;; of the deformation tensor determine thus
completely the geometry of the deformed parallelepiped. The strain tensor E is
defined in general form by the following equation:

’Es)z -(d%)? =2d°r-E-d“rj (33

Using index notation and rectangular cartesian coordinates, we have the
counterpart

10-9

(d9)’ = (d%)? =2 E;da;da . | (33)

Comparison with formulas (24') and (26" gives the expression
l

Continuing for brevity in index notation, we have

r=(a, +u)i, (89
: '% =%ik +‘3—';:;k =8, +%;k =i +§—Z‘ik, (239
Gy =G+ G, =(i,—+%:—"‘:k).(5 +%q)
=i; i +%i,- -:‘,+3—';’£ik - +%2%'* o
w5 sy s S G

Some of the manipulation rules presented in Section A.2 have been made use of.
Thus the components of the strain tensor (34) are expressed in displacements

..=l(‘9_“ 8_1,5,_ Iy Juyy
ij

2dg; da; Og 801 (36)

Tensor E is called usually the Green-Lagrange (finite} strain tensor or here
briefly the Green strain tensor (Green-Lagrangen venymitensori, Greenin
venymitensori). Its components (36) are in detail, if the summation convention
is not used,

o 1 dusg v dw

aa—a 2[(&[) (E)a) +((k)]’
B g, L, udu ddv dwdw S
be =T "9 % b b dboe db

We obtain from formula (34)
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Gaa =1+2E,,, Gy =2E,,

(38)

If the strain components are small (Ej; <<1), formulas (29} and (32) give the
approximate expressions

ds—d’ 1
o =T 2B, — 1= 14 22 = 1= By,
28, (39)
[*]

=arcsin(2E ;) =2E ;.
J1+2E, T+ 2Ey, @Eap) =2Eap

$.5 = arcsin

Thus in the small deformation theory (pienten muodonmuutosten teoria), the
terms E,;, Eg, E, represent unit extensions or normal strains (suhteellinen
pituudenmuutos, venymi) of material line elements originally in the a-, b-,
¢ -directions in the reference configuration. The terms 2E,,, 2E,., 2E,,
represent the changes in the angles between line element originally perpendicula
to each other or so called shearing strains (liukuma, leikkausmuodonmuutos).

It should be realized that the (local)} deformations can remain small even if the
body as whole can obtain large displacements (consider for instance the dis-
placements of a spring in a watch). In engineering structures the strains can be
often considered as small. For instance for steel the strain components < 1/1000
for the behaviour to remain elastic.

In the infinitesimal displacement or small displacement theory (pienten siirty-
mien teoria) in the strain expressions (36) only the linear terms in the
displacements are left:

. oy
E:: =l(ﬂ+i)

40
123G 5 “0)

These strain components are called infinitesimal strain components or small
Strain components of sometimes engineering strain components (infinitesi-
maalinen venymd, pieni venymi, insinddrivenymd). These expressions are valid
if all derivatives du;/da; are small, that is du;/da; <<, in which case the
products of the derivatives can be neglected in comparison to the derivatives.

Remark 10.4. In engineerin literature, the following notations are often used
for the engineering strains. First £,, — €, etc. and 2., — ¥, . The resulting
expressions are thus
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- —y, =
“Toa TeTTB TR
v aw
=% Ve =Va=3 +o 40

g = gy, TP
¢ aC, Yab = Vba ob aa

Further, as in the small displacement theory there is usuaily no need to make a
difference between the reference and the current configuration so that we can
proceed with only one coordinate system, we often let the Lagrange coordinates
be denoted by the symbols x, y, z so to achieve perhaps the most common
notation found in the engineering literature, O

10.2.5 Material time derivative of a volume integral

In mehanics, we need to evaluate in addition to the rate of change of functions
of position and time also the rate of change of certain volume integrals. This has
been commented on already in Remark 10.3. In fact the axioms of Chapter 9
concern finite bodies and the quantities appearing in them such as mass,
momentum, kinetic energy, etc. are expressed as volume integrals.

In the Lagrangian representation the mathematical domain under study is the
domain of space filled by the material body in the reference configuration. The
body may move in any way but "the mathematics takes place all the time in the
fixed reference domain™.

Thus in the Lagrangian representation, a typical volume integral dealing with a
body is of the form

— 0y 0
(0=, f(rndv =, flab,cndv. (42)
As an example we may mention the expression for the mass of a body:
m(= [, p(r.0J(r.nd", (43)

where m is actually due to the principle of conservation of mass a constant. J is
the Jacobian determinant connected to the mapping (1), see Section 11.1.

When the integration over the space is considered to be performed at each
moment of time, the integrals are seen to become functions of time only:
{ = [(t). Thus the conventional time derivative of a function of one variable is at
the same time the material time derivative experienced by the body and we can
write
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I ., dI
= _oj==. 44
Dt dr @4

r

The diffeﬁifiation of an integral like (42) with respect to a parameter ¢ (here 7 is
called a parameter with respect to the integration as the integration is with
respect to the coordinates a, b, c) can performed according to mathematics as

fdV = j,vgj—;dw. (45)

10.3 REFERENCES
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CHAPTER 11

KINETICS

The contents of this chapter are still very inadequate.
11.1 PRINCIPLE OF CONSERVATION OF MASS

The density (tiheys) p ([p]=kg/m?) of a continuum at a certain point P (Figure
11.1) at a certain moment of time is defined in principle as the limit

Am dm

Awm .
=1 —_————, 1
AV P= o S0ay v S

Figure 11.1 Mass Am and volume AV.

Here AV is the volume inside a small closed surface containing point P and Am
is the corresponding mass. The volume AV in the definition (1) is made smaller
and smaller the point P remaining inside the surface. The density is thus of the
form p=p(r,0)=p(x.t)=p(x,y,2,t). We obtain in addition the formal
expression

@

which is useful in transforming the integrals over mass to integrals over volume.

Remark 11.1. As is implied above, we may use alternatively the symbols r or x
or x, y, z to refer to dependence on position in the current configuration.
Similarly, the notations °r or & or a, b, ¢ may be used for the same purpose in
the reference configuration. 0

The principle of conservation of mass is actually a purely kinematic law but as

one of the axioms it is for consistency considered in this section. The total mass
of a body at a moment of time ¢ is (Figure 11.2)

m=jdm=jvpdv=jm)p(x.:) dv, 3)

In the reference configuration at the initial time (t=%)

m=fdm=[, pd'V=[, ‘@, (4)

where % (a) is thus the density at the initial time, a given quantity.

dm = °Sd°\[
|

dov Nm.:gcw
cz
\ Y
bl
a,x )

Figure 11.2 Motion of a body.

We transform the integral (3) the way shown in mathematics, e.g. Kreyszig
(1967), over the reference volume V. The transformation is based on the
mapping (10.2.1%) or (10.2.11'} or briefly

X; =x‘-(a,t) =a|-+ui(a,r). (5)

Integral (3) can be written

m‘:J-V(I) p(x.!) dV:J‘qu(x(a‘t)) J(a,t)dnv, (6)
where
g l+% g u
ARER 2| 0 e
Iy,
Ja,n)=det]| —~ |=det| = = ZL(=d av L o
Lol e[an “% ® x| am Ywm x| ?
G o % |ow w  Tow
(;a ab aC aa ab ac

is the so-called Jacobian or more precisely the Jacobian determinant (Jacobin
determinantti).

On the basis of the principle of conservation of mass the mass m of a body is
constant and thus comparing expressions {4) and (6) ( m( %) = m(¢)) we obtain

Inv(‘b—pJ)d“V=0. (8)
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Because this equation must be valid for any subdomain of "V, we obtain the
following local form of the principle of conservation of mass:

Remark 11.2. The line of thought used in the step between formulas (8) and (9)
should be considered in more detail.

Let us consider a global form
fys@nav=o, (10

valid for a finite body, where the integrand f (above f="p ~ pJ)is a continucus
function with respect to position and which may in addition depend on time. If
equation (10) is valid for any subdomain A"V of the original domain °V or if
(even if (10) has been written first for a certain body, we remember that the
axioms of mechanics are valid for an arbitrary body and thus also for any
subbody of the original body under study)

Jao £V =0, 1n
the local form
£=0 in°V. (12)

follows from this. The proof is based on an opposite proposition. Let us assume
that f is different from zero and say positive at some interior point P of °V. As a
continuous function f is then positive even in some neighbourhood A’V of P
and the left hand side of (11) becomes positive. The proposition is thus wrong.
The result obtained is valid also for vector- and tensor-valued functions. 0

Formula (9) can be arrived at in an alternative way. The mass dm of a
continuum element is constant (Figure 11.2)

dm="Pd"V = pdV, (13)
or

v _ %

=l 14

v p (14}

From mathematics, the Jacobian determinant

7= ;TV‘;‘ (15)
Combining (14) and (15) gives (9).

11.2 PRINCIPLE OF BALANCE OF MOMENTUM

11.2.1 Small displacements

Euler stress. The stress vector or traction (jannitysvektor, traktio) ¢ acting on a

surface element with an external unit normal vector m is defined by (Figure
11.3)

AR dF
AF _dF I
SoAs_ds 0

(9) {b)
Figure 11.3 (a) Continuum divided into two parts. (b) Surface AS and the
force system AF, AM acting on it.

The stress vectors and their components acting on the faces of a rectangular
parallelepided have the symbols shown in Figure 1. 4.

- .GIZ
P \lz /__‘?.3‘1
| -~ c
) L G
745'*' c )_P:
Y "} "ﬁ_' G*;J‘ Gy)u;
g Gl Cxy
@y ¥ (b)

Figure 11.4 (a) Stress vectors corresponding to three different surface ele-
ments. (b) Stress components.



We have
tj = O'ﬂ if . (2)
or
=0 i+0,j+ok,
Yoqg 9 -
vV =0,i+0,j+0,k, 29
t=0,i+0,j+0k.
These stress concepts are referred to as Euler stresses (Eulerin jénnitys) or
Cauchy stresses (Cauchyn jannitys). It is essential that these stresses are defined

by dividing the actual force acting on a surface element by the actual area of
surface element.

Remark 11.3. In a somewhat analogous manner as discussed in Remark 10.4,
engineering literature often employs the notations o, — &,, etc. and
O,y — Ty, €tc. 50 that instead of (2') we have
O =15 ,
t'=o it ik,
o/ = ] ; "
£ =T,0+0,j+Q.k, (2.0
By s .
=T+ T j+0k.

Equations of motion and traction-stress relations. The local forms of the
principle of the batance of momentum are found to be

pb+§i= pa inV @)
X
and

t=njtf on S. #)

Here b is the body force intensity due to external forces per unit mass and n is
the external unit normal vector to the body surface.

It should be noticed that the formulas above have been written for the current
configuration of the body. In the small displacement theory we make no
difference between the current and reference configuration and we can operate
with the Euler stress. We can thus directly write down the approriate equations
of motion

ot/

Baj

"ol +

=%a in "V ()

and the traction-stress relations

on °S. (©)

In the component forms we may usep{’ either the coordinate symbols a, b, ¢ or x,
¥, Z as agreed,

11.2.2 Large displacements

Kirchhoff stress. In connection with the large displacement theory the stress
concepts become complicated. The Euler stress is no more suitable as the stress
should be associated with given material particles and not with spatial points.
This is for instance necessary to be able to employ the appropriate constitutive
relation in an inhomogeneous body. We borrow again strongly from Washizu
(1982).

i
:-"."

Cl/x Soa qu'ed:;

Figure 11.5 Surface force T?dbdc acting on a face of a parallelepiped.

Figure 11.5 corresponds to Figure 10.2 now with certain additional notation. A
resultant surface force T”dbdc acts on the face of the deformed parallelepided,
originally perpendicular to the a-axis. The stress T”, defined in this way, is not
the conventional stress or traction on the surface as in the expression T7dbdc,
dbdc is the corresponding area in the reference configuration and not the actual
area | G,db x G_dc|. The quantity can be called pseudo-stress (pseudojinnitys)
to emphasize this. We shall denote the vector components of T in the
directions of the lattice vectors G,, G, G, as shown in Figure 11.5, so that
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Ta = SmGa + Sabi + SGCGC 1
Tt =5,.G, +5,,G, +5,.G,, )
T¢=S,,G, +54G; +S5,.G,.

The two other expressions refer similarly to the other two faces of the
parallelepiped. In index notation, we have concisely

S; is the index representation in rectangular cartesian coordinates of the second
Piola-Kirchhoff stress tensor (toisen lajin Piola-Kirchheffin jinnitystensori) or
here in the following briefly the Kirchhoff stress tensor (Kirchhoffin jinnitys-
tensori).

Equations of motion and traction-stress relations. The local forms of the
principle of the balance of momentum are found to be

aTi .
%ob =9 vy 8
ob + c?aj pa in ®
and
T=“anf on ’s. (9)

11.3 PRINCIPLE OF BALANCE OF MOMENT OF MOMENTUM
11.3.1 Small displacements

The local form of the principle of balance of moment of momentum is that the
Euler stress tensor is symmetric:

g =0 (D
or
Ope =0chs Og =0gcy Opgp =0pq- (l')

11.3.2 Large displacements

The local form of the principle of balance of moment of momentum is that the
Kirchhoff stress tensor is symmetric:

S =S (2}
or
Sbc S ek Sca = Sac 4 Sab = Sba c (2"

11. 4 PRINCIPLE OF BALANCE OF ENERGY (missing)

11.5 BOUNDARY AND INITIAL CONDITIONS
11.5.1 Mechanical conditions

Basic case. The boundary °S of the body (Figure 11.6) is divided into two non-
overlapping parts S, and °S,, forming the whole boundary so that using set
theory notations, °5,\°5,=" and %,N"S, =@. Parts %, and °S, do not need
to consist of simply connected regions as is the case in Figure 11.6.

u=0
°3,
d
¥=t

b
cxln St

Figure 11.6 Mechanical boundary conditions.

The mechanical boundary conditions are conventionally of two kinds. The
displacement is given on boundary °,:

on %, (1)

or

=
-]
1l
2 &
1=

=
-
]
o

(19

=

]

=
o

C

The traction is given on boundary °S,:

on %, (2)
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or

-
It

b (2
t

-

s e
n'u—’n'

a

The bar above a symbol refers to a given value.

Generalization. The basic case described above is convenient for notational
reasons, However, the more general situation for each boundary point is as
follows (Figure 11.7);

b
A
P GI ua—=LTaf or fao =fa"
< o 1 uy =My, Or =_’b‘ , (3)
Uy =W, of t.=0..
b

Figure 11.7 Local rotated
coordinate system.

From each row either (but not both) of the conditions is to be selected. Here at
every point on the boundary a rectangular cartesian coordinate system a’b’c’ is
erected so that usually one axis (in the figure the a’-axis) coincide with the
normal direction to the boundary. The quantities equipped with dashes refer to
the components of vectors & and ¢ in the local coordinate directions.

Remark 11.4. Boundary conditions have been considered above from the point
of view of small displacements. In the case of large displacements the
conditions are of the similar type but more complicated.

-l
on

G} "

Figure 11.8 (a) Reference and (b) current configuration in a contact problem.

As an example we may consider Figure 11.8. The surface %,, where the
displacements are presribed, is not known in advance. O

11-9

Initial conditions. In statics we naturally have to give the initial configuration

of the body to be able to predict its response to slowly varying exitations. In
dynamics we have to give additionally the initial velocity field.

11.5.2 Thermal conditions (missing)
11.6 REFERENCES

Kreyszig, E. (1967); Advanced Engineering Analysis, 2nd ed., Wiley, New York
Washizu, K. (1982). Variational Methods in Elasticity & Plasticity, 3rd ed., Pergamon Press,
Oxford.
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CHAPTER 12
VIRTUAL WORK

12.1 SMALL DISPLACEMENTS
12.1.1 General

The mathematics literature dealing with the finite element method takes as its
starting point instead differential equations so-called weak forms (heikko muoto)
or weak formulations. These are scalar equations obtained from the govering
differential equations and boundary and initial conditions by certain
manipulations with so-called weighting functions or test functions (painofunktio,
testifunktio). The ancient principle of virtual work is in fact from the mathe-
matical point of view a weak form, where the virtual displacement has the role
of the weighting function. In the mathematics literature, however, usvally no
demands on the weighting functions to be infinitesimal are made. Why is this
done in connection with the principle of virtual work? Some answers to this
question are given in Remarks 12.1 and 12.5.

12.1.2 Principle of virtual work

We try to present the derivation of the principle of virtual work using similar
steps as in Section 5.2 for the particle system to emphasize the analogous
features. To simplify the notation, we however first derive the result in the static
case and only later include dynamics through the inertia forces the way
explained in Remark 4.5.

According to Section 11.2.1 the governing equilibrium equations are in the body

j
°pb+gL=0 in °V 0
g
and on the body surface
£="n jtf on °S. 2

We simplify the notation by dropping the left superscrifts in this section. The
manipulation is as follows. We multiply (1) (scalar product) by an arbitrary
vector

w(a)= W,‘(ﬂ)i,' 3)

and integrate the resulting equation over the body volume to obtain an equation
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“- (pb.w+a—rj-w)dv=0. 4
v Jaj

This equation can be considered as some kind of weighted average equilibrium
equation for the body the quantity w acting as the weighting function. The term
due to the internal forces can be transformed into a more useful form by
integration by parts. We obtain

ot . dw .
. = - J w— 4 .
Ivaaj wdv jvr % dv + j‘snjt wdS

= [ towas-| o g: av. )
7

Integration by parts formula (B.3.1a) and formula (2) have been made use of.
The integration by parts formula referred to does not apply directly to the scalar
product of two vector functions but it is not difficult to show that the formula is
valid in an analogous form also in this case. This manipulation is similar to the
one performed in Example 5.1 to change the virtual work expression of two
pairwise forces into a more useful form. Now our equation is

ow
9a;

vab-de+JSt-wdS—jvtf 2 dv=0. )

We make the interpretation

W= 6" = 6" = aukik = 5u|i1 + 5u1i2 + 5u3i3
= Sui + 5vj + Swk. 7

Quantity &r(a) = Su(a) is the virtual displacement, that is, the variation of the
position vector r or the displacement vector u. Equation (6) obtains the form

jvpb.audszc.auds—jv 6:6edV=0, (®)

This is the principle of virtual work (statics) for a continuum in the case of small
displacements. We can write also similarly as in (5.2.10):

5'W = 8'W,, +5W,, =0 )
with
5'W,., =vab-6udV+Ist-6udS,

10
5’ im“—'—'J.V O':(SedV. ( )
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The integrand o € in the internal virtual work expression is called double-dot
product of the tensors ¢ and € and it means in index notation in rectangular
cartesian coordinates, Malvern (1969),

0. 6= O’u&.’,} = 0'”38“ + 0']268[2 + 6136813 +
+ 071087 + 0080, + 05863 +
+03)083; + 01,83, + G330635. (1)

The terms

1w, 94, 1 98w 9bu;
=0 501 5

). (12)

are called virtual strains (virtuaalinen venymi). The detailed derivation
concerning the internal virtual work is performed in Example 12.1.

Example 12.1. We consider the term

aW =tj.96u

g
! aa,- c?aj @)

in (6). Summation convention is used here and in the following. We have
f —-U'ﬂl', 5u=6ukik. (b)

The first expression is [rom (11.2.2). Thus

. dou ddu 95:4 2bu
tj--—= f. . k¢ = of, = —k .
da; Tiiti da; =g da, T, it i aaj i
o Aab'uL la_ dou; +la"c95u,- 1 déu; + aﬁuj
" da; P 9a; 27 9a; 2% 3a, 270 3q,
1 .96 35!4
=973, e ©

On the second line use have been made of the symmetry of the stress tensor and
sumrmnation indices have been changed. The expression of the small strain is from
(10.2.40)

1 du; QL
l] = 2 (30 3:1 ) (d)
Its variation is seen to appear in (¢). Thus finally
i dbu
H'¥=o")"6£{f.' (e}
i
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Remark 12.1. If we let the weighting function w remain finite and take no
specific interpretation, we have from formula (c) of Example 12.1 the result

i ow 1, dw; Bw-
e ——= —_—t 1y
,.- ,,2( +5.0) (13)

Especially, if we consider w to be some finite displacement u, we obtain
i Eij » (14)

where we have used the shorthand notation

| aui au}
=2 30, (1)

£

This consideration shows that it is not necessary to consider the weighting
function to be infinitesimal. The essential thing is that the weighting function
appears linearly in the governing equations irrespective of the linearity or not
of the equations; only the type of distribution of the weighting functions has an
effect on the final weak form. Formulas {14) and (15) somewhat explain the
basis of the unit dummy load method discussed in Remark 5.11. The
interpretation of the weighting as a variation is, however, often convenient, It
for instance makes possible the step to the principle of stationary potential
energy. 0

Remark 12.2. A continuum problem usually habe kinematical constraints in
the form of boundary conditions

u=a ons, (16)

as discussed in Section 11.5. When applying kinematically admissible virtual
displacements we must thus take

du=0 ons,. (17)

The unknown tractions ¢ {constraint forces) on §, then disappear from the
formulation and the principle of virtual work reads

jvpb-audmL t-&udS—JVo:Sst=O (18)

combined with (17). This is the final normal application form of the principle of
virtual work in the small displacement theory. O
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Remark 12.3. The corresponding dynamics form of the virtual work equation
is arrived at with the substitution

b:=b—a. (19)

as discussed analogously in Remark 5.5. To be more precise, the motion of the
body induces naturally in addition to the inertia forces also, say, viscous
damping forces, which must be included in the formulation. 0

A matrix form of the virtual work equation (8) is often convenient. To shorten
the expressions we consider the two-dimensional case in the xy-plane. The
generalization to the three-dimensional case is obvious. The notations used
follow closely those employed in Zienkiewicz and Taylor (1989). We define

g,

L e b, |t B
[u]_' V' l}'— bb ’ [tl_ rb + {a}_ O'b *
ob (20)
£, dulda dida 0 .
{e}=1 & 1= vidb =| 0 J/db {v}=[S]{u)
Yab duldb+dvida) |3/3b dida
where the strain-displacement operator matrix
dfda 0
[S1=| 0 2/adb|. 1)
didb dfoa
Equation (8) is now with a change of sign
T T
.[95[51 (o)~ jﬂ (k) plb)dQ - jr 5(u}T{1)dr = 0. (8)
Variation of the last equation (20) gives
(€)= [S16{u), (22)
so the final matrix form is
T
[ (51810 (01002 - [ 5w} plb}aQ - [ 8T =0. 8"

It should be noticed that we cannot write the first integrand to the seemingly
correct form S{u]T[S]T[O'] as the operator [S]T would then apply on a wrong
quantity.
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Remark 12.4. The principle of virtual work is a general principle valid for any
body irrespective of its material properties. One application of the principle is to
derive by it the governing equilibrium equations (or equations of motion) for a
specific body configuration. A sample of this feature will be given in Section
13.3.2. The most important application is the discretized form, say, by the finite
element method, of the principle leading to a model with finite degrees of
freedom and to a similar situation that was considered in Chapter 5.0

12.1.3 Principle of virtual work for an elastic body

We develop the virtual work equation (8") further in the case of an elastic body.
The stress-strain constitutive relation for elastic material without initial strains
and stresses is

{o}=[DI(e) (23)

where [D] is a symmetric positive definite stress-strain matrix. In particular, for
isotropic material in the plane stress case (tasojédnnitystila),

1 v 0
(D)= Elvi o 24)
-V 0 0 1-v
2

and in the plane strain case (tasovenymiitila)

2G+ A4 A 0
(D)= A 2G+A 0 (25)
0 1] G

where E is Young's modulus (kimmokerroin), v Poisson's ratio (Poissonin
vakio), G the shear modulus (liukukerroin) and A the Lame parameter (Lamen
parametri). Only two of the parameters are independent and one can write many
dependencies between them, such as

E

G= 2w’
(26)
1=26v
1-2v
From (20),
(o) =[D1{e} = (DN SHu}, 27
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and the virtual work equation (8") obtains the specific form

[y (S18EDTIDIS AR - | 8)' ppldQ- [ ST (dr=0. |  8)

12.1.4 Sensitized principle of virtual work

Equilibrium equations (1) are in detail in the two-dimensional case (substitute
expressions (11.2.2) into (1))

.ﬂ.k.a‘rﬂ*.pba:ol
da ob (29)
ar—“"+%+pb =0
da b b
or
219a 0 2196)|°| [b)_[0 0
0 asa6 310al)| 7 [TPs,] " 0
Tab
or
{R({a])) = (L{{o])} + plb] = [E] (0] + p(b} = (0}, (31)
where the eguilibrium operator matrix
(E]= dida 0 3/db (32)
Lo 996 31da)

It is seen that here [E]=[S]T. The least-squares functional corresponding o
equations {31) is (see Section D.2.8)

_1 T
Mo =2 [, (RT=)RIQ. (33)
The symmetric matrix [7] is a sensitizing parameter matrix discussed in Section

D.2.9. We consider here just the case with one sensitizing integral. Demanding
{(33) to have a stationary value gives the equation (see Section D.2.11)

J Lo TI71{R(fo)1dQ = 0. (34)

As discussed in Section D.2.11, a sensitized weak formm — here a sensitized
principle of virtual work — is obtained as a linear combination of (8") and (34}):
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Jo8181)TI014Q - [ 1) p(61oQ - [ 5T ()T +

T (35)
+[, (B (80D TITI(El (o) + plb))d = 0.

The expression (60) is to interpreted here finally as the virtual change of
stresses due to a virtual displacement 8{u).

12.1.5 Sensitized principle of virtual work for an elastic body

For an elastic material we have the expression (27):

{o} =[DY[S1{u} (36)
and thus
6(o) = [D][S15(x). 7N

The virtual work equation (35) obtains the specific form

[, 15nTIDIS e - [ 8ta) ple1dQ - [ T (T +

(38)
+fn([E][D][51 8lup) [T )(EN DS (u) + p(b))dQ = 0.

Again it should be noticed that the operator matrices are to be applied on the
(total) quantities on the right-hand sides of them as far as indicated by
parentheses.

12.2 LARGE DISPLACEMENTS
12.2.1 Principle of virtual work
The governing equilibrivm equations are in the body

j
°pb+3l=0 in °V (1)

aaj

and on the body surface

T=°anf on "S. 2)

These are exactly of the same form as equations (1) and (2) in Section 12.1, only
the lower case traction symbols replaced here with the capital ones. Repeating
the manipulation with the weighting function

wia)=w;(a)i; k)
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preduces thus the counterpart of equation (6) in Section 12.1:

. ow
0 0 [1] F 20
Jo, t0b-wd Vi [o Towd's=[, 19 . Ja; d'v=0. @

The interpretation

W= ar =du= Sukik = 5ull'| + 5“21:2 + 5“31.3

= Sui + 5vj + Swk )

leads to the principle of virtual work (statics) for a continuum in the case of
large displacements:

o "pb«Sud®V +{, T+Sud'S- |, $:5Ed'V=0. (6)

Similarly as in Section 12.2, this can be written
S'W=6"Wy +8'W, =0 )]
with

§Wee = [, "pb6udV + [, T+8ud’s,

(8)
5'W,,, = J' S:5EdV.
The double-dot product is in rectangular cartesian coordinates
+8310E3) + 5328E;; + 533033 )
The terms
1 .du; 9% Ju, du
SE; =6— Ly k%
2 (Ba da; da; da; 2,
=_1_(36u 35“ 35uk Juy Iy Oy Juy 85uk) (10)
2 da da;  da; da; da; da;

a;

are virtual Green strains. The detailed derivation concerning internal virtual
work is performed in Exampte 12.2.

|  Example 12.2. We consider the term
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ri.2-p. 22 ()
in (4). We have
TJ=S}'-G!', Gl'=ii+§'zlil‘ 5u=6ukik. (b)

4

The first and second forms in (b) are given in (11.2.7") and {10.2.23"). Thus

; 9%u _ 35:: 8 dEu, au,
. e =8 +G; iy =5, X, .z,‘+—‘;,.r,5)
da; " da a; ! da; da, da
Jﬁuk Ju déuy Ju
=5. Sy +—L5,y=5. 2% (5 o T
( it + aﬂf lk) g ( i a )
=5 (95u IGwy, Juy
i da;  da; da
35u, a&:t ﬂt&) J[(arsu 85uk auk)
da; da, 2 ; dg;
35u a5uk Juy L 351{, Bauk Jy

.,( 751

da; 8(1, gl da; da; da;

=5, 1 35u +35l¢ buy B_ul a_uk_asu,:)
Y2 da;  da,  ag da; da;

©
The steps used should be rather obvious. Symmetry of the Kirchhoff stress has been
made use of. The expression for the Green strain from (10.2.36) is

_1 9% 3“ au,,auk)

—L d
2%5a 90 da B &

Its variation SEE- is seen to appear in {c) and thus

2éu

f. = SE;.
T Ja_, S (e)

Remark 12.5. We repeat here the discussion of Remark 12.1. If we let the
weighting function w remain finite and take no specific interpretation, we have
from formula (c} of Example 12.2 the result

ow g l(aw aw'+3wkauk Bukéy_&).

T/ ==
da; V2'0a;  da; ' Ja; da; @ da; da,

(11)

The large displacement theory is seen to be present via the current displacement
state u. We again see that there is no absolute need to consider w as
infinitesimal and as the variation of u. If we consider w to be the current finite
displacement &, we obtain
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K 5, L@, M Oy duy | Juy duy

T/. 2% _g L 24 :
an Y 2(301. aa,- aa,- aa] 30; aaj

(12)
Now the term multiplying S;; is not the Green strain corresponding to the
displacement field and for instance the unit dummy load method does not work
any more, 0

How to deal with kinematical boundary conditions and with dynamics should be
obvious from Remarks 12.2 and 12.3. We do not consider the sensitized form of
the principle of virtual work in the large displacement case here.
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CHAPTER 13
APPLICATIONS IN STATICS

Only the small displacement theory is considered. The finite clement system
equations arc derived in the two-dimensional elastic case. A plane arch is
analysed as a demonstration example. A more detailed consideration is given for
a straight elastic beam.

13.1 FINITE ELEMENT METHOD

We develop in some detail the discrete system equations emerging with the use
of the finite element method for an elastic body. The virtual work equation is
(12.1.28):

. T
[ @S186a)T (DS u)dQ - [ 8] plb)d2~ [ 80T (ar = 0. (1)
In the so-called displacement formulation (siirtymiformulaatio) using the finite

element method, the displacement field is expressed by the finite element
approximation

[ {u(x)) = (@(x)} = [N()]la} | )

where [N] is a given shape function matrix and {a} is a column matrix of
undetermined paramelers or here of the so-called nodal displacements
(solmusiirtymdt). Some details of this has been explained in Section D.3.4.
Based on (2), a variation gives the virtual displacement field

&{u) =[N)bla). )]
Substitution of (2) and (3) in (1) gives

| @S)NM8ta)TIDISIN ) (a)d2 +

—_[n([N}Jlal)Tp{bldQ - J.amstanTdr =o,

8ta)” [ SN TIDIISHN DA a) +
~8ta)" [ (M) p(bloQ-8la)T [ [N T =0,

8ta)™ | (81" [DY[BIdO(a} +

~8(a)" [ (M p(b)aQ-8(a)T [ (VI trjar = . @)
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The standard shorthand notation
[B]=[S][N] %)

has been used. The steps in obtaining the final form (4) are rather obvious, for
instance, the quantities {a} and 8{a} do not depend on position and can be taken
outside the integrals.

The left-hand side of (4) is the negative virtual work expression for the
discretized body having the form

~&'W=8(a} (- (0)) =8{a) T (— Qi — (Qhert) (©

where the column vectors of generalized forces are

(Qine ==, (BITIDILBEQ al],

(Qlux = [ [N plb1d0 + | (NI 1) @
Thus the final system equations are

~ (it ~ Qe = () ®
or

©)
with

[K]= |, (BIT(DI(B)dQ,

(10)
8)= [N} (f)aQ+ [ [MTTiar.

To avoid possible confusion, we have denoted the body force intensity per unit
volume finally by {f)}=p{b). The coefficient matrix [K] is seen to be
symmetric and it is usually called in the displacement formulation as the
stiffness matrix (jiykkyysmatriisi).

13.2 SENSITIZED FINITE ELEMENT METHOD

Again only the elastic body case is considered. The sensitizing term in principle
(12.1.38) is of the form

JLMEDNSISEH T IFENDIS ) + p(b))dC2. | ()
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Substitution of expressions (2) and (3) gives

[, EENDUSIMSa) TEHENDISH N ) + pib))dR,
8a)T | (EADNB) (TIEIDI(BY @) + plb))dR,

8ta)T | (CENDIBD Tz IIENDIBDIR (o} +
+8(al” | AENDNBN [2)p(b1dQ2. @

Proceeding similarly as in Section 13.1, we find that the system equations are
now

[K)(a) = (b) )
with
[K1= [ (BT (D)B)AQ+ [ (ENDIBY (sI(ENDIBNLR,

@
(8h= [, 1N {10+ [ (VT (04T - [ CENDIBY (eI f1d2.

Remark 13.1. Terms like [E]{D][B] become very involved if the material
properties depend on position. Thus in practice we assume some constant
representative value for [D] in an element to simplify the formulas. This theme
is discussed also in Section D.3.5.0

133 ARCH
133.1 Kinematics

Figure 13.1 Curved beam.

13-3

A plane arch or curved plane beam is considered using the notation of Figure
13.1. Lagrangian rectangular cartesian coordinates are denoted here simply by x
and y. We employ the method of local cartesian coordinates described in
Appendix C. The curved axis of the beam is taken to be a ¢ -coordinate line and
on this line & is associated with the arc length 5. The f8-coordinate lines are
straight and f =n where n is the perpendicular distance from the beam axis.
The direction of coordinate n is 90° clockwise from the positive direction of s.
The purpose is to derive first the expressions for the strains according to the
assumptions of beam theory and based on that then the corresponding
equilibrium equations using the principle of virtual work.

The position vector of a generic point P is
rissmy=ry(s)+ne,(s). (1)

From curve theory dry/ds =e; and from the well-known Frenet formulas, e.g.
Kreyszig (1967, p. 273),

de, 1 de, =71€"’:- @)

ds R™ ds

The curvature 1/ R of the beam axis is here positive if the center of curvature is
on the negative side of the n -axis.

Differentiation of expression {1) gives thus

dar dr de e n
—=—L4p—n =e,+nif=(l+i)e,,

ds
ol )
EI'=8".

The scale factors are

or
= —|=1. 4
h, = @

n

or n
_=I+_, h =
3s| R

At the local origin (see formulas (C.2.1) and (C.2.2))
I=¢, J=¢e,, (5)

and

P
ax R x e ©
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We use here the kinematical assumption according to the Timoshenko beam
theory, e.g., Fung (1965, p. 322): the material fibers originally perpendicular to
the beam axis are assumed to remain straight and inextensible but not
necessarily perpendicular to the beam axis after the deformation. From Figure
13,1 we find for point P (small displacements)

u(s,n)=ue, +u,e, = [i(s) - n6(s)le.(s) + ¥(s)e, (s). @)

Quantities & and ¥ are the displacement components of the origin O of the
cross-section in the s- and n-directions, respectively, and @ is the rotation
(positive clockwise) of the cross-section fiber,

The relevant strain components in beam theory are (see Example C.1, formula

(o)

du n._ou
£J=£x=a—X--I=(1+E) lg.e"'

(8)
7’m=7xr=é‘"l+i'-’=a‘ Ryt A

o X o’ P

From (7), the denivatives

% = (% —-ﬂ%g)e_T + (i —'nB)(—%')-}-ﬂe,l + ﬁ% o
du ®

—=-0e,

and substitution in (8) gives

n_ 4 A6 7
=(1+— ——-n—+—),
=l G "SR e
o=+ 208, 0 o
R R ds

To derive these exact results with confidence based on some figures
representing the kinematics would be very difficult.

In the Bernoulli-Euler beam theory (later shortly Bemnoulli beam theory) it is
assumed that the shearing strain is zero, that is, the material fibers originally
perpendicular to the beam axis remain perpendicular to the deformed beam axis.
The latter expression in (10) can be put in the form

g di d

n
Y.rn—(l"'E) (E‘E"e) (]l)
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By demanding ¥, =0 we obiain the constraint

A a

dv i
0=—-—. 12
s R (12)

Substitution of this in the first of (10) gives the Bernoulli beam strain expression
dii d dv &, ¥
——n—(C -2+ o]
ds ds ds R R
n

LA _dafds & dR, ¥
R & "G TR TR e

= n.-1
ej-(l+R) [
=1+

or

i dR d%

Ko gt o

di n. P
=—+({1+=) [=-
& ds : R) [R -

The expressions obtained can be approximated for shatlow arches by developing
them in truncated power series in n/R,

The formulas simplify considerably in the case of a straight beam, where
1/ R = 0. In the Timoshenko theory, formulas (10) become

di d8
E,=——y—,
_dv 0
e
In the Bemnoulli theory, from (14):
da d%
S w e 1

In these formulas, 5 and n have been replaced by the more conventional symbols
x and y for a straight beam.

13.3.2 Equilibrium equations

Figure 13.2 shows some of the notations which appear later in this section. The
principle of virtual work is

W, +8'W,,, =0. (17}

In the plane stress case considered here the non-zero stress components are g,
Oy, Tyy and we have
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W, = —-_[V (008, + 0,06, +1,8y,)dV,

18
5'Weye = [, (fudut £,8)4V + [ (¢, 8u+1,80)d5. 18

A
Na
Figure 13.2 Some notations.

The body force components per unit volume have been denoted by f.(=pb,)
and fy( pby).The integrals and also the integrands in (18) are scalar invariants,
that is, their values do not depend on the coordinate system used for their
evaluation. Further, according to conventional beam theory, the essentially non-
zero stress components at a generic point P (Figure 13.1) are oy =0, and
‘rxy = Tm. Thus

0,06, + 0,08, + 7,07, =0 x8ey + TypbY xy = 6,66, + 7,67,
fibu+ f,b6v=féu, +f8u,, 19
tedu+t,6v=fou +1t,8u,.

We have also assumed the virtual displacements to take place in the gobal
xy-plane.

The volume element

dV = dXdYdZ = hydahgdfdZ = (1 + %)dsdndz =(l+ %) dAds, (20)
where
dA =dZdn 21

is now the area element of the cross-section.

The virtual work of the internal forces obtains the form

5 Win =] 1] (0,88, + 7,,87,,)(1 + %) dA]ds. 22)
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From (10) and (11),

-5 d5u d59 &0

dg, =(l+ ) —+—=),
"o R 23
e d5v 5u 50 23
&y, = R Tk ¥ e Ak
Yan (1+R) (ds )
and substitution in (22) gives
déa dée & dév i
=-[ o Oy (T n R)+1',,,(—dT———56)]dA}d.s
déa d
——j Vo + 2 w222 1 000050545, @4
Here the standard definitions
N=IadA
Q=] TmdA (25)
M=Lcr,ndA

for the stress resultants — normal force (normaalivoima) N, shearing force
(leikkausvoima) Q, bending moment (taivutusmomentti) M — of the cross-
section have been employed. It should be noticed that the terms containing
virtual displacements in (24) depend only on s and they can thus be taken
outside the integral over the cross-section. Formula (24) is useful if, say, a
numerical solution by the finite element method is attempted. When deriving the
relevant beam theory equilibrium equations further manipulation is needed.

Here a one-dimensional integration by parts formula (see formula {B.1.1a))

dh
fege=l%

with obvious meaning is used. This applied to (24) to remove the derivatives on
the virtual quantities gives

52
gh (26)
n

W = [ (G + D0+ 2= 504 - gy 015+
—| * [N+ Q8 - M36). @n
5

The virtual work of the external forces
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5'W,, = jv( fBu+ f,6v)dV +js(:,5u+ ,6v)dS.
= [ (£:8uy + f,u,)dv +
+ Ll (t,0u, +¢,6u,)dA + L«; (¢, Bu, + 1 6u,)dA. (28)
Here we have for simplicity assumed that non-zero tractions exist only on the

end cross-sections surfaces A, and A, of the total beam boundary surface S.
From (7)

Su, =8u—nbo,
T e 29)
Thus

8 We = [ 1] Lf:(62-n80) + £,801(1 + 2)dA)ds +
+ L [, (8G— ndB) +1,60]dA + L [t,(5ii—n86) +1,50]dA. (30)
1 2

We define
n
4= [, L0+ D)4,
n
n =Lf,.(l+E)dA, (31)
n
r=—Lf,n(1+E)dA.

These are the body force components and couple per unit beam axis emerging
naturally from the virtual work expression. We further denote

n,=n-e,, (32)

where n is the outward pointing unit normal vector on the end cross-sections
giving n,(5) =—-1 and n,(s;) = 1. We define

N, = J'A‘ tn dA,
= ], tan, a4, (33)

)
M; = L_ tenn dA

for i=1,2 giving the stress resultants from possible tractions ¢, and ¢, on the
end cross-sections.
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Expression (30) obtains thus finally the form
5'Wer, = [ (0,00+ g,50+ r86)ds +|” (W6 + 060 - W150) (34)
1

Here the quantities ¥, O, M should be equipped with the indices appropriate at
s=5; and 5=ys;. Substitution of (27) and (34) into the virtual work equation
(17) gives

[ % A48 N 5. OM
J.s{(ds+R+q’)5u+(ds R In)I (- Q4 r)Ba)ds +
+ |’2 (=N + )8+ (~Q + 0)66 + (M - K&1)50] =0 . (35)
5

Because the variations &d, 6V, 86 can be taken arbitrarily, the equilibrium
equations

dN @

—+=+ 0,

& R B

dQ N

& R (36)
——+@+r=0

on 5 <§<§, and the force boundary conditions

—N+I§'=0.
-0+0=0, (37
M-M=0

at s=5 and s=gs; are arrived at. Actually, if some kinematic boundary
conditions in the form i = given, ¥ = given, 8 = given, exist, the corresponding
force boundary conditions (37) must be replaced by them.

If the Bemoulli theory with y,, =0 or 8 =d¥/ds - &/ R is used as the starting
point, the basic displacement expression (7} is replaced by

- = lii(s) = pr 3PS _ (5) ;
u(s,n)y=ue +u.e, ={i(s)—nf & R(s)]]ej(s)+v(s)e,,(.r). 38

and equations (22) and (23) are replaced by

5W, = - L[a,ae,(n%)dmds. (39)
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CHAPTER 13
APPLICATIONS IN STATICS

Only the small displacement theory is considered. The finite element system
equations are derived in the two-dimensional elastic case. A plane arch is
analysed as a demonstration example. A more detailed consideration is given for
a straight elastic beam.

13.1 FINITE ELEMENT METHOD

We develop in some detail the discrete system equations emerging with the use
of the finite element method for an elastic body. The virtual work equation is
(12.1.28):

[L@S186)TIDIS WA - [ 8" pibaQ - | 81T har =o0. Q)

In the so-called displacement formulation (siirtyméformulaatio) using the finite
element method, the displacement field is expressed by the finite element
approximation

| (u(2)) = {fi(x)} = [N(x)){a} | 2)

where [N] is a given shape function matrix and {a} is a column matrix of
undetermined parameters or here of the so-called nodal displacements
(solmusiirtymit). Some details of this has been explained in Section D.3.4,
Based on (2), a variation gives the virtual displacement field

§iu) = (N16la). @
Substitution of (2) and (3) in (1} gives

[ SANB @ TIDIS IV Halde +

- [ amstan pibla - [ M8 1T =0,

5(a)T [ ESIVD OISV AR a) +
-8(a}" [ LIV pibld~5al” [ (N (14T =o0,

8(a)" f_ BT (DI B1AQ a) +
-51a)" [ V] pibldQ-8lalT [ (VT (4T = 0. (4)
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The standard shorthand notation

[B]=[SIIN] (5

has been used. The steps in obtaining the final form (4) are rather obvious, for
instance, the quantities (a) and 8(a} do not depend on position and can be taken
outside the integrals.

The left-hand side of (4) is the negative virtual work expression for the
discretized body having the form

-8'W=6(a)(~{Q) =6(a) T (~{Q)y - (Q)or) (6)

where the column vectors of generalized forces are

(@ ==, (BIT[DI[B))dCa),

(@ex = [ [N piblaQ+ [ (NI (1) "
Thus the final system equations are
~{@int ~ (Qlex = {0} ®)
or
[K]{a}={b} 9
with
(k)= [, (BT [DI(B1dR, .

(b} = LIV 11142+ f, (VT (T

To avoid possible confusion, we have denoted the body force intensity per unit
volume finally by (f}=p{b}. The coefficient matrix [K] is seen to be
symmetric and it is usually called in the displacement formulation as the
stiffness matrix (jiykkyysmatriisi).

13.2 SENSITIZED FINITE ELEMENT METHOD

Again only the elastic body case is considered. The sensitizing term in principle
(12.1.38) is of the form

Jo ENDNSIEWN [ IEIDIS] 1) + oo} (1)
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déi_ d d& &a

e, = (1421302, 4 4 5
e U i orrt2h

i)}
—E]- (40)

Now more integrations by parts are needed to arrive finally at the equilibrium
equations. There are found

—+—(—-r+q,=0,
a5 R(ds r) gy @
M N,
&? RITG
and the force boundary conditions
N+ R -~ (M- ff)=0,
R
dM -
-—+Q0+r=0, 42
s Q+r (42)
M-M=0.

Equations (41) can be derived directly from (36) by employing the relationship
Q=dM/ds - r obtained from the last of them. Altogether, it seems that the
Timoshenko beam theory is a cleaner starting point. If the Bernoulli theory is
used, the modifications needed can be performed just on the final equilibrium
equations.

Remark 13.2. The Bemnoulli theory contains the kinematical constraint ¥, =0
or 8 =d¥/d5 -/ R. This means that the corresponding shearing stress T,, and
(integrated from it) the shearing force ( are constraint forces. In this section we
have used kinematically admissible virtual displacements as we have taken
variations of the actual (assumed) displacements (7) or (38). When applying
kinematically admissible virtual displacements, according to statement (5.3.1)
the constraint forces disappear from the formulation. This is seen to happen also
here in connection of the Bernoulli theory as O does not appear any more in
(41).0

13.4 ELASTIC BEAM
13.4.1 Kinematics
For now on, we consider straight beams only. Most of the expressions needed

are obtained from Section 13.3 by simplifications. Figure 13.3 shows the main
notations used.
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Figure 13.3 Straight beam.

We employ for generality the Timoshenko beam model and take the Bernoulli
model as a special case. The functions, describing wholly the displacement state
of the beam are u(x), v(x), 8(x) The relevant strain expressions are (formula
(13.3.15))

e=S4_y40 _ziyx ")
dx yd.x 30
and
dv
=—-9. 2
Y o 2)

The hats from the symbols of the displacement components of the beam axis
and the subscripts from the strain symbols have been dropped for simplicity of
notation. The quantity

. du
HE=, 3
dx )
is the axial strain at the beam axis. The quantity
de
S 4
dx @

is called (roughly) the change of curvature (kiyristyma) of the beam axis.
Formulas (1) and (2) show that in the Timoshenko model the axial strain is
distributed linearly in the cross-sectional fiber direction and that the shearing
strain is constant. In the Bemnoulli model the latter form of (1) is still valid with
the change of curvature given by

=-—— &)
and the shearing strain is zero.
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13.4.2 Constitutive relation

Assuming that all stress components but ¢, and 7 « are zero and employing the
generalized Hooke’s law for an isotropic elastic material gives the constitutive
relations

o,=Eg_ =Eg, ©
Ty =GYy =GY,

where E is Young's modulus and G the shear modulus of the material. The stress
resultants from (13.3.25) obtain the forms

N= L o dA =L Eedd = L E(2+yKk)dA =

= (L EdA)é +(], EydA)x =EA&+ESx,
Q=eryclA=LGydA=(_|'AGdA)y=GAy, N
M= Lo,ydA = L EeydA = .[4 E(& + yx)ydA

=(L EydA).§+(LEy2dA)x=ES.€'+ Elx.

We have used the shorthand notations
— — — — 2
EA=L EdA, ES=IAEydA. GA_LGM, EI_LEy dA. (8)

These left hand side notations have to be understood in the general case (if E
and G depend on y; layered beam) as double letter symbols. EA is called the
axial stiffness (vetojiykkyys), GA the shearing stiffness (leikkausjiykkyys) and
EI the bending stiffness (taivutusjiykkyys) ([EA]=[GA]=N, [Ef]=Nm?).
Only if £ and G are constant over the cross-section, we have actually products
of Eand A, G and A and E and /, the last quantity being the cross-sectional
second momens (pintaneliSmomentti, pintahitausmomentti))

IELysz. 1))

In the following we assume for simplicity that the beam axis has been selected
so that ES =0. (This is always possible at a given cross-section but the axis
defined in this way may not be any more straight for an inhomogeneous beam.).
The constitutive relations for the stress resultants are now

N=EAE, Q=GAy, M=Eix. (10)

When a beam problem has been solved say by a displacement formulation, we
know the quantities u(x), v(x), @(x). From these we may calculate &, 7, x
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and then using (10) the stress resultants. The stresses can be evaluated
alternatively from the stress resultants (see (1}, (2), (6) (10)):

_g N M -c <
U—E(EA)+Ey(EI)’ T GGA' (1)

If E'and G are constants on a cross-section, the conventional formulas

N M 0
C=—+y—, T==. 12
A 4 I A (12)

are arrived at, Thus in this case the normal stress varies linearly over the depth
and the shearing stress is constant.

Remark 13.3. The latter formula (12) shows clearly that we are dealing with an
approximate theory. No external tractions act usually in the x -direction on the
upper and lower surfaces of a beam. Thus we should have there Ty =Ty =0.
In reality the cross-sections of a beam do not remain completely plane but
warping (kiyristyminen) takes place. This fact is accounted for in practice by
amending the second formula (10} into the form

0=kGA, (13)

where k is the so-called shear correction factor (livkumakorjauskerroin)
([k}=-). Also the inverse value is often called with this name. Literature
contains procedures to determine k. For instance the value &k = 5/6 is used for a
rectangular cross-section for a homogencous material. Shearing strain in
formulas like (2) and (13) should be considered as some kind of average shear
which takes in an overall way into into account the flexibility of the beam with
respect to the shearing force. The detailed shearing stresses should not in fact be
calculated using formulas (11) or (12). More accurate results are obtained by
assuming the values for the normal stress & comrect and making then use of the
equations of equilibrium for a continuum, e.g., Oden (1967).0

13.4.3 Virtual work equation
We write the virtual work equation in the form

=5 Wiy, =6"Weg =0 (a4
and collect the appropriate expressions from (13.1.24) and (13.1.34) to give

déu &7 dée dédé i
— ey M = A
+ R) +Q( 5 68)]ds
ddéu dég dév
=] [N—m ey —= —— -84,
L[ . & TG oPldr

"6’“%( = L [N (
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=J':(N65+M5K+Qay)dx (15)

and

=8 Wegy == (.80 + 4,60+ r86)ds - |:: (Nt + 060 - K56)
=—[ (a.0u+q,8v+rd6)dx-|”* (Wou+ 36v - #156)
X I
= —J:(qx5u+qy6v+ r&0)dx -]j(ﬁ&w Qbv— M50). (16)

The steps used arrive at the final forms should be rather obvious.

It is realized that here is now no coupling between "stretching” and "bending"
and we in fact can write two separate virtual work equations (consider what
follows by taking first just the variation §u # 0):

j: Naédx-j:q,audx-|j Néu=0 a7

and (we put g, = q)

_[:(MJK +Q8y)dx— j:(qaw ré6)dx - " (Q6v - §166) =0, (18)

We concentrate in the following only on beam bending and use (18) as the
starting point. Summarising, we have in (18)

a5 s
(SK——F, &Y— ax 60. (19)

Further, kinematical boundary conditions concerning functions v(x) and a(x)
must be taken into account so that the corresponding variations are set to zero.
For an elastic beam, expressions

Q=kGAy, M=Elx (20)
are finally introduced.

In the Bernoulli beam model the shearing strain ¥ vanishes, 8 — dv/dx and
x =-d?v/dx? and the virtual work equation (18) takes the form

b b ddv b, ~ ddv
L M6de—L(q5v+r?x-)dx-—|a(Q6v—-ME)—O, @21)

in which
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disv

3x=—dx2 .

(22)
The kinematical boundary conditions concem function v(x).

13.4.4 Finite element method

We will consider only the Timoshenko beam case. To proceed in the fashion
usual in the finite element literature, we introduce matrix notation similarly as
in Chapter 12. We define

{u}={;}, m={f}, {:1={;}. {a)={f[}.

(€] = Y| _[dvide-8 _[dfax -1 v _ s 23
TS -derax [T 0 -draxflof "I
with the strain-displacement operator matrix
o d/dx -1 >
1= 0 —drax) &

The notation V and B refer to the shearing force and the bending moment at the
beam ends with such sign changes that V is positive in the positive y-axis
direction and B positive in the clockwise direction. The virtual work equation
(18) can now be written as

[o 181860 @102 - [ 86" (£140~ | 51 Tiar = . 5)
Further, in the elastic case, employing expressions (20),

(o} =[Dl{e} (26)
with

(D] = l:kGA 0 ] an

0 EI

Taking the finite element approximation

{u) = (@) =({Nla}, (28)

we can write down without further elaboration the system equations by copying
formulas (13.1.3) and (13.1.4):
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[K](a} = {5} (29)

with

[K1= [ (BI(Dl(B)dQ,

(30)
()= [, (N (£1d2+ [ (NI ()

Example 13.1. We develop some finite element expressions in some detail to have
more illuminating formulas.

We employ two-noded linear element approximation both for v(x) and 6(x). The
element shape functions are thus the same as used in Example D,22:

N|=1-§, N‘z:é (a)

where {=x/h (0SES1) is a dimensionless elementwise coordinate, x is a local
elementwise coordinale mensured from the left-hand end of the element and A is the
length of the clement.

1 2

s e T T Ry

Y’L Ar * &4 Vz _\'B}}
%s«

We do not use any indices referring to an element to simplify the notation. The element
nodal displacements are selected as shown exaggerated in Figure (a) and listed in the
order

X

Figure (a)

(a}=[w 6,v,8,]". ®)
The element approximation
(&) =[N1{a) ©
is thus in more detail
V1 Vl
\-" _ N] 0 Nz 0 8| _ |—§ 0 1"‘5 0 8; (d)
~16] Lo Moo Mjlwm[ o & o Eflwm
&, &

We can employ the general formulas developed earlier by considering at this phase the
element to represent the whole sysiem under study. Matrix [B] defined by formula
(13.1.5) is here
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[B],=[S'|[N]=[dldx _;jlle, 0 N 0]

0 0N 0o N
dV/dx =N, dN,/dx N,
=[ 0 -dVM/dx 0 —szIdx]
_[—I/h ~(1=-8) lh —g]

0 Uk 0 -lik (=)
Further,
_[kGA o7[-1/h -(-& R £
[D}[BI'[ 0 E!][ 0 Uk 0 —llh]
_[-kGArk -kGA(I~E&) kGAIR -kGAE
1o EIth 0 —EIth ®
and
~-ith 0
. -G-8 VA [-kGA/h -kGA(1~&) kGAlh —kGAE]
(BrIDNBI= ) 0 0 Elth 0 —Elth|
-E  -l/h
[ kGA KGA | o _kGA ﬂg 7
kGA_hi_ h El kGA_hr § EI
=509 kGA("§)2+F — (=8 KGAU-§S-+7
= " kGa kGA kGA kGA - (@
W TR0 5T ht
kGA _pne Bl _kGA 1 E
| & kGA(I-E)E 2 it kGAE +T |

Integration of this over the element domain gives the element coefficient matrix (clement
stiffness matrix)

(K1= | [BIDI[BldQ

0 00 0 VRY  U2h =URE 1i2h
01 0 -1 -
_E — uzh2 1/3 ll22h s | @
H{0 0 0 0 —1/h® —1/2h UK —1/2h
0 -10 1 /2 16 —1/2h 43

It has been decomposed in two parts representing the "bending and shearing behaviour",
The multipliers EI/h and kGAh have been selected so that they have the same physical
dimension and thus the ratio

gy =—2 )
b kGAR

is dimensionless. It is an elementwise measure between the bending and shearing
sliffnesses.
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The matrix product

1-¢& 0 (1-8)q
0 1-£ {q} ({-&r ;
NIT(A) = =
MTn= . T )
0 3 Er
and integration gives the element contribution to the right-hand side
q
- T )
=[N 1f140 M *
L J e

where we have assumed constant g and r in the element.

For future application we record a result obtained with numerical integration. When the
numerical integration is performe d on purpose so lhat certain lerms are evaluated
inaccurately, the procedure is called reduced integration (redusoitu integrointi) and
sometimes also as selective integration (selektiivinen integrointi). We apply here the
simple one point integration formula

h
Jof@ods = hr(ar2) M
[y
to evaluate the stiffness matix from the integrand (g} There is oblained

0 00 © VR: 12k -1/RE 12k

EF0 1 0 -l 1/2h 114 -1/2hn  1/4
K== +kGAh . m
1= 1o 0 0 o —~U/h ~1/2h URE -1/2A )

0 -10 1 1/2h /4 -1/2h U4

Only the elements corresponding to quadratic lerms in (g) have changed their values.

—t—
-—
-
——
—
+2
'-

B v
o { 7}_9"' = b=

Figure (b)

A simply supported beam under constant loading g {r=0) has been analysed (Figure
(b)}. The cross section of the beam is rectangular and the material is isotropic with
Poisson's ratio v =1/3. Taking &k = 5/6, we obtain

b 1

El= EE =EEbIJ,
(n)
A =§ﬁE—br =iEbr.
62(1+1/3) 16
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We take here t = /10 and obtain for the global dimensionless ralio the value

E= —-j-E[ =L (0)
kGAl 375
The exact solution for the vertical deflection is found to be, Dym and Shames (1973),
4
ql® 1 2 a1 2
= [5-6(l=EP +(1- &+ £ - (1 - .
Y=g {384[ (=& +(1-8" SE[ (1-5°1 (n)

where & =x/(I/2) is here a global dimensionless coordinate. A finite element solution
has been obtained by four equal length (k= 1/4) elements. The elementwise ratio

=ty = 10 @
" XGARE 375 1

Figure (c) shows the exact vertical defleclion and the result by the finile element method.

8 — _/”-" i
3 T e 7
%
\\_ 7 — Exachk
8.84 - N LT
= ! "‘-.__,-/ —--Rgduc.
FLY/EL

Figure (c)

The accuracy of the standard finile element solution (Sland.) is seen to be very poor. In
this connection the term “locking” {lukkiutuminen) is commonly used. For a slender
beam it is found that a very fine mesh is needed 10 obtain good enough results for
practice. A slender (£ is small) Timoshenko beam acls in facl nearly as a Bernoulli
beam and a detailed study shows that the standard discrete model puts too much
emphasis on the salisfaction of just the Bernoutli kinematic constraint dv/dr—8 =0. A
common remedy is to use reduced integration, Intuitively, reduced integration makes the
model more flexible. In the example case this is also seen to be the case (Reduc.}. The
error in the deflection at the center of the beam is still 9.7%. There is a large literature
concerning the application of reduced and selective integration for plates and shells and
for nearly incompressible material, &.g., Zienkiewicz and Taylor.

13.4.5 Sensitized finite element method

The Timoshenko beam equilibrium equations are (see equations (1 3.3.36))

d—Q-+q=O,
dx

ds Gn
Q—E+r=0
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or in matrix notation

a0t 6

Thus the equilibrium operator matrix

d/dx 0 }

(33)

[Elz[ 1 —d/dx

is here not equal to the transpose of the strain-displacement operator matrix (24)
as was the case in the two-dimensional general theory considered in Chapter 12.
The system equations are applying formulas (13.2.3) and (13.2.4):

(K){a} = (&) (34)
with

[K1= | (BIT(DIBNAQ + [ (EXDIB) T IICENDYB]AO,

T (35)
(b} = [ (V1" (£1aQ+ [ INTTin)ar - | CEADIBY () (10

A suitable sensitizing parameter matrix (assumed constant in an element) has
been determined in Freund and Salonen (1998) for the case of two-noded linear

elements using the patch test similarly as explained in Section D.3.5 to have the
value

- 1 [E!HcGA 0] o
t]l=-r———— c
12EI/h* +kGA| O 1

where A is the element length.

Example 13.2. We exiend the study of Example 13.2 by including the sensitizing terms
into the formulation.

According to formulas (35), the contributions to the coefficient matrix and to the right-
hand side from sensitizing are

(K}, = | CEXDIBN (21 ENDNB))Q (a)

and

(b), = [ (LEUDNABNzlif140. (b

Again, the two-noded element of Example 13.1 is considered. From Example 13.1,
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—-kGA/h —kGA(L-&) kGA/h —kGA§
Bl=
LDI{B] [ 0 Ellh 0 —Elk] =
The equilibrium matrix (33) is
(E]= d/dx o] d
El= 1 —d/dx )
and assuming constant data (sce Remark 13.1)
_[dfdx 0 T-kGA/h -kGA(I-&) kGA/h —kGAE
[E][D][B]‘[ 1 —d/d.r][ 0 Ellh 0 ~El/h
0 kGA/h 0 —kGAIh
T|-kGAZh -kGA(-&) kGA/R -kGAE [ (D

It is seen that the bending stiffness has vanished from this matrix. The sensitizing
parameter matrix from (36) is

- 1 [EI/I:GA 0 o
IfIl=--—— 3
12EI/h*+%GA| 0O 1
Thus, using shorthand notation
_ 1 MG 1KKkGA) @
12EI/h* +kGA  12EL/(kGARY)+1 128, +1
[0 —kGA/h
- kGA/h -kGA(1-&)[[EI/kGA ©
([ENDIB) [fl=¢ 0 KGA/h 0 [
|—-kGAlh  —kGAE
) —kGAlh
_ | BirR —kGAQ-& .
I ) kGA/h
|-Efth  -kGAE
Further,
(CENDIBD e I(EIDIB) =
0 -kGAlh
_ | Errn -kGAQ-8 0 kGA/h 0 —kGAlh
=1 o kGAIk ||-kGAlh ~kGA(I-€) kGAlk -KGAE
-Ellh  -kGAE
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w T

( (k_fii ﬁ;"iu ~&)
) gc%)z(l _g) %ﬂ +(kGAY (1- &)
NG -EO g
(kGhA)2 O ;";G" +(kGAY E(1 - &)

_ (kGAY (kGAY? £
K h
_(kGAY EI kGA (kGA? ,
49 Wt 6= 0
(kGA? kGA)® .
= oAy
h h
_(kGA) El-kGA (kGA) ,,
P

£
Performing Lhe integration over the element domain, we obtain the scnsitijs’ing element
stiffness matrix

17k 1/2 —l/h 112
KL = eckgar] V2 EINKGAR)+hI3 <112 ~EIKGAR)+hi6
(Kl =ckGAY) | -1/2 1k -1/2

/2 —EINkGARY+hI6 -1/2 EINkGAR)+hi3

A more transparent form is finally

0 0 0 0

El 0 1 0 -1
=—— +

LK, (12, +1}kj0 0 0 ©

0 -1 0 1

1/h* 1Zh -1KE 172k

_ kGAm | 1/2h U3 -2k 1/6
128, +1 |~/ -172h UK =112k |

1/2h  1/6 -1/2h 1/3

(k)

The interpretation of this result is interesting. Comparison with equation (h) of Example
13.1 shows that contribution (k) is is obtained from the element stiffness matrix of
Example 13.1 by multiplying with the factor —1/(125,,+l).cThus the final element
stiffness matrix in the sensitized formulation is found by multipying the sliffness matrix
of the standard t/'kmmlalion by the factor 128, /(12€, +1).

Finally,

)

EITRGA O]fq ElkGA-q
0

0 1\r r
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and
0 -kGAlh
kGA/h  —kGA(1-&)|[EI/kGA g
DIENnT =
(LENLDIEN '[t){f)=¢ 0 kGA/R { . }
—kGA/h  —kGAE
—kGAlh r
Ellh-q~kGA(1-&)r
kGAlh-r : (m)

-EIlh-q-kGAEr

Assuming again elementwise constant g and #, integration over the element domain

gives
-kGA r
®) _LKkGA) | ET-q—kGAh/2.r
U128, +1 kGA-r
- El-q-kGAh/2-r
0 ~1/h
g 1 -1/2
=] f;h q 2 +——-,_l by . (11)
12£h+1 0 126&"’1 /A
-1 -1/2

It is interesting to note that the non-zero generalised forces due to a conslant q are
associated in the slandard formulation with the vertical displacemnents (see formula (k),
Example 13.1} but here they are associated with the rotational displacements (sec
formula {n).

The sensitized finite element solution of the problem in Example [3.1 with four equal
length elements gave a more accurate solution than the reduced integration finite element
result shown in Figure (c), Example 13.1. The error in the deflection at the center of the
beam was 3,2%,
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CHAPTER 14
APPLICATIONS IN DYNAMICS

The inertia force method is employed to get the governing equations in the
dynamic case. This is demonstrated first in connection with general small
displacement finite element equations both in the standard and in the sensitized
form. In the case of an elastic beam more detailed formulas are given.

14.1 FINITE ELEMENT METHOD

The static form of the virtual work equation for an elastic body with small
displacements using matrix notation is (12.1.28):

JoSI8WTIDIS Wi - [ S plbjae- [ STwmdr=0. )
We obtain the dynamic form according to Remark 12.3 by the substitution
92
{5) :={bl_ar_2(“} 2

or with alternative notation by

32
{fl:= [fl-PFlu}- (3

In the finite element method we here employ the Kantorovitch type
approximation (see Section D.3.3) so instead on form (13.1.2) we write

| fux.0)] = {@(x,0) = [N(x)] ()}, | )

i. e, the nodal displacements are considered functions of time. Thus they have
again the role of generalized displacements of particle mechanics.

The approximation of the acceleration becomes
9* .-
b-tjlu] =[N]{a} (5

and, accordingly, we can employ the substitution
{f}:=1{f1~pIN](a) (6)

in the system equations right-hand side expression (13.1.10):
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T
(bl = [ IN](f)09+ [ [N)7 (o )
We have thus the alteration
JotM 1= [ 1 T i10Q - [ " piviania). @®
It should be noticed that as the nodal accelerations (a) do not depend on

position, they can be taken outside the integral sign. We see that the system
equations (13.1.9) are transformed to

| [M](a) +[K]{a} = (b] | ©

with
(M)= [ (M pINI4Q,
(X]= [ (B)"IDIBldR, (10)

(6= [, 1M 114+ [ INTT (e

We have obtained a linear second order ordinary differential equation system.
Matrix [M] is symmetric and it is called the mass matrix (massamatriisi). The
solution of system (%) happens usually by some numerical time integration
method. trwed

14.2 SENSITIZED FINITE ELEMENT METHOD

In the sensitized static finite element system equations, the right-hand side term
is (13.2.4):

(b1 = [N (1aQ+ [ INTTdr ~ | (EDNBDe1 142, W
Substitution of (14.1.6) produces the alterations
JoM (n1d0:= [ v (5190 [T pimien @),

JLENDABY 111 £ = [ CEUDI BN e Flae2 + @
= J UEIDIB (7] LN I G},

Now the system equations (13.2.3) are thus transformed to

| [M)a) +(K)(a) = (b} | (3)
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with
(M1= [, INT"pIN14Q - | (ENDIB) (7] pINIdQ,
(K1= [, (BT (DIBI6Q + [ (ENPIUBDI-IAENDIB]) a2, @
(61 = [ M1 (£1d0+ [ (N (1dr - [ (EUDBD 1 (1a.

It is seen that the mass matrix is no more in general symmetric.
143 ELASTIC BEAM

We develop the relevant finite element formulas similarly as in Section 13.4
further in some detail.

14.3.1 Introduction

According to the Timoshenko beam theory, the beam cross-section material
fiber moves as a rigid body having displacement (13.3.7) or here with the
present notation:

u=(u—yBi+y, M

where « and v are the displacement components on the beam axis. The
acceleration of a generic particle is thus

a=(u—ydY+vj. 2

The notation explained in Remark 10.2 has been used to shorten the formulas.
The virtual work of the inertia forces per unit length of the beam is

~f, pa+suda= —f L= Y83 + V) ((Bu ~ y60)i + 1A =

=], PUG= Y8 )6u~ y36)+ v'6u)dA =

_JAP (("8u— y8 Su+ 1 y60 + y2 680 + vv]dA =

—(L PAAYBu +( L pydA)8 Su—~ (L pydA)ii &9 +

~ L Py dA)§se —( L pdA)iidy. 3)

We assume in the following for simplicity of presentation in addition of the
assumption in Section [3.4.2 that the beam axis can be been selected so that
mass first moment

IApydA =0. 4)
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Now (3) can be written as

—mu'8u - myv'8v - 1,6 56, (5)
where

m= LpdA (6)
is the mass per unit length of the beam and

I, = [, py*da Q)

is the cross-sectional mass moment of inertia per unit lenght of the beam. The
virtual work of the inertia forces is thus finally for the transverse motion

§'W' = ~[(nv8v +1,6'56) dx. ®)

Comparison with Expression (13.4.18) shows that here

q:=q—-my,

%

r:=r—1p9.

Using matrix notation, the column vector (f} is here

_ q N q m 0 v’ - 32
{f}={r}-—{r}—[0 IJ{é-}—lfl-[p]?{u}- (10)

The scalar density p obtains here thus the matrix counterpart

0
[p]=['[; 1,,]‘ (1

14.3.2 Finite element method

We proceed to evaluate the mass matrix. From (10) and employing (14.1.5), in
the finite element approximation,

{f}:= /) - [p][Ni{a) (12)

the mass matrix is found to be

(M)= [ INIT[pIIN]dQ (13)
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PART III

MISCELLANEOUS APPLICATIONS
AND EXTENSIONS

CHAPTER 15
MECHANISM MOTION

This chapter deals with multibody dynamics (monikappaledynamiikka). This
means roughly dynamics applications where the system under study can be
considered to consist of several physically clearly discernable parts which move
with large displacements and rotations.

15.1 INTRODUCTION

Many mechanical systems in engineering can be modelled as composed of a
large number of rigid bodies, joints, springs, dampers, etc. The number of
differential equations describing the system may be easily of the order of several
thousands and quite naturally the generation and solution of the equations must
be performed in a more or less computer aided automatic manner. Although the
equations are based, say, on Lagrange's equations of motion, the emphasis is
quite different from the older formulations in classical mechanics. To achieve a
small number of equations is no more so important, the main thing is to have a
systematic and straightforward formulation directly applicable to a variety of
situations. This kind of formulations as opposed to older classical ones {which
might be called also as minimal-coordinate formalisms, Ryan (1987)) are called
here multibody (mb-)-formulations. In the following, especially some features
present in the software package ADAMS (Automatic Dynamic Analysis of
Mechanical Systems) are described, Ryan (1987), Wielenga (1987).

15.2 MORE ON CONSTRAINTS

This far we have considered Lagrange's equations in connection with holonomic
constraints and especially se that all the constraints have been taken into account
from the outset by the selection of the generalized coordinates in a suitable
manner. Thus in Section 4.1.2 and 5.6 the number n of generalized coordinates
91+ 41, ***» G, Was the same as the number of degrees of freedom"dof of the
system, i. e, dof =n. Now we extend the theory so that the generalized
coordinates need not satisfy in advance all — in fact in the limit no one-— of the
constraints. It is just required that the coordinates suffice to give the position of
the system.
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For instance, in a system composed of several rigid bodies the generalized
coordinates can be the cartesian coordinates of the center of mass of each body
and the Euler angles (together six coordinates for a body) be there any kind of
joints between the bodies. In fact, this is the selection employed in the following
for rigid bodies in three dimensions. In two dimensions the two cartesian
coordinates of the center of mass of the rigid body and a direction angle are
used. This practice clearly increases considerably the number of generalized
coordinates in a problem but for instance the interpretation of the meaning of the
generalized forces becomes very simple.

The number of degrees of freedom dof is defined now as the difference
between the number n of the selected generalized coordinates and the number m
of the constraints, not satisfied in advance:

dof =n—m. (1)
In Section 5.6 we had the case m =0 and thus there dof =n.

In practice, a rather general situation is covered by the following type of
nonholonomic constraint where the generalized velocities are present linearly:

n
7=l

Here the terms a; and b are at most functions of the generalized coordinates and
time: a; = a;(q).92."""4n.t), b=5(q,,43, ", q,.1). Constraint (2) is according
to the classification of Section 4.1.2 nonholonomic as it contains velocity type
quantities. A typical holonomic constraint is an equation containing generalized
coordinates and possibly additionally explicitly the time:

| (91,92, 4. 1) =0. | 3)

Differentiation of this with respect to time gives an equation

. oD
b=) —4; +—=0. 4
E;aqj G
This is now of type (2), where
P b
S ®

A holonomic constraint can thus always be transformed into the apparently
nonholonomic form (2} but from form (2) we cannot always get to form (3)

15-2



with [p] according to (11).
Example 14.1, We evaluate the mass matrix
[M)= [ INTT[p}NIdR

for the two-noded element.

From Example 13.1,

0N O N 0 £ 0
and from {11)
m 0
1=, L
The product
[][N]_[m OIN, 0 N, o]
" o Llo m o N
and
N, 0O
T 0 Nl mN] 4]
(N [pP)IN] =

Ny 0F 0 LN,
L0 N

2010 Q0

mh(0 0 0 0| [LkO 2
=— +—

[M] 6|1 0 2 0 6|0 0

¢ 000 o1

14.3.3 Sensitized finite element method

Here the mass matrix

[N, 0 N 0]{1—5 0 1-£ 0

[NmN, 0  NmN,
0 NLN 0
NymN, 0 NymN,
0 MNLN 0

1]

0
0
1]

]

mNz 0 :l

mN, 0 mN,

0 LN O

LN,

0
M, Ny

o I
Ny, N

Integration over the element domain assuming m and 1, as constanls gives

[ R

(M1= [, INIT(pIINI4Q - [ GEXDIED T (#1lpIINI4Q,
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(a)

(b}

©)

@

0

(14)

again with [p] according to (i 1).

Example 14.2. We evaluate the sensitized par of the mass matrix
(M), =~ [ (ENDIB) [silplNIdC @)
e

ot
for the two-noded element.

The product

EITkGA O[mN, 0 mN, O
[ﬂ[P][N]=C[ I ]

o 1o LM 0 LN

EImN)JkGA 0  ElmN,/kGA 0
= 0 1N, 0 1N, ®
and
[ 0 —kGAlh
AENDENTERNpNN =] (CA7H —EGAN,
AlpliMI=c kGATh |
\~kGA/h —kGAN,
[EImN,/JkGA 0  EImN,/kGA 0
[ o LW, 0 LN,
0 ~kGALN, I h 0 ~kGALN, I
LkGA) | ElmNy/h —kGALL NN, EImN,;/h —kGAI, M N,
T 128, +1 0 kGAILN, /b 0 kGAI, N,/ h
-EImNy/h  —kGAL, NN, =ElmNyih —kGAL N3N,
0  —LM/E 0 —LNy/h
1 Eth]h —Ip~|N| éthzh —IpN|N2
TT2E,+1 0 LMk 0 LN/ &

—‘Eth]h -lele —Ethzh —IpNle

Formulas from Examples 13.2 and 14.1 have been made use of above. Integration over
the clement domain gives finally assuming again conslant /m and 7, X
4
0 0 0 0 0 “} 0 o
S Vi SRR Lk 1|0 +2h0 41y
*T(128,+102(0 0 0O 0| (125+160 - 0.
10 410 0 t1ho T2H
The [i2{ matrix ip{d) is not symmetric. It would be interesting to consider the effect of
using only it{'symmelric part. However, these studies are left to be done ater.
Ire §

(d)
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- dr; .
8r, = :??;-aqj, i=1,2,,N &)

j=!

also in the mb-formulation. Now, however, the constraints of the system are in
general initially violated and we have a case of application of kinematically
inadmissible virtual displacements. For instance, based on expression (2), the
virtual displacement

or(x,y) =06xi+ 6y, (4)

where 8x and Jy are arbitrary, clearly leads to a situation, where the particle no
more remains on the surface of the wedge.

If we use kinematically inadmissible virtual displacements, the virtual work
done by the constraint forces thus does not usually vanish. The general
expression for virtwal work (5.4.8):

n
oW = 30,89, (5)
=1
must thus be made here more precise by writing
Q =0f +0}, (6)

where the superscripts k and r refer to generalized forces due to the constitutive
forces and constraint forces, respectively.

Let us recall the derivation of Lagrange's equations of motion using
kinematically admissible virtual displacements. The starting point was the
virtual work equation (5.4.11) written here as

n n N )
30,60, =3 (Smi; 2y 5g,, ™
j=l j=! =l dg;

In Section 5.6 it was shown that the expression in parenthesis on the right-hand
side of (7) could be manipulated into the form

"dg; drdy dg;

A reflection on the steps used shows that the manipulations were based entirely
on expressions (1) and nowhere the information about the constraints being

N .
S 2 LK K ®
i=1
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satisfied or not was employed. We can thus write the virtual work equation (7)
still similarly as earlier for instance in the form

4 d K K
(0 -2+ X540 -0 9

As we apply here kinematically inadmissible virtual displacements, we do not
care about the satisfaction of the constraints at this phase and we can thus take
the variations &g; as free and we obtain as consequence the equations of motion
(a change of sign has been performed to obtain a more conventional form)

d oK JK _
dtdg; oy;

First, in this section we have written the equations of motion in the spirit of
equations (5.4.12) in the standard form "something on the left-hand side equals
zero”. Second, in the step between equations (9) and (10), the content of formula
(6) has been introduced. Third, the final forms (10) indicate that these equations
are not directly applicable as the basis of the formulation because the constraint
forces and thus also the generalized constraint forces Q] are unknown quantities
of the problem. Equations (10), however, are found to give an interpretation
which proves to be useful below.

0f -0f =0, j=1,2,,n. (10)

15.3.2 Kinematically admissible virtual displacements

In the following we shall derive Lagrange's equations of motion employing
kinematically admissible virtual displacements.

If a constraint is holonomic and represented in the form (15.2.3):
(p(q]lqz:"'rqnit):Oi (11)
the variation of both sides of it produces the equation
- oD
b=y —&; =0. (12)
j=194j

Kinematically admissible variations 5qj must thus satisfy this condition. We
realize again that in the principle of virtual displacements, time is freezed which
fact explains the omission of the partial derivative with respect to time in (12)
even in the rheonomic case.

If a constraint is nonholonomic and of type (15.2.2):
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Y4 +b=0, (13)

j=l

a multiplication by the time differential d: gives first

n
zajdqj +bde=0. (14)

i=l

In real motion the differentials dg; of the generalized coordinates must satisfy
this condition. When applying kinematically admissible virtual displacements
condition (14) obtains the form

> a;8g; =0, (15)

J=1
because time is freezed.

Let the total number of scalar kinematical constraint equations in a problem be
m. They can consist of holonomic and nonholonomic constraints of type (11)
and (13), respectively. With kinematically admissible virtual displacements they
thus produce the conditions

Y aybg;=0,| k=12,,m. (16)
J=1

between the variations &;j . In the case of holonomic constraints

(Dt(ql;Q'z-"‘-qn-f)=0- k=1.2,"',m, (17)

the multipliers are

P,
akj He— (1 8)
and in the case of nonholonomic constraints:
n
Yayg; +b, =0, k=1,2,-.m, (19)

j=l
the multipliers ay; are directly given. Formulas (17) and (19) have been written

for notational convenience as if the constraints could be of only of either type
but they can of course be present simultaneously.,
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We shall now derive Lagrange's equations of motion, The starting point is again
equation (9):

: d 9K oK
(Qf ~—=-+=")8¢; =0. (20)
jgi ! drog; og

As we have restricted the virtual displacements to be kinematically admissible,
the generalized forces consist, however, now only of the constitutive parts
{which are known), and this fact has been taken into account in (20). Contrary to
the case represented by equation (9), there no more follows that the terms inside
the parentheses on the left-hand side of (20) vanish separately as the variations
qu are no more free but have to satisfy conditions (16). The situation is similar
to that considered in Section D.1.2. One essential difference is, however, that
there originally the stationarity of a certain function f (xy,x5,+,X9) was
considered and no correspondig quantity is present here. In spite of this, the
manipulations in Section D.1.2 proceeded so that the requirement

A
25 xi=0 @

i=l
was put with respect to all differentials dx; satisfying the conditions

n

Eaﬁdx,. =0, k=1,2,---,m. (22)
9.!:,-

i=l
Here the counterparts of (21) ja (22) are (20) and (16), respectively; instead of
differentials we have just variations. By repeating the line of thought described
in Section D.1.2, we arrive here at the modified equation

« ddk K L&
(Qk ———.+——+ lkﬂk’)(sq“ =0. (23)
; Todoy oy kz:{ Y

This has been obtained by adding to the left-hand side (20) the left-hand sides of
(16) each multiplied by a yet undetermined factor A,. Also in this connection
these factors are called Lagrange multipliers. The rest of the logic goes
analogously with the presentation in Section D.1.2. We arrive at the generalized
Lagrange's equations of motion (yleistetyt Lagrangen liikeyhtilst) (a change of
sign has been performed to obtain a more conventional form)

ddk K _x < .
—— 0N La,. =0, =1,2,.n. 24
dt Bq, aqj' Qj fg k% / " e

15-8



my+mg—-A=0. H

The generalized force expressions QJ,‘ =0 and Q)'f =-—mg due to gravity (constitutive
force) are obvious. The governing equations of the problem are (d), (f), {a)
corresponding Lo the unknowns x{(1), y(r), A(1).

The gencralixed forces due to the consliraint are according 1o {29)
Q; =Alana, Qj=A. (g)

The constraint force N is perpendicular to the inclined plane and has the componenls
Nsine and Ncosa. The corresponding generalized forces are thus simply

0; = Nsina, Q) =Ncosa. h)
Comparison of Lhese with (g) gives the equations

Nsina = Atana, o

Ncosa=A. .

Either of them gives the solution
A

N= .
cosa

@
As system (i) is overdefermined (ylimiiriytyvi) with respect to N — two equations and
only one unknown — a more systematic solution would be based on the least-squares
method. We form Lhe least-squares expression

I(N):%[(Nsina—ltana)z+(Ncosa—l)1] %)
and demand this 1o have the minimum value by wriling the stationarity condition

%a(Nsina~ltana)sina+(Ncosa—l)cosa=0. )
This is in detail

N(sin? & + cos? @) — Mlanasina +cos ) = 0,

N-24

L =0. {m)
coso

This gives naturally again result (j) but this approach might be useful in connection with
numerical procedures.

Example 15.4. Figure (a) shows a slender homogeneous bar (length {, mass m), pinned
frictionlessly at point O and oscillating in plane motion under gravity. We form the
cquations of motion of the bar employing (1) classical formulation (2) mb-formulation.

(1) We have a one degree of freedom system. In the classical formulation angie @ is the
most natural generalized coordinate:

q= a. (a)
The virtual work done by gravity is

15-11

. - { i, 1 .
8'W = mglx= mgG(E cosf) = mg(- Esmﬂ -60)= ~5mgi sinf- 08, {b)
so the corresponding generalized lorce
0 =—%mglsin9. )
c/)/ e, y
C }g
@
x
Figure (a)

The physical meaning of (c) is obvious: it represents the moment of the gravity force
about point O. As the gravity force is conservative, this could have been 1aken care of
also by the potential energy expression

Ve=mgx= -%mglcosa, (d)

from which @ =— gV /dx. The kinetic energy of the bar is

1, 22
== [q8°, (3
2o ()
We obtain
aK . d K . gk
Salof, —Z=pd, Lo,
38 =10 Gag=iof S B

and Lagrange's equation of motion becomes
I8+ %mglsin 0=0, (g)

which is the familiar rotational equation. The system equation consists thus just of (g)
and we have only one unknown: 8(f).

(2) We take as generalized coordinates
Q=% g=F. §=6. (h)
The constraints consist of the fact that the end of the bar must stay at point O
P =x- icusﬂ =0,
2 @
!
P, = ?—Esinﬂ =0,
The vinual work of the gravity force is simply

&'W =mgbx=mgb%+0-55+0-59, ()]
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so the corresponding generalized forces are

Qf =mg, Q¥=0, QF=0.
The kinetic energy of the bar is

| PET ST S e
K==m(x*+¥")+=10".
5 (x" +¥°) 2
The first gencralized Lagrange's equation of motion is

4K K _ e _, 90, i,
-4 A o =0,

dt k& o

where
K_oe dK_ . K_ooow_ 0,
E-—mx, ar i—nu:. ai_.o' af =1, F =0

and we obtain
mX —mg ~ Ay =0.
The second generalized Lagrange's equation of motion is

ii@-a_x-gg_gl%_ha_ﬁ=o‘

dtdy Iy i
where
K doK . oK oD oD
—=my, ———=my, —=0, —Ll=0, 2=
F O asx E £
and we oblain
m?-ﬂq=0.

The third generalized Lagrange’s equation of motion is

dr 98¢ 39 ET)

where
i’{-=79. 1?--”S-=I—'9', a—K=0. aﬂ=isin9. 9%,
a8 dt 78 a0 a8 2 a0

and we obtain

76-4 ésin6+klécos€=0.

(k)

0

(m)

(n)

(o)

(P

(@

0

()

O]

()

The five system equations consist thus of (o), {r), (u), {i} and the unknows are (1), ¥(1),
8(1), A,(), A;(t). The difference between the classical formulation {equation (g)) and

the present one is here quite striking.

The generalized constraint forces are according Lo (29)
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O =A. 0i=2,, Qj:l,%sine—ﬂqécosa. ™)

sl

0

Figure (b) Figure (c)

Figure (b) shows schematically the traction distribution exerted on the bar surface from
the pin at O, As we assume no friclion, the line of action of each force differential pdS
goes through the axis of the pin and he force system from the tractions reduced at O
gives a resultant (constraint force)

N=Ni+N,j (w)
wilhout a moment (Figure (c)). The virtual work done by this force is
FW=Nobrg=N(6f +850xrgc)
= (Ni+ N, j}-[8%i+ 85+ 50k x (—%cosﬂi—%s'm 8]

=(Ni+ Nyj)-[(c‘)'f+—;-sin9- 56)i+(6“y——;-c059-59) M

=N, 6%+ N85+ (N, %sin 8- N, %coss)ae. o)
Formula (5.4.19) has been made use of. The corresponding generalized Forces are thus
ol =N, Q{:Ny, Q;:N,%sinG—Ny-écosB. (d)
Comparison of these with (v) gives the equations
Ne=4,,
Ny=4,, ®

N, %sinﬁ— Ny%cosﬂ =14 %sine —R«z%coso.

The two first give directly the values of the constraint force components. A least-squares
formulation can be used altematively similarly as shown in Example 15.3 in connection
with a2 numerical procedure.

15.4 COPING WITH FRICTION

In classical formulations with Lagrange's equations hardly ever anything is said
about the inclusion of Coulomb friction. This is sowewhat dishonest as friction
is usually considered rather thoroughly in more elementary presentations. The
reason obviously lies behind the fact that in classical formulations of Lagrange’s
equations the constraints are satisfied in advance and the constraint forces and in
particular the normal forces N at contacts disappear and we thus cannot
introduce the friction forces N and their virtual work in the formulation. In
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examples 15.3 and 15.4 it was shown that in a mb-formulation the constraint
forces can be extracted from the generalized constraint forces which are
available at each phase of the solution. We can thus introduce Coulomb friction
into the formulation.

We discuss below some aspects of the treatment of Coulomb friction in a plane
case. Although we deal here finally with Lagrange's equations of motion, the
difficulties to deal with Coulomb friction in numerical schemes are quite
general,

FBD

f"“-'--.
F;.: ) -;-..
N
(b)

Figure 15.1 (a) Body B sliding relative to body A. (b) Free body diagram of
body B.

Let us consider Figure 15.1 (a). Body B slides (or momentarily sticks on) along

body A. Figure (b) shows schematically the free body diagram of body B. In the
Coulomb meodel, the friction force vector F), acting on body B is given by

F,Jl =~ sign(V)u Ne, if v#0, (D
IFF ISy N, ifv=0. ()

Here, the sign function is defined by

) ) +1 if v>0, 3
SR =1_1 if v<o, (
v is the slip velocity (liukumisnopeus) obtained in two dimensions from
v=(vp—vgp)ee, @

where vp and vy are the velocities of particles P and R of bodies B and A at the
contact point, e is the unit vector in the tangent plane 7 to the surfaces at the
contact point and N is the normal (compressive) force at the contact. The
coefficients p, and u, (g, > ) are called kinetic and static coefficients of
friction (liikekitkakerroin ja lepokitkakerroin), respectively.
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The difficulty lies in condition (2). In a motion, the slip velocity may for some
time periods disappear and the bodies stick together. This means that for a while
the number of degrees of freedom is decreased by one. We describe here one
method to avoid this difficulty in numerical schemes following roughly the
procedure explained in the theory manual of the finite element software package
ABAQUS (Version 5.7).

The "normal situation" is taken care of by formula (1). When the magnitude of
the slip velocity becomes small enough or when

Ivi< vy, (s)

where v, is a user given small tolerance velocity, there is danger of imminent
sticking. Let the moment of time when condition (5) is found first to be satisfied
be denoted as f3. Now an elastic spring is imagined to be attached between
particles P and R and we write for 1, <t <¢, instead of (1) or (2),

Fy = kue, (6
where k is a spring constant and u the slip (liukuma):
u=(up —ug)-e, M

where up and up are the displacements of particles P and R measured starting
from time f; onwards. The magnitude | F, | evaluated from (6) is monitored and
if condition

| Fy, 1< uN (8
is satisfied the calculation proceeds using expression (6). The possibility
|F, 1> u N ®

means that we have reached time #; and we abandon expression (6) and start to
use (1).

The imaginary spring is able to simulate possible sticking by restricting the
relative movement instead of zero to a small finite value. A user given small
tolerance slip u,y is employed to define the spring constant to have the value

g=E
Upg)

(10)

Remark 15.5. If in a contact, the value of the normal force N becomes
negative, the contact has in fact vanished. Thus formulas (1) and (2) should be
used only in the case N> 0. In a numerical scheme a negative N would direct
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the friction force in an unrealistic direction. The case of contact disappearing
and perhaps again reappearing possibly with some impact phenomena leads to
complicated relations which are not considered here. It may be further noticed
that the case depicted in Figure 15.1 is numerically far from trivial as the points
in contact at an arbitary moment of time depend in a complicated way on the
geometry of the surfaces. O

Example 15.5. We repeat Example 15.3 now including Coulomb friction.

y
N Y 4
. |
c
a
- -

Figure (a)

We consider here only the situation covered by equation (1). The tangeat unit vector e is
laken as shown in Figure (a). The slip velocity is

v=(v, —vy)ee, (a)
where the velocity of the particle

vp = kit 3j )
and the velocity of the wedge (= velocity of the particle of the wedge at P),

¥, = bi = —beoswti ()
and the unit vector

e =cosai-sinay, ()
We obtain

v=(xi+ ¥+ Ecosam)- (cosai—sing))
= Xcos@ - ysing + beosacoswi. (e)

The friction force is according to (1) thus
F, =sign(v)(—cosai+sinafp, N. (fy
In Example 15.3, the expression for the normal force N was found to be

A

N= .
cosa

()

Thus the generalized forces due to the [riction force are finally of the form
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Q',‘ =sign(v)(~cosa) —L =—sign(Vi A,
coso (h)

Q% =sign(v)(sina) =sign(v)tana- i A,

cosa

where the slip velocity is evaluated from (e). The equations of motion (d)} and (D) of
Example 15.3 are modified Lo

mi — Atana +sign(v)p A = 0.

my +mg — A —sign(vitana- iy A = 0. M
The constraint equation
l‘b(x.y.r)sy+(x—l;5inwr)lana—c=0 ()]

naturally remains the same.

15.5 INITIAL CONDITIONS
15.5.1 Initial positions

In classical formulation the initial values for the generalized coordinates and the
gneralized velocities must be given. In a mb-formulation the situation gets
somewhat involved as the effect of constraints must be taken into account in the
initial conditions. We consider here only holonomic constraints (15.3.31):

¢k(4|:Q2-"'-qnuf)=0; k=1721"'|m- (1)

The applier gives based on the problem at the moptént of time =0 some
preliminary values %, %,,'--, %, for the generalized coordinates. These do
not, however, necessarily satisfy constraints (1) with good enough accuracy,
More refined initial values °g,, °F,,---, 7, can be arrived at as follows. We
write with obvious notation a least-squares expression

C=%(°«7- wTIW°g- %), @

where [W] is a diagonal matrix with given positive elements (weights) and
minimize (2) with respect to G, °g,, -+, %, keeping (1) as constraints of the
problem. This is mathematically a constrained stationarity problem which has
been treated in Section D.1.2. We can thus form a modified function

CL ==~ 7 (WI(°F- G} + {47 (D}, 3

t | —

where the constraints have been taken into account via the Lagrange multiplier
method. Partial differentiaton of (3) gives the system equations of type (D.1.23)
from which the unknows (°7) and {A] are determined, Wielenga (1987).
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15.5.2 Initial velocities

We can treat the initial velocities quite similarly as the initial coordinates in the
previous section. Differentiation of (1) gives the conditions

Tk q' -f-»m-r—k =0, k:l'z‘...'m! (4)
J
j=i aqj ot

between the generalized velocities. The applier gives preliminary values
% %2, G, for the generalized velocities. These do not necessarily satisfy

condltlons (4) with good enough accuracy. More refined initial velocities
%\, *§2,>*"» g, can be obtained by writing first the least-squares expression

C=5[ YT G- %), 6))

where [W] is again some diagonal matrix with positive diagonal elements. This
is minimized with respect to %3, %G, --, %7, keeping (4) as constraints.This
problem is dealt with using the Lagrange multiplier method the way explained
in the previous section.

15,6 RIGID BODY IN THREE DIMENSIONAL MOTION (missing)
15.7 INCLUDING FLEXIBILITY (missing)
15.8 TIME INTEGRATION

We describe in the following some details of the type of numerical time
integration solution procedures present in ADAMS, Ryan (1987). We take the
mb-formulation of Example 15.4 as a demonstration case. The governing
equations were found to be

mf—mg—l| =0,

my =2, =0,

I-é'—-llisine+/l/z£cosﬁ=0,

l

X——cos8=0,
2

l
y—~—sin@=0.
¥ 25m

The first three are the equations of motion and the last two the constraint
equations. Mathematically this is called differential-algebraic equation system
(differentiaali-algebrallinen yhtdldryhm4); it is seen that the constraint equations
do not contain derivatives (see Remark 15.6). By introducing new unknowns the
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equations can be put in a standard form where the highest derivatives appearing
are only of first order. We collect the generalized coordinates in the column
vector

(@=lg =% q,=5 ¢;=01" 2)
and denote the corresponding generalized velocities as
(1) = [y, iy, 131" @

These are connected by the first order differential equations

(u} = (q). 4)
We denote further
(£1=[A,4,.F]". (5)

We can present equations (1) now as

mril +F"'AI =0.
i — A, =0. ©)
—llésinq3+12%cosq3 =0,

-4, =0,
-4, =0, @)
~43 =0,

I
— — =0'
q 2505‘?3
I
42 — 5 sing =0. (8)
F+mg=0.

The grouping of the equations correspond to that given in Ryan (1987) and
presented as

(M((g}{ul. @), 1f),0)} = (0}, e
{N(lgl.(u)} = (0}, (10
{®(lg}.{f1.0) = (0} (1)
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Here, {M} is the column vector of all differential dynamical equations and any
user defined differential equations, [N} is the column vector of differential
kinematical equations and differential motion constraints, and {{} is the column
vector of algebraic equations of joint constraints and forces. Column vector (£}

consist of Lagrange multipliers and of applied forces. In the example case, the

gravity force is represented in equations (6) just by a symbol and an additional
equation in (8) gives the detailed expression.

We collect the variables (g], {1}, {f} -— called state variables (tilamuustujat) —
in a single column vector

RN IRV I (12)
Equations (9) to (11) can now be written concisely as a single matrix equation
(G({y).{yL.e)=(0}. (13)

This represents a set of nonlinear equations which must, in general, be solved in
an iterative way at a certain moment of time,A Newton-Raphson type procedure
is employed. The equations are expanded in a Taylor series about an initial
guess for {y}. At time zero, the initial guess is obtained from the initial
conditions. Later, it is extrapolated from past values of (y). Let {»); and [)':}J-
denote the values of state variables and their time derivatives at the jth iteration.
The Taylor series expansion of the left-hand side of (13) produces the equations

CALSI VTN 1 () T
{G}; +[ a{y)l_A{y}, +[ 8!5'}],-A[yb+ (O} (14)

The subscript j for [G) and for the rectangular matrices, called Jacobian
matrices, indicates that these are evaluated with {y}j and {}'r]j at their current
values at the jth iteration and the symbols A(yl; and A{y}; mean

Alyl ={ylin ),

A = (3)40 — 15 (15)

In detail, in the Jacobian matrix the element on the ith row and on the kth
column is @G; / dy, for the first matrix and similarly for the second one.

Here, in the demonstration case

(y¥) =[fl[-%fi‘y“h“z’“a'lhﬂqvF]T-

(16)
{)’I=[QI-quQJv“I'uz’uJ'A‘I'AZ'F]T’

(G] consists of the left-hand sides of (6) to (8) and we obtain
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1

00 0 000 -1 0 1]
00 0 000 0 -1 0
00 (J,)33 0 0 0 (Jy)y (Jy)y O
- 00 0 1 00 0 0 0
[a_{[GTl]= 90 0 010 0 0 o0
iloo o o001 o 0 o an
I 0 Uy 000 0 0 0
01 (Jy)g3 000 0 0 0
¢ 0 0 000 ¢ 0 1]
and
[0 ¢ 0 m 0 0 0 0 O]
¢ 0 0 0 m 0O0O0O
0 0 0 0 OT 0O0OO
-1 ¢ 0 0 0 0000
I:(;(—G]}]= 0 -1 0 0 0 0O0 0 0Of,
WIle o 1000000 (1)
0O 6 0 0 0 0000
0 0 0 0 0 0000
0 0 0 0 0 00 0 0]
where the lengthier element expressions are given here separately as
(J ) n=-1 icos —JQ—l-sin =— icos - isin
¥433 13 43 2 a3 J’72 Y3 J’32 Y3,
(Jy)ay = -—;-sin gy = —ésinyJ,
{ !
(Jy)a =Ecosq3 = —icosy:,.
(19)

[ =
))73 =Esmq3 =Esmy3,

[ {
(Jy)g3 =~— Ecosq:, =— Ecosyj

to keep matrix (17) within the page area. It is seen that the Jacobian matrices are
very sparse (harva). This is a general property of the calculation procedure in
ADAMS which fact must naturally made effectively use of in the algorithms.
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When the higher order terms in (14) indicated by ellipses are neglected, the
following system is obtained

ﬂcﬂ]a ] [M]A'-=-—G- 20
{Bly} ! vl + 29 ), (y); =~{G};. (20)

Set (20) can be transformed from being a system of algebraic-differential
equations to a set of linear algebraic equations by the introduction of a
numerical time integration formula. ADAMS employs the implicit Gear variable
order, variable step stiff integration algorithm which is of the form

k
Van = '}—:1 ;i (Yhar1i = 1Bp (P} as
=&y (y), + o+ O (Y par—k — BB P nsr - 2n

Here n represents the time step counter (1, is the value of time after the nth
integration time step), {y},,, is the numerical approximation for [y(s)] at
1="t,,), his the time step givenby h=r,,, ~r,, k is the order (kertaluku) of the
algorithm employed, and @;(i=1,::-,k), B, are real numbers referred to as the
Gear integration coefficients, Gear (1971).

It should be noticed that equation (20) concerns certain fixed instant of time. We
now apply (21) by considering the instant r=1,,, to be the time under
consideration. The values (y},, {¥),~1, -, {¥)n4)_s at discrete time instants are
given and fixed by the previous solutions. If we change the value of (y},,,,, the
value of {v},,; must change accordingly for the equation to hold. We thus
obtain the relation

X
Aly); =By, (22)
or conversily
& 15, =-;%0-A{y},-. 23)

We have used now the subscript j as the relation is employed in (20) to produce
the result

2(G) 1 | d[G})
— - — ==L|]| AlV]: ==16.. 24
([alyl} hﬁo[aly']D,- Py =) o

This is a linear algebraic equation from which A(y} ; can be determined by
standard procedures.
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Following Ryan (1987?), we can now summarize the predictor-corrector scheme
to be used roughly as follows:

Predict

1. Predict values for (y] and (y} that lie on a polynomial passing through past
state variable values.

Correct

2. Evaluate [G}. If zero, the solution is acceptable and the corrector is
unnecessary.

3. Evaluate the Jacobian matrix defined as

(5513156
o) mBo a1 )/,
4. Factorize the Jacobian matrix (In ADAMS this is performed symbolically for

efficiency.)

5. Solve for A(y};. Calculate {y};,, and {3};,,.

6. Repeat steps 2 through 5 until convergence criteria are satisfied.
Integration error control
7. Find best step-size and order for next step.

8. Estimate integration error. If too much, reject last step, reduce k, and go to
step 1.

9. If end time has not been reached, start new time step by going back to step 1.

The description above is very cursory and additional literature should be
consulted to fill in the details, e.g., Wielenga (1987), Gear (1971).

Remark 15.6. In some formulations the kinema{tic constraints are transformed
to differntial equations by one or two differentiations with respect to time. Even
linear combination of such equations with approriate weights have been used,
e.g., Amirouche (1992).0
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APPENDIX A

MATRIX NOTATION AND SUMMATION CON-
VENTION

A.l MATRIX NOTATION

Some knowledge of matrix calculus is assumed from the reader. Here we just
give the main notations used in this text.

As an example, the system of linear equations

apx, +apx; +otapx, = by,
ds Xy + 959Xy GhELLE ypXpy = bz,

(1

Ay Xy 4 A Xy 4ot a x, =b
can be represented in matrix notation as

[A}{x}={b} )

mxn axl mxl

where the mxn coefficient matrix {A] is a rectangular matrix (suora-
kaidematriisi}, the n X1 matrix {x] consisting of the unknowns is a coiumn
matrix (sarakematnisi) and the X | matrix {b} consisting of the right hand side
terms is similarly a column matrix.

Indices under the matrix symbols can be used for clarity to indicate the
dimensions as in (2). A column matrix is often called column vector
(pystyvektori) or simply vector although this latter terminology may sometimes
lead to confusion with a "real physical” vector.

The transpose matrix (transponoitu matriisi) of a matrix [A] is indicated by the
superscript T: [A]T. To save space, contents of a column vector can be given
say as

{a}=[a) a---a,]" @
or as
{a}" =[a) a;+a,] 4)

employing the transpose. The last matrix is often called row vector (vaaka-
vektori).
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The inverse (kddnteismatriisi) of a square matrix (nelidmatriisi) {A] is denoted
[A]_l and the determinant (determinantti) det[A).

The scalar or dot product (skalaaritulo, pistetulo)

asb=ab, +ab,+ab, (5)
of two vectors

a=ai+a,j+tak,

b=bi+b,j+bk (6)

can be represented conveniently in matrix notation as

a-b={a}"{b} = {6} {a} M

where {a) and {b) are the column vector equivalents of vectors @ and b;

a.t bx
a2{a}=<a,,, b2{b}=1b,. (8)

aZ bZ
The notation "2" means here: the guantity on the right hand side is the

equivalent to the quantity on the left hand side. We cannot strictly use the equal
to sign as a vector cannot be equal to a matrix although they can be associated
with each other. It should be further noticed that expression (7) is a scalar and
can be interpreted as a 1x 1 matrix. The transposition of a 1x 1 matrix does not
change its value. Application of the general transposition rule for a matrix
product: ([A][B)T =[B]T[A}", and remembering that ([4]7)T =[A] explains
the two forms on the rght hand side of (7).

The column vector equivalent {c} =[c, <y ¢ ]T of the vector or cross product
(vektoritulo, scalaaritulo)

i Jj k
c=axb=|a, a, 4a,
x by b,

=(ayb, —ab,)i+{ab, ~ab,)j +(a.b, —a,b )k ¢

of two vectors (6) can be represented in matrix notation as

¢ 2 (c}=[al(b}=~[F](a). (10)
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Here it has been necessary to define square skew-symmetric (vinosymmetrinen)
auxiliary matrices

0 -a g 0 -b b
[@=|a, 0 -a/| [Bl=|b, 0 -b, (11)
~-a, a 0 -b, b, 0

to achieve the result needed. Although maybe rather artificial, these short-hand
notations are convenient in some matrix manipulations.

A.2 SUMMATION CONVENTION

As an example, the system of equations (A.1.1) can be written more concisely as
Yoy =b,  i=12m. M

Using the summation convention (summeeraussopimus) we obtain still more
concisely

a,»jxj = b‘- . (2)

Index i is called the free index (vapaa indeksi), which takes consecutively the
values i=1, i=2, ... ,i=m, giving the first equation, the second equation, etc.
The range (arvoalue) of the free index — here the integers [1,m] — is usually
clear from the context. Index j is called the summation index ot dummy index
(summeerausindeksi, mykkd indeksi) and the summation convention (often
called also the Einstein summation convention) is:

An index appearing twice in a term denotes summation
with respect to that index over its range. 3)

The range of the summation index is usually also clear from the context (here
the integers [1,n]). If the summation convention is to be suppressed, the indices
are enclosed in parentheses or this is specificly mentioned.

The adjective "dummy" refers to the fact that a dummy index can be replaced
with an arbitrary index symbol without affecting the result. For instance, the
formula

a,x; =b (4)

means exactly the same as formula (2). The dummy index j has been replaced
by k. In fact, the free index can be similarly changed, and here i has been
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replaced by j. Naturally, when changing symbols one must take care that
summation is net induced by accidenl by using a symbol appearing already as a
free index.

The main thing to check is that the same free indices appear on both sides and
in each term in a formula and that a summation index appears only twice in a
term.

As an example, in the homogeneous quadratic form
Q=a;xx;, (5)
{ and j are summation indices and there are no free indices. Thus in detail
n n
Q = ZZa;jx,-xj =ayx X + djp X)Xy +---+ X1 Xy +
i=l j=I1
+ iy Xy X} + ay3XaX5 +-+ aqpXaX, +

+. ‘e
+ 3 X 0+ App XXy Fot A X X, (6)

Similarly, in the generalized Hooke's law in three dimensions
Gy = CimtEat s 0

i and j are free indices and k and [ are summaltion indices. Written in Full, this
means 3 X3 =9 scalar equations each having 3 x3 =9 summation terms on the
right hand side,

Tensor analysis usually operates with indices and with the summation
convention. In rectangular cartesian coordinales, conventional notations x, y, z
and i, f, k are replaced with symbols like x|, x,, x5 and i, i,, i, respectively.
This kind of representaticn is called tensor notation or indicial notation,

The scalar product of two vectors

a= alil + aziz + a3i3 = akik o

b = by, + byiy + baiy = byiy ®
is in indicial notation {on the right hand side)
a-b= albt- ; (9)

The Kronecker delta (Kroneckerin delta) 6,],- is a useful manipulative device. It
is defined by
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Lif i=j
5. =
y {Oifi;tj (10)

For example, we see from the properties of the scalar product that the unit base
vectors obey the rule

i ofy=0y=0. (1)

Summation with respect to an index of the Kronecker delta produces the
following type of result
a, by = a; (12)

as &y is non-zero and equals | only when the summation index k equals [. A
further example is the formula

9% _ s (13)

if
ij

where the x's are independent variables.

The permutation symbol (permutaatiosymboli} g;; is defined by

ijk
€123 = €331 = €312 =1,

E133 = Eq33 = €331 =~ 1, (14)
€ =0 ifanytwoor threeindicesare the same.

In other words, the permutation symbol equals | when the indices follow as 1, 2,
3 or are an even permutation of them and it equals -1 if the indices are an odd
permutation of 1, 2, 3. Similarly, for instance, £)5; =0 and £43; =0.

Permutation symbol is useful in the indicial representation of the vector product.
For instance, the unit base vectors in a right handed coordinate system obey the
formula

i} Xik =£ljkii (15)

As a check with j=1 and k=1, we obtain & ; =0, with j=1 and k=2
£;12f; = E313f7 = i3, etc. The vector product of two vectors can be written in the
form

c=axb= Eka bkl (].6)

or

Cf=£qka;bk (17)
This can be checked for instance for the value 1 of the [ree index {. We find
) =€) 3 by = E\nayby + Ejyaayby = azby — azb, (18)

Thus only two non-zero contributions appear from the summations with respect
to j and k. The result is seen to be in agreement with the first component in
formula (A.1.9).

The vector operator del (nabla-operaattori), denoted by V,

d . d . d

vei 9 g 9 ;9 . 9
L A TR P (19)
can be used to produce the gradient (gradientti)
grad f = Vf = (i, )f a axm 5l
af . f
axl El T ox, (91'2 12 + 813 13 (20)
the divergence (divergenssi)
_Oh; i O _Ofn
dl\'f V. f (l ) (fn u) axm I, = ax,.,, (Smrl = axm
of  9fs 3f3
=Y 572 O3 21
B.xl * axz * 3.1'3 ( )
and the cur! (roottori)
curlfErothfo=(im—a—)x(fnin)= 9 i, i, =£imn§if;
xm m
_9h 9 ﬁ I3 2 _9f1y;
—(a.rz 8x3) aXJ 3 ]) (a X1 3x2)l (22)

Remark A.1l. There are two main ways in tensor analysis to represent first
order tensors (= vectors), second order tensors, etc; the symbolic or index free
representation (symbolinen esitystapa) and the indicial representation
(indeksiesitys). In the symbolic notation quantities are usually represented with
bold letters: displacement vector «, stress tensor o, etc. In the indicial notation
we write say u;, Oy, correspondingly. Both methods have their advantages and
disadvantages depending on the application environment. It should be
mentioned that in the indicial representation it is customary to call the symbol
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u; a vector, the symbol ¢; a tensor, that is, we must think that the free indices
take all their values and the resuliing set of components represents the vector,
the tensor, etc. As an example we see from (20) that the gradient vector is given
in the symbolic representation by Vf and in the indicial representation by

affax,-.ﬂ
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APPENDIX B
INTEGRATION BY PARTS

Integration by parts is a basic mathematical manipulation which is used
frequently in continuum mechanics and in connection with weak forms and
varational calculus.

B.1 ONE DIMENSION

a b X

Figure B.1 One-dimensional domain 2 =]a,b[ and its boundary " = (a, b).

The one-dimensional integration by parts formula can be written as (Figure
B.1)

b dh _ bd_g b
8 = dehdx-i—'agh (1a)

or using more general notation as

jng% Q_—j dghdn+1 gh (1b)

Functions g(x) and A(x) must be continuous and at least piecewise
differentiable in Q =[a,b].

The derivation is based on the obvious result

[[Lac=|" = r0r- r@ )
a dr a

due to the properties of the definite integral. Integration of the identity (product
rule of differentiation)

d dg dh
—(gh)=—=h+o— 3
I(g) T8y (3)

over {2 gives
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dg
j T lghde= j < hds +j g—dx @)
Application of the rule (2) for the’tﬁﬁ first integral leads to formula (1),

B.2 TWO DIMENSIONS

Figure B.2 Two-dimensional domain 2 = A and its boundary T = 5.

The two-dimensional integration by parts formulas can be expressed as (Figure
B.2)

g?dﬁ, AgghdA+J ghn ds,
oh g (1a)
! aydA— AayhdA+Ighnds

or

g—d.Q j hdn+j ghn.dT,

(1b)

nga_ydg_-j ZEhdQ+ [ ghn,dT"

Functions g(x, ¥} and h(x,y} must be continuous and at least piecewise
differentiable in Q =QuT.

The derivation is based on the so called divergence theorem or Gauss's theorem
in the plane:

_[ngdﬁ jf dr,

(2)
jn ‘;f dQ = j fn,dr.
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Integration of the identity

I
L (gh=Bhegd 3)
X
over £ gives
j -(ghdQ= f agth+J g—dQ )

Application of the first formula (2) to the first integral gives the first formula (1)
and the second formula can be obtained similarly.

B.3 THREE DIMENSIONS OR MORE

/Tn"

T

18

Figure B.3 Three-dimensional doemain Q2 =V and its boundary I' = §.

For shortness we employ here the index notation. The formulas are direct
generalizations from the two-dimensional case. The integration by parts
formulas are (Figure C.3)

g——dv_—j th+j ghn,ds (la)

or

g— Q_—j th+j ghn,dl". (1b)

The Gauss's theorem is

L,gf dQ = j fndr. (2)
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Remark B.1. Actually (2) represents the Gauss's formula for one component of
a vector. Thus by replacing f with f; and by letting the summation convention
be valid we obtain

In% dQ = [ fimdl (3a)

or using symbolic notation
jnv.fdn=jrn.fdr. (3b)

This form is usually called the divergence theorem. O

Remark B.2. In the one-dimensional case the formulas look a little bit untidy
because there appears plus and minus signs in the boundary terms; see for
instance formula (B.1.2). However, in this case the boundary consists of just
two separate points and we can consider the unit outward normal vector i to
have the component +1 at the right hand boundary and the component ~1 at left
hand boundary. With this interpretation we see that also the one-dimensional
formulas are special cases of the general formulas (1} and (2). 0
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APPENDIX C
RECTANGULAR CURVILINEAR COORDINATES

A systematic method to generate expressions appearing in physics and valid in
rectangular (orthogonal) curvilinear coordinates starting from the corresponding
simple expressions in rectangular cartesian coordinates is described, Paavola
and Salonen (1999). The procedure is called "the method of local cartesian
coordinates”. It can be applied for instance to derive strain expressions for
curved beams. Polar coordinates are employed here as a demonstration case. In
what follows we often call rectangular curvilinear coordinates and rectangular
cartesian coordinates shortly curvilinear coordinates and cartesian coordinates,
respectively. Summation convention is not employed in this appendix.

C.1 SOME FORMULAS

In this section some basic formulas appearing in practically any mathematics
text dealing with rectangular curvilinear coordinates are reviewed. The
presentation is given in two dimensions as the main points can be seen already
in this case.

A cartesian coordinate system x,y with unit base vectors i, j and a curvilinear
coordinate system @, with unit base vectors €y, €p are considered (Figure

C.1).

—- O{'Cnor'cl.“ne
Y A
€
E P .
r r,-ccol-c\.(mr;
—:pl
) e
¢ A s

Figure C.1 Cartesian and curvilinear coordinates.

The values of the coordinates are connected by

x=xa,p), y=yap). (N
The position vector r can be expressed in principle as
r =r{c, B) = x(c, B)i + y(et, B)j (2)
C-1

or as
r=r(a,p)= ra(a,ﬁ)ea(a.ﬁ)+rﬂ(a,ﬁ)eﬂ(a,ﬂ). &)]

The partial derivatives dr/do and Jr/df8 of the position vector r with respect to
the curvilinear coordinates are langent vectors to the comesponding coordinate
lines and one can thus write

or or
—a—a-=haea, 5B—=hﬂeﬂ (4)

where the scale factors (skaalatekiji) h, =|0r/dc], hﬂ=|3r/6’ﬁ| can be
evaluated from

172
ox 2 3)'2}”2 X1 o
= —-— —_ . h = — —_ .
b= (Z2 () p=|( G +(2) ®)
The derivatives of the unit vectors are
deq _ 1y, Jea_1%
da hg P P B by da P’ ©
deg _ 1o, ae,, 1 dhg

do g BT P hy da

The polar coordinates o £ r, S0 (Figure C.2) are employed in what follows
as a simple specific illustrative example case.

7 St r-coord. line
S
r ~F :
-6-- Loo\-d, l|h€
7t @
f' X

Figure C.2 Cartesian and polar coordinates,

From Figure C.2 there is obtained



x=rcosf, y=rsinf. )]
Corresponding to (2) and (3) we have

r(r,8)=rcos@i+rsin@j (8
and

r(r.0)=re (8)+0-e4(0). ()

The scale factors (5) are

h, =[c:05219+sir12 6]”2 =1,  h =[r25ir:29+r2 cos? 9]”2 =r (10
and the derivatives (6) are

aer ae 3e9 c?ee

— =, —L =g, — =0, —_— =g . 11

or B 5 20 = e (1n

In specific applications the derivatives of the unit vectors such as (11) are
usually found in some simple ad hoc manner and no need for the use of the
general formulas (6) arises,

C.2 LOCAL CARTESIAN COORDINATES

An auxiliary local cartesian coordinate system X, ¥ with unit base vectors I, J is
erected with its origin at a generic point P and its axes tangent to the e -,
3 -coordinate lines (Figure C.3). This local coordinate system can be brought to
any point P but it is of utmost importance that during a specific derivation of a
result it is considered fixed so that for instance the unit vectors I and J are then
constants.

Y
Y, p\j’ S
X
e

J

X

-
—y

[
{

Figure C.3 Local cartesian coordinates X and Y.
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At the local origin - and not elsewhere in general — clearly

I=e;, J=eg (1

and

g 1 d d 1o

These are the basic application formulas. Expressions (2) can be seen to be valid
from the definition of the scale factors as dX = hydar and dY = hydf.

The local system can be considered as a tool which is taken temporarily in use
and then discarded as its function has been fulfilled.

Example C.1. We derive the expressions for (1) the gradient, (2) the divergence, and

for (3) the strains in polar coordinates.

We employ the geometry of Figure C.2. From formulas (C.1.10), (C.1.11}, (1) and (2):
de deg

a—é =€ g = {a)
I=er’ J=€5. (b)
3 4 d 12
—_——— —_——— (C)
X ar ar roe

(1) The definition of the gradient in cartesian coordinates is
gradfan:ii+ij=iI+@:—J (d)

a3y ax o

where the latler form is expressed in the local system. Thus, due to (b) and {c), we obtain
al the local origin
o, 14
rad f=—=—e +-_-¢5.
B f o n r o0 ;]

However, as point P was arbitrary, this expression for the gradient in polar coordinates is
now valid everywhere,

(e

(2) For a veclor f we have the allernative representations
f =L+ (),
=X+ (X1, (N
= f(r.@)e, (B)+ fo(r.O)eqg(0).

Again it is stressed thal although point P for the origin of the X, Y-system can be put
anywhere during the steps to follow it and the directions of the X- and ¥-axes are fixed,

The deflinition of the divergence in cartesian coordinates is
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lef =V. f - q( +gi &'X ‘WY (g)

d oX A
Now,
Ix=fL fy=fJ (h)
50
Ifx _ f:"f afy _ @ )
= aX(f I}= I, I aY(f J)_JY' (i)

as in the local system F and J are constants. This kind of formulas for derivatives of
vector components are useful in the method of local cartesian coordinates, Thus

A .
dlvf_aX I+3Y ()]

and at the local origin due to (a}, (b), (¢) and the last form of (F}
8vf =3 (e, + fotg)we, 422+ fyeg) e
9 5 d 3
—(i¢r+§’;¢ fe +f;-eﬂ+af;eﬂ_f6¢r)'eﬂ
/PR ]
= TPt o) (0

eg)ee, +—(

Again, this a general valid result in polar coordinates,

A word of waming is in place here, As f, = fy, fy = fy 2t point P, a blind applicalion of
formulas (c) to expression (g) would give

aivf = % AN )
raé

which is not comect. Differentiation is based on comparison of the values of a certain
quantity at adjacent argument values - here al nmghbounng points — and takmg the
limit. f, and fy represent dilferent quanlities oulside point P and thus in general

W hy (g, /o) # fy /7 X even at P. In the application of lormulas (2) the derivative
must operate on the same quantity such as f here.

{wrong) 0]

(3) The displacement vector has the representations
U=udbu sty
=upl+u, J=UI+V] (m)
=i, +ligegy.

The small strain expressions in cartesian coordinates are

TR S . o
T ax’ YTy o dy ax’
Thus in the local syslem
C-5

£ =5_U__i£_ I
YT T ox T
v _ du
=y ©
o Q_V_c?u é‘i J
) Yo =oytax Tort tax
The dot product forms are obtained similarly as expressions (i). Finally, at the local
origin
du du, dug _ou,
gr_gx_ar.e’_ o e,+ar e) E,.—ar.
£y =E =ldu e —l(a e +ue +a—e uge )ee -(u +a"9)
B = 5g "0 T g o T et g o T Hee) G = i
o pay A2, 20
TIRY T a8 (p)
—l(au"e +ue +aﬂ ) e,
AT ALY ar ¢
_1 8 d
( i, 8) ug

C.3 INTEGRATION BY PARTS

Integration by parts has been considered in cartesian coordinates in Appendix B.
Here we extend this for curvilinear coordinates. Only the two-dimensional case
is presented.

The Gauss's theorem or the divergence theorem is (see formula (B.3.3b))
LV-fdA:Ln-fd.f. €5)

It is not difficult to show using the same technique as in Example C.1 that the
general expression in curvilinear coordinates for the divergence is

V.f= m (hpfa) s B(hafﬁ )] (nosum on & or f3) (2)
Further,

dA = dXdY = hydahydf = hyhyderdp 3)
and

nef=fonet fyn, = fang + fang. )

Thus (1) is in curvilinear coordinates
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2
[ gy hata) + ﬁ(hafﬁndadﬁ j(f.,na+fpng)ds (5)

The a, ff -notation is usegl to indicate that the area integral is to be taken in the
¢, 3 -plane. Defining F; = hy f;, Fp = hy fg gives the form

[ f’)dadﬁ _[(F +Fﬂ—ﬂ)ds ©6)
H kg

Finally, making the consecutive selections F, = fg, Fg=0 and F,=0,
Fg = fg. where f(a,f) and g(e, ) are two functlons we arrive at the
mtegranon by parts formulas

L ﬂf £ da p_-j gdadﬁ+jfg e s,
s M)

3
Ia'ﬂfgg- p=-| Mﬁg adﬂ+jfg_ﬁds

These may be compared with the conventional cartesian integration by parts
formulas (B.2.1(a)):

LfagdA——L gdA-i-I Jen, ds,

8}
B_ (
Lf dA = —ngdA+J; fen, ds.

In polar coordinates dA = dXdY = drrd6 = rdrdé and equations (7) obtain the
forms

jefagdrde——j eargdrdB+Ifg L gs,

P &)

o 5gdrd a—-j gdrd9+jfgn9
Remark C.I. It should be emphasized that n, and ng in (7) are the
components of the unit outward normal vector to the boundary curve s measured

with respect to the local e, -, ej - directions. This should be obvious from
formula (4).0

C.4 REFERENCE
Paavola, J. and E.-M. Salonen, (1999): "Coping with Curvilinear Coordinates”, accepled for
publication in the IJMEE.
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APPENDIX D
VARIATIONAL CALCULUS

As emphasized earlier, we consider the principle of virtual work as a weak form
and not a variational principle. In applying the principle of virtual work in its
basic form we hardly need any tools of variational calculus. It is, however, good
to have some knowledge of the concepts of a functional and of varational
principles to be able to follow the relevant literature surrounding the principle of
virtual work. The basis task of variational calculus is to find the function giving
a certain functional a stationary value. Approximate discrete methods transform
this problem in fact to the problem of finding the point giving an ordinary
function a stationary value. Therefore it is illuminating and useful to start by
considering first functions and only later functionals. The presentation to follow
relies strongly on the masterful text by Lanczos (1974).

D.1 STATIONARY VALUE OF A FUNCTION

D.1.1 Stationary value of a function without constraints

function f(x) on some interval [a,b] of the x-axis. If the function has
continuous first derivative (belongs to class C') the necessary condition for
achieving this in the interior ]a,b[ of [a,b] is that the differential of the
function disappears:

df = fd_t=0. (1)

Figure D.1 Points | (x=a), 3 and 4 (x = b) are extremum points. Points 2 and
3 are stationary points. Local and glebal minimum is achieved at 1. No

extremum is achieved at point 2, Local and global maximum is achieved at
point 3.

D-1

This conditicn is not sufficient for achieving a local extremum (= minimum ot
maximum) in the interior as is seen from point 2 in Figure D.1. However, points
where the rate of change of a function is zero are already of importance. The
function is said to have at these points a starionary value (stationaarinen arvo)
and the corresponding points are called stationary points (stationaarinen piste)
or critical points. The condition for stationarity (1) is represented usually in the
equivalent form ]

@ _
d)C_o. (2)

Similarly, a function f(x|,x4,---,x,) of several variables is said to have a
stationary value at a point if the total differential of the function vanishes with
respect to all admissible differential changes dx;,dx,, -, dx,:

nt

df_af v+ ZLae, 4o+ Ldr =0, @)
x| ox, ox,

If all the variables x are really independent or "free”, the differentials dx can be

chosen arbitrarily and from this follows that (3) is equivalent to the stationarity
conditions

2
ox;

]

=Q, i=1,2,---,n. (4)

In detail, we can first put dx; #0, all the other dx to zero to obtain
(df /dx;)dx; =0 and thus further the first equation (4), etc. The solution of the
system of equations (4} gives the stationary point (points), that is, the values
Xy,X5, -+, x, making the function fstationary. The actual stationary value of the
function is often — at least in mechanics — of less interest. If wanted, it can be
obtained by substituting the values of x found into the expression of f.

To find the possnblhty of an extremum, it is not enough to consider just the first
differential d'f =df but the behaviour of the function must be studied in more
detail in the neighbourhood of a stationary point.We will consider the change of
a function using a similar technique which will be employed later in connection
of variational calculus.

The study of the change of the value of a function f(x;.x;,---,x,) due to
changes dx| ,dx;,---,dr, of the arguments is reduced to the study of a function
of one variable e by putting

dy) =gn,, dx; =en,, -, dr, =£7,. (5)

D-2



The arbitrarily selected numbers 77 are kept fixed when the small parameter £
changes its value, It this connection it is illuminating to consider the variables
Xy.X3,0, %, to represent the rectangular coordinates of a point P in a
n-dimensional space. Expressions (5) can now be thought to describe a
displacement into a direction whose direction cosines are the 11's. Parameter &£
controls the magnitude of the change.

The change of the value of the function is

Af = flxq x5, %) = flxy, 25,0, X,) (6)
where
X[ =X HET, X3 =Xy HEM, v, X, =X, HET, (N

During the following study, we consider the initial point P {x,,x5,--+,x,) and
the direction cosines 77 fixed. Then Af is a function of only one variable:

Af =Af(e). 8

Function Af is expanded into a Taylor series around the point £=10:

a1

- 2
Af”d 2 de? 2 le=0

1d%r* o
dg et T3 g et O

The last form follows from expression (6) as € is contained only in the term
£ =f(x],x3,--,x.). The derivatives are calculated using the chain rule. Thus
(summation convention is employed frequently in the foilowing)

df af(—"lvx21‘= n)r’

de ax; "

I (10)
d°f" _d°f(x 'xz'm,x")ﬂ-ﬂ'

de? Ox;x; s

When these are evaluated at £=0, x,-' —» x;, the "stars" can be removed and
expression (9) obtains the form

J 1, a%
Af=£—fn+ g2 %L mn; +

Ix; ox; dx;
=9y 9%f
=, "+2ax ar
Edf+%d f 4 (11)
D-3

The first differential (ensimmiinen differentiaali) d'f vanishes at the stationary
point so that at it

Slgzpg oL 9
af=odif + g dy,dy, + (12)

Here the derivatives are to be evaluated at the stationary point. The question
about the possible local extremum is determined by the character of the
quadratic form {nelibmuoto) in the differentials dx represented by the second
differential (toinen differentiaali} d2f as it governs the behaviour of the change
in the small enough neighbourhood of the stationary point. (Some writers define
the second differential with the factor 1/2 included.} The matrix of the quadratic
form, the elements of which consist of the second derivatives, is called the
Hessian matrix or simply the Hessian. The quadratic form can be (1) positive
definite, (2) negative definite, (3) indefinite, (4) positive or negative
semidefinite. It can be shown that the function has, correspondingly, (1) a local
strict minimum, (2) a local strict maximum, {3) no extremum, (4) higher order
terms must be studied before conclusions can be drawn, Salonen (1995, p. 28,
48).

Remark D.1. During the derivation of the result (11) we considered the
direction cosines 17 fixed. However, they can be fixed in any direction and thus
after obtaining formula (11) we are again free to choose the differentials dx any
way we want. It should be further mentioned that we have of course assumed f
to be smooth enough to allow the series representation used. O

Example D.1. Let us delermine the possible extremum of the {unction

fry)=(x=27 +(y=1)" @
where x and y are the independent variables,

The stationarily conditions (4) are

(_9}_’ =22xr-4=0,
ox (b)
o =2y-2=0.
dy
The solution — the stationary point — is x =2, y = 1. The second derivatives are
% d? 9°f _
dxdx % oxdy
> (©)
a f =0 «3—f=
dydx  dydy

and we have according lo formula (12) simply
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iy 2 d'f tf a*f

= — L dxdr+ —dxd dydy +—=—dyd

74 = 2‘3 o O gy WU T g A dyd)
=E(2-dxdx+2-dydy)=(d.r) +(dy). (@

This is clearly positive definite and a strict minimum value 0 is achieved as is obvious
directly from expression {a). In fact, here the second degree term {(d) already gives the
exact change of the function value from the stationary point.

Example D.2. Let us consider stationarity of the function

Sl xq, )= ;aqx x5 +ax+c
= E{x}TlA]{x} +{a}{x}+c. (a)
The coefficients a; of the guadratic form (nelidmuoto)
0= 2aymx; = (T[]} ®
the coefficients a; of the linear form (lineaarimuote)
L=ax; ={a}" {x} = {x}"{a} (©

and the constant ¢ do not depend on the variables x. The expression is the most general
one consisting of a quadratic, of a linear and of a constant term in the variables x,
Summation convention is applied and corresponding matrix forms with obvious meaning
of the symbols have been written down. Multiplier 1/2 is included just for convenience
of representation. This example gives some practise in index manipulation and produces
differentiation formulas for quadratic and linear forms.

We wrile Lhe statjonarity condilions (4) here first as

o _

d
aIk ( )

(If we applied formula (4) blindly to expression (a), summation index § would appear
three times in a lerm leading to confusion.) We obtain

9 _ dx 1 ox; ax;
e hded I
aIk Ut?,t‘k + ’f '3 +a‘3.rk *

a i Okt +la yti0 + .0y
1 1
=395 % FS a8 +ay. (e)

Formulas (A.2.12} and (A.2.13) have been made use of, In (¢), k is a free index and j and
i are summation indices. We now transform this into a cleaner form by putting k — i,
i — j to obtain the formula

d I
3{ 2a¥t1+2a}'tl+ﬂ ()
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This is in malrix notation

IR |=—IA1{ sho 2 (AT {xh+ (a} = 24T+ (AT Y} {a). ®

The results above have been derived in fact with 100 much generality. As is well-known,
Salonen (1993, p. 28), the malrix of a quadratic form can be taken always symmetric.
We have thus instead of {f) and (g)

f%; =a;x; +a; (h)
and

a[ 7 =[4H{x}+{a}. @
The stationarity conditions are

a;x, =b )
or

[A}{x}={b} (k)

where we have put b =—g;. A linear system of equations is arrived at as is obvious
already from the previous example.

We have obtained two useful differentiation formulas. For a quadralic form wilh a
symmetric matrix

9@ _
ax, Y 3 ,—[ K=} M
and for a linear form
JL JL _
a—xi—a,-. m—{a}. {m)
The second derivatives from (h) are
3 dx;
=a; —L+0=a;8, =
Ix,dx, % dx; RiSAs: )
or changing the notation, finally
a3y
ar ax, =i (o)

The study of the possible extremum must thus be based on Lhe properties of the

symmelric coefficient matrix [A]. Here the Hessian is thus a constant matrix,
D.1.2 Lagrange multiplier method

In a stationary problem, the arguments of a function f{x,,x;,---,x,) are not
always independent. There may be present awriliary conditions or side condi-
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tions or constraint conditions or shortly constraints (sideyhtils, rajoitusyhtils,
rajoite) of the form

8i{xy Xo o x3=0, k=1,2,---,m. (13)

The number of constraints /m must be smaller than the number of variables n
(m < n) for otherwise there are no independent variables left to vary. In the
extreme case m = n, the solution (x;,x,,+-+,x,,) is determined directly by (13).

The stationarity condition (3) cannot be used directly any more to derive
equations (4) as due to the constraints the differentials dx;,dx;,---,dx, cannot
be varied arbitranly.

Al least in principle we can consider, say, the last m variables solved from (13)
and expressed in the first n—m variables and substituted in the expression of f
to obtain a new function fg(x,,x5, -, x,_,) where the arguments are now
independent or free. The stationarity conditions are then

U _
Jx, gk

i=1,2,n—m. (14)

This procedure to take care of the constraints could be called the elimination
method (eliminaatiomenettely). It has the advantage that the number of
unknowns is reduced to n — m. However, firstly the elimination may be difficult
and clumsy to perform. Secondly, the constraints are often symmetric in the
variables and then there is really no good grounds in selecting some of the
variables as independent and some as dependent. We therefore do not consider
the elimination method here in more detail.

The Lagrange multiplier method or shortly Lagrange's method (Lagrangen
kertojamenetiely, Lagrangen menettely) is an altenative to the elimination
method to transform a constrained stationary problem to a free or unconstrained
problem. The procedure is straightforward and preserves possible symmetries
but the number of unknowns increases to n+m instead of reducing them to
n—m.

The derivation of the Lagrange multiplier method proceeds as follows. The total
differential

df=§¢r, (15)

;i

should vanish for all possible differentials dx,dx, ,---,dx, which satisfy the
differential type constraints
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dg, Ea—~dx-=0, k=12, ,m. (16)

obtained by taking the total differential of both sides of the original constraint
equations (i3). We again consider x,x,,-++,x,_,, as the independent variables

and the dependent ones x,_,.., -, X, to be represented in them. Similarly, in
the new constraints (16) also the dx,_, ., :--,dx, should be given in terms of
X1, Xg, s Xy and dxy,dxg -0, dx,_ . However, before doing this we modify
(15) by adding to it the left hand sides of equations (16) each multiplied by a
still undetermined factor A;. We obtain

- 98k 4 =¥ 41 PBhyge
df_ax,- dr; + 4, o, dx; —(ax; +4, o, ydx; . a7

The value of the differential df has obviously not been changed by adding
zeros. The elimination of the last differentials dx,_,,,,, ---,dx, can, however,
now be passed by selecting the A factors so that at the stationary point

a—f+2.,(£;&=0. i=n—m+1,-\n (18)
ox; ox;
which means that the contributions in (17) due to differentials dx,_, ., ---,dx,
vanish be their values whatsoever. This leaves expression (17) in the form
& 9 I8
df = ——+ A, =) dx; . 19
=2 G- ol (19)

i=1 ]

All the dx remaining in (19) are now free. Thus each term multiplying a dx
must be separately zero for a stationary point:

%k _

o, 2, , i=1,--,n-m. 20

Equations (18) and {20) read combined
—+ A, =5=0, i=12,-,n (21)

Thus to find the possible stationary point we have to solve x;,x, .-+, x, and the
Lagrange multipliers (Lagrangen kertoja} A;,24,,---,4,, from the sets (21) and
{13} of n + m equations.

D-3



We can achieve a compact formuiation of the Lagrange multiplier method by
defining a new modified function f (x;,x;.+,x:4,,4;.,+,4,,) — often
called Lagrange's function (Lagrangen funktio) — defined by

@2)

Considering the x's and A's as independent variables, the stationarity conditions
(4) give directly the governing equations

| Y a0, i=12,0m

3.:" X; axf (23)
f _ =

o =(8e=0] k=t2oem

Because equations (23) are exactly the same as equations (21) and (13) we have
obtained the following interpretation of the Lagrange multiplier method: The
original constrained problem can be replaced by a free problem by defining a
maodified function fi whose stationary value is achieved at the same point as
with the original function f. The stationary value of f; is the same as that of f
because g, vanish at the stationary point.

Example D.3. Lel us consider the stationarity of the function
fxyy= =22 +(y- 1) @)
treated already in Example D.1 now, however, under the constraint
glx.y)sx+y-5=0 (b)

This is a problem with n=2 and m =1. We consider this first using the elimination
method. If, say, x is laken as the independent variable, we have

y=5-x ()

and substituting this into (a) gives the function

feto=(x-22+G-x-1P =(x -2  +(4 - )% td)

From the stationarity condition
dE"CEEEZ.!—4-§-2A‘—S=4.’:—l2=0 (e)

we obtain the solution x =3 and (c) gives further y =2 The corresponding stationary
value from (a) or (d) is 2. Figures (a) and (b) illustrate the situation. In Figure (a), the
contour curves of f are circles with the centre at P:(2,1).The higher the value of the
radius, the higher the value of £. The constraint is represented by the line L and the
stationary point is on it at R:(3,2). Figure (b) shows the same in three dimensions. The
slationaty point must be searched for on the curve obtained as the intersection of the
graph of f and the plane represented by the constraint equation in the xy f -space.

D-9

Figure (a) Figure (b)
Second, the Lagrange multiplier method is applied. The modified function (22) is here

Sy )= fx. )+ gl )= -2 +(y-D + Az + y-5). ®

Stationarity conditions {23) are

aéf"—ﬁlt—4+l=0,

ox

%LEZ):—2+A.=0, {g)
¥

A _se

) 2x+y-53=0.

The equations are here linear and the solulion is
x=3, y=2, A=-2. (h)

Thus the same stalionary point was achieved as in the eliminalion method.

Example D.4. We consider the elastic system consisting of two joints (particles) and
Lthree springs in Figure (a). We determine the displacements w; and u, of the joints due
lo the external constant force F by the principle of slationary potential energy. The
spring constant X of the middle spring is large compared to the spring constants & of the
other two springs.

F

AT 7

ANNE TS R

L L
U, U,

Figure (a)
The expression for the potential energy of the system is

V(u,,uﬂ:%ku,z-f-«;—K(uz—u,)z+%ku§—Ful. ()

The stationarity conditions give the equilibrium equations
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3—VEkul - K(uy —u))-F=0,
n

v (L))
—=K(p —u)+ku; =0

3u2

or in matrix notation

k+X -K uy F
[—K k+K||u] " 10f° (c)
2
If a numerical solution is attempted, inaccurate results are obtained when K >>k
because the coefficient matrix is then nearly singular, (The coefficient matrix conlains
two nearly linearly dependent rows.) Numerical problems can be avoided by considering

K as infinilely large; that is, the extension w, —u; as zero in which case the potential
energy expression becomes

Vi, uy) = -%ku,z + %kug - Fu,. (@

(Because Lhe string force S in the middle string obviously remains bounded as K — oo,
substitution of the term u; —u; = 5 /K into (a) gives (d).) We, however, now have a
constrained stationary problem with the constraint

gl )= —uy =0, (e)

and §; becomes a constraint force (See Section 4.1.3). As in the previous example, it is
here extremely easy to employ (he elimination method to produce, say, the expression

Vetu) = kuf — Fuy, (6
Lhe stationarity condition
%ﬁazkul-ho ®

]
and the solution

F F
ul=ﬂ. u2=ﬂ (h)

Using the Lagrange mulliplier method we write the modified function
1 ] .
VL Qtag, b s A) = Ve 0y )+ Agluag iy ) = Ekuf + Eku% —Fuy+ Al — 1)) (i
The stationarily conditions are

msku.—F-l:O,

aul

ﬂaku2+l=0. §]
iy

%‘:—sz—ul =0

ar

0 &k 1 [Kuyp=40 (k)
-1 1 0][i4 0

and the solution is

F F

W= = A=-r. 0
FBD FBD
i St
ku, S, S2 k-uy)
Figure (b)

By comparing the two first equations (j) with the equilibrium equations

—3 —klll+S2+F=0,
o =5 +k(-u)=0 (m)

obtained from the free body diagrams of Figure (b), we see thal Lthe Lagrange multiplier
has here the physical interpretation 1=S5,. It is quile common that the Lagrange
muitipliers associated with kinematical constraints have this kind of constraint force
interpretations.

The previous examples have concemed the rather usual case where the function
to be made stationary is at highest quadratic in the variables, that is, using the
matrix notations introduced in Example D.2:

fUxn= %{x}T[A] {x}+(x) T (a}+c (24)

and where the constraints are linear:

(G) = [G]{x}+ {d) = {0). 25)

mxl  mxanxl mxl mxl

We develop some further formulas in matrix notation. The Lagrange function is
thus

fullxk(Ah = %{X}T[A] (x) +{x} (@) + c + (1) TAG) [x} + {d}) {26)

where {4} is a m x 1 column vector consisting of the Lagrange multipliers.

Statjonarity conditions (23) cbtain the forms (Formulas (I} and (m) of example
D.2 have been made use of. It should be noted that the scalar {1) " [G]{x} is in
the transposed form [x]T{G]T(l] where [G]T{l} is a column vector.)
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% = (AN} +[GIT{A) + (a} = {0),
{x}

@n
9 _ _
T [Gllx} +{d) = {0}
or
(41 [GI" {lxl}z_ {{al}l o
[G1 [0] |UA} {d}

This is a linear symmetric system of equations. As zeros appear on the main
diagonal due to the fact that the Lagrange multipliers are not present in the
constraint equations, the system coefficient cannot be definite. It should be
mentioned that the unknowns need of course not be listed in the order first the x,
then the A; this is just convenient in matrix notation.

D.1.3 Penalty method

Penalty functions (sakkofunktio) are used widely in optimization theory and
practice to transform constrained optimization problems to unconstrained ones.
This procedure to take into account the constraints is called the penalty funcrion
method or shortly the penalty method (sakkofunktiomenettely, sakkomenettely).
This is thus an altemmative to the Lagrange multiplier method.

In the penalty method, the problem of Section D.1.2 to make a function
f(x;,xy,++,x,) stationary under the constraints

gk(x] oxz,“‘t‘tn)=01 k=l,2,"',m (29)

is transformed to the problem of the stationarity of a modified function

1 1
folxp xg o Xn) = 48] + @28+ 4 ngp) = f+ g | (30)

with no constraints. The term 1/ 2-akgf is called the penalty term or penalty
function. (In optimization theory, e.g. Bazaraa, Sherali and Shetty (1993), many
types of penalty functions can be used but the one given above is usual in
connection with equality constraints.) The factor 1/2 is unessential and is
included just for notational convenience. The quantities ¢ are given positive —
when minimizing a function — multipliers which are called weighr parameters
or penalty parameters or penalty numbers (painokerroin, sakkokerroin). Their
dimensions must of course be selected so that f, becomes dimensionally
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homogeneous. The stationary point is obtained as the solution of the system of
equations

fe _| I . < Jex
== = —=£ =0,
Pl ol

1

i=1,2,n. (31)

The purpose of the penaliy term is to force the solution near the point where the
constraints (29) are satisfied. The terminology used obtains an illustrative
meaning if we consider the objective function f as a cost which is to be
minimized so that the conditions or laws set by the constraint equations are
simultaneously obeyed. The modified objective function fp includes as
additional costs the fines or penallies which are lo be paid if the laws are
violated. Each penalty is proportional to the square of the violation or crime and
depends further on the weight used. Although the variables x are kept free, the
stationary point of fp finds it way near the exact stationary point when the
weights are large because the slightest error in satisfying a constraint tends to
increase strongly the value of the cost function fp.

The penalty method has the advantage over the Lagrange multiplier method that
the number of unknows {o be determined stays at »; in latter method the number
of unknowns was n+ m. On the other hand, the penalty method is approximate.
If the weights are too smali the constraints are not well satisfied and the result is
inaccurate. When the values of the weights are increased the results become in
principle more accurate but the system of equations (31) get more and more ill-
conditioned and finally no numerical solution can be achieved. When this
happens depends in addition on the properties of functions f and g, mainty on
the word length used in the computer. The ill-conditioning is understood
qualitatively by considering the set (31). As the weights get large, the terms
8}3( /Jx; disappear compared with the penalty terms and there remains equations
the left-hand sides of which are linear combinations of the m expressions
£1.82,, 8- Because 7> m equations are generated from them, the equalions
obviously cannot any more be linearly independent.

Example D.5. We consider the same elastic spring system as in example D.4 (Figure
(a).

*“”EMMW
= A Ak
U, g

Figure (a)

We take again the case K — ©o. The potential energy is thus
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Vi ;)= %kulz + %ku% - Fiy (a)

and Lhe constrainl is
gl ) 21y =1y = 0. (b)
In example D.4 the Lagrange multiplier method was used and the solution

| F I F 1
R L Ry
“TI% TR 2 ©

was arrived at. We now use Lhe penalty method. The modified function is
1
V(g up) = Vi, 1) + -iagz(ul.uz)
1 2 1 0 1 3
=—ku +=kus — Fuy+—oa(u; — ). d
= ol = B — vy 4y = ) (@)
The slationarity conditions are

%skul+ku2—F—a(u2-u])=0,
duy

(&)
g—v—"skul+a(u2 —u)=0
i

k+a -—o |(u F
L= ®
- k+alln 0
and the analytical solution is

u_1+alk£ = alk F
VT le2ark kT 2 1+2alkk’

or

(g)

When the penalty number o — ©2 the solution is seen to approach the exacl solution. In
practice, we naturally have to solve the equations numerically with a finite word length.
As an example, in the case @ = 1000k the system of equations (F) becomes after division

by k
1001 —1000](s ) _F[1 )
—1000 1001 |l kO]
The corresponding analytical sclution is
ul=0.5m249---—£—- u2=0.499750“-£ @

is already quile near the exact solution. A numerical solution of (F) with five significant
digits gives

= o.sooso-k*: vy = o.soooof. D)

wilh [our significant digits still
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L] =0,5005%’ Uy =0.5000£v (k)

but with three significant digits the coefficient matrix becomes singular or

Hy =09, Yy =09,

Computers use say 6 to 14 significant digits bul a similar behaviour is always amived at
when the penalty parameter values are large enough.

The ill-conditioning of system ([} is here easy to sec; when o >> &k, the rows of the
cocfficient matrix are identical except for the sign.

The penalty number has in this example an obvious physical meaning. Comparing
expression (d) with the expression (a) of Example D.4 we see thal the inclusion of the
penalty term means that we are analysing the spring system by the convenlional
principle of stalionary potential energy and assume the middie spring to have a spring
constant &

We produce some matrix formulas corresponding to (24) to (28) now with the
penalty formulation, With the function

fUxh) = %{X}T[A] (x)+[x)T{a) +¢ (32)

and the constraints

(G)=[G]{x)+ (4} = {0}, (33)

mxl mxnaxl mxl  mxl

the modified function is

follxh) = %lxlT[A]{x] i) ia 4o+
+([G)(x}+ (@D T [&)([G1{x} + (d)). (34)
Here [or] is a m x m diagonal matrix with diagonal elements o, 05 -+, 0, .

Stationary conditions (31) obtain the form

e _ -
S =Vl + {apt=(0) (35)

where

[Ap]=[A]+[G]T[«](G],

(36)
(ap) = {a} +[G1"[a](d)

The coefficient matrix [Ap] is symmetric and positive definite at least when [A]
is positive definite. (The diagonal matrix [¢x] is positive definite if each penalty
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parameter ¢, >0 and the matrix [G]T[a][ T] is then positive definite. This is
seen as follows. The quadratic form {y) [x¢]{¥}20 and =0 only when
{vl {0] We denote (y} =[G]{x) after which the previous quadratic form is
{r] [G] [a][G1{x}. It is still 20 and =0 only for those values of [x} which
satisfy the system of equations [G]{x} = (0). This has always (because m<n)
also solutions {x} differing from zero so that the matrix [G]T [&][G] is only
positive semidefinite. Finally, it is easy to see that the sum of a positive definite
and a positive semidefinite matrix is a positive definite matrix.) Often the
penalty terms make the [Ap]-matrix positive definite even when the original
matrix [A] is only positive semidefinite.

A difficulty in applying the penalty method is the selection of the penalty
parameter values. Often some numerical experiments are needed for this.

Remark D.2. A constraint may contain only few of the variables which are
further "geometrically near each other”. We then call the constraint local
(lokaali) and otherwise global {globaali). Global constraints are not very
convenient to deal with by the penalty method as they tend to fill the coefficient
matrix and destroy its possibly banded and sparse structure. For example,
discretized forms of isoperimetric constraints (Section D.2.6) produce global
constraints. 0

D.1.4 Perturbed Lagrange multiplier method

We can gain further understanding of the penalty method by considering a
modified function

L,ﬁr’;‘)
o @7
=fL ___A'k = f+Agi —5—12

- I 1 1
fL(x[‘xZ'”.;A'l‘RQ’.“)sz ——-(—A} +.—2% e
2

This is a perturbed (hiiritty) Lagrange function (22). The factors ak are here
given quantities. When each | a, |- oo the perturbation term A2 /(2a,) — 0

and fL — fL. The stationary point of the perturbed function is obtained as the
solution of the set

= ,1 :0'
dx; dx; ¥ ox 38
A S
A, =By 2 k)
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This system and its solution is seen to approach the original system (23) and its
solution as each lay |—>e2. But when the factors a, are kept finite,
approximate values for the Lagrange multipliers are found directly from the
latter equations (38):

LY T (39)

The superscript (&) is used to indicate that this is an approximate value
depending on the values of the factors @. Substituting (39) into (37) gives

PR NN AR LI A CNE SRR | L (U

i 131 1
=2 (ogg, — = Y —(og)? = f+—o,82, (40)
k=| 21-:1 ay 2

that is, we have obtained expression (30). Thus the use of the penalty method is
equivalent to the use of the perturbed Lagrange multiplier method. The Factors
«, are the penalty parametecs.

This interpretation gives immediately two important results which have not been
apparent before, First, earlier the use of the penalty method was justified
qualitatively in connection of a minimization (maximization) problem where the
penalty terms increase (decrease) the value of a function when the weights are
selected positive (negative) if the constraints are violated. Now we realize that
the penalty method can be used equally well in connection with the
determination of a stationary point as in the determination of an extremum
point, essential is that the absolute values of the weights are large. From the
computational point, of view, however, it is advantegeous still to keep the
weights positive (negative) in a minimization {maximization) problem so that
the coefficient matrix of the system equations would remain or possible would
change positive (negative) definite.

The second important result is that we obtain from (39) approximate
information on the values of the Lagrange multipliers. They often have
important physical meaning which can be made use of.

In the case given by formulas (24) and (25) the perturbed Lagrange multiplier
method gives instead of (28) the equation set

(Al [GIT {lxl}=_{[a}} il
[[G] —[l/a]:| {A) {d} )

The matrix [l/a] is a mxm diagonal matrix with diagonal elements
Loy, ey, 1/ a,.
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D.1.5 Lagrange multiplier / penalty method

As before, we consider the problem to make a function f{x;,x5, -, x,)
stationary under the constraints

Be(xy,x5,,x,)=0, k=1,2,---,m. 42)

An efficient iterative procedure can be devised which is free of most of the
disadvantages of the Lagrange multiplier method and of the penalty method. We
form a modified function

= 1
Suplxxa o X} =+ A gy '*'Eakgf- (43)

This looks like the Lagrange function (22) modified by the penalty terms.
However, the quantities A, are approximations to the Lagrange multipliers
which are improved iteratively and which are considered fixed and given in
(43). The overbar is used to remind of this. The stationarity condition of fp
gives the equations

e _| I 7 9, ¥ 98
b, ol A A, =% —=0.
dx; | ox; +k§ k ax; +k§akgk ox; 0 )

i i

The solution gives an approximate stationary point {x¥}. An update for the
Lagrange multipliers is obtained by the formula

[ I’t:cw = + 0 8y (X1 45)

This formula is motivated as follows. The conventional Lagrange multiplier
method produces the equations (the upper set of (23))

f Sk
._5.,.2:3 98 _ . 4
ox; 15 k ox 0 B

i

Subtracting {44) from (46) leads approximately to an equation

(A = Ay —akgk)%'=0 47
X

1

[NgE

-
n

which suggests the update (45). It is to be noted that (47) is not exact because
the stationary points for which the quantities in (44) and (46) are evaluated
generally differ. Exact justfication is presented in Bazaraa, Sherali and Shetty
(1993, p. 382). This reference also contains a guide for a relevant algorithm
which we roughly quote:
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Initialization: Select some initial Lagrange multiplier values L ,la .---,:fm and
some values of the penalty parameters @, .0, -, a,,. Let {x)'" be a null
column vector and denote VIOL([.r][m) =o0, Define VIOL([x}) = maximum
(g, ik =1,2,---,m}, this being a measure of constraint violations. Put n =1
and proceed to the inner loop of the algorithm.

Inner loop: Find the stationary point of f; p and denote the solution {x}"™. If
VIOL({x)™) = 0, then stop with {x}*} as the final solution. (Practically, one
would terminate if VIOL({x}™) is less than some tolerance & > 0.) Otherwise,
if VIOL({x)*)< VIOL({x)**")/4. proceed to the outer loop. On the other
hand, if VIOL({x}")> VIOL({x}*"D)/4, then, for each constraint k=
1,2,--,m for which lg,I> VIOL([x](""”)M, replace the corresponding
penalty parameter ¢, by 10, and repeat the inner loop step.

Quter loop: Replace (A} by (Z)™Y where
AP = L + a8 (™), k=1,2,,m. (48)
Increment » by 1, and return to the inner loop.

Remark D.3. The method described above is usually called in the literature the
augmented Lagrangian penalty method (tiydennetty Lagrangen sakko-
menettely). As the procedure is some kind of mixture of the Lagrange multiplier
method and the penalty method, we call it here the Lagrange multiplier / penalty
method (Lagrangen kertoja- / sakkomenettely). The method has the merit over
the Lagrange multiplier method that the number of unknowns remains at # and
the merit over the pure penalty method that ill-conditioning is much reduced as
the penalty parameters can be kept at reasonable values. O

Remark D.4. We can look at the Lagrange multiplier / penalty method also as
follows. If we knew the exact values of the Lagrange multipliers beforehand, we
could solve for the basic unknows x directly from the upper set (23). As we,
however, do not know the values of the Lagrange multipliers. we introduce
them iteratively into the formulation. In the limit, when the A's approch the
exact A's, the actual values of the penalty parameters are not important as we in
fact are solving the upper set (23) since the g's in (44} tend to zero. In
mechanics, when the constraints are kinematical, the Lagrange multipliers
represent constraint forces. We are thus gradually introducing the constraint
forces and the values of the artificial springs (penalty parameters) have finally
no effect as the constraints are satisfied. O

Example D.6. Once more the spring system of Examples D.4 and D.5 is considered,
now, however, using the Lagrange multiplier / penally method.

The modified potential energy expression 15
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Viplay,iy) = %ku,z + %kug - Fuy + Ay —1y) +-;—a(u2 -u)? {a)

and Lhe stationarity conditions give the equations

aLP'kul-i-kuz F—I—a(uz—ul)=0.
r.?u]

v, - ®)
LP = fuy + 2 4 0t{uy —u4y) =0

]

k+a -a l(m F+/l ©
- k+allw -1 €

We perform the manipulations in this simple case in analytical form. The solution is

or

SR CY:77.3 S N Y __alk F 12 @
' Te2arkk  1e2alk k' 2T l+2alkk 1+2a/k k]

Formula (45) gives the Lagrange multiplier update:
¥ =T vrauy—u)=2 o F 2o A (e)

1+2alk k  1+20lk k

We take on purpose a rather mild & =10k and start with A =0. We do not follow
completely the presented algorithm and disregard the checking of the suitability the
penalty parameter value and keep it simply constant. Expressions (d) and (e) obtain the
detailed forms

1HF 12 I0F 11

TR T R T T ®
and
= 1= [0
A = — 1 ——F.
21 21 Y
The first solution is
FUJ LK YRR -I-Qf-=0,476£.
k 21k k (0
- 10
A" =——F=-0,476F.
21
The second solution is
@_22F o sof, o 20F 4 400f
Ty r Ty e .
- 220 @
A = --—-—1~F ==0,400F,
The third solution is
D-21

F
4 2 4631 4630 F

g =0,50005 % 5
9261 & k' 9261 k
grew = 36305 0,49%°95F.
9261

- = 0,499 95——
k

The convergence rate is seen to be quite satisfactory.
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D.2 STATIONARY VALUE OF A FUNCTIONAL
D.2.1 Functional

Functional (funktionaali) is an operation associating a real number TT for each
member ¢ of a set § the members consisting of functions of agreed kind, that is,
it is a mapping [1: S — R.

Usually the mapping is effected via a definite integral. An example:
b d
@)= [ f1+(S2)2ar, W
a drx

Here § is the set of functions ¢(x) defined on the x-axis interval [a,b]. The
functions must satisfy the conditions ¢(a)=a and ¢(b)=f were & and f are
given and to be so smooth that the integral can be evaluated.

Figure D.2 Mappings of three functions.

The integral clearly represents the length of a curve passing through the points
(a,a) and (b,f). Figure D.2 shows schematically the mapping of three
functions ¢(x) to real numbers [T. Because of the geometric interpretation, it is
clear that T1 obtains the minimum value when ¢(x) describes a straight line.

Functicnal (1) is a special case of a more general situation
= d¢
N9)= [ f(x.8,72)dx @

where the integrand depends on the independent variable x, on the argument
function (argumenttifunktio) ¢(x) and on its derivative d¢/dx. In the example
case (1) x and ¢ are missing.

A case, where all the above variables are present, is
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= ['ilsd%2 -
V) =[5 8() - avide. 3
This is the expression for the potential energy of a stretched string on the
interval (0,{] of the x-axis. § is the string force, assumed constant for small
lateral displacement v(x) of the string. The possible explicit dependence on x
comes through the given function g(x) representing the lateral loading per unit
length of the string.

Remark D.5. A functional differs from an ordinary function in the respect that
the value of the functional depends on the overall behaviour of the argument in a
domain and not as is the case with an ordinary function on the pointwise value
of the argument. Obviously to emphasize this difference, the argument function
is often represented in the literature enclosed in brackets, say as I[¢$].0

A functional can contain higher order derivatives than the first, several argument
functions and several independent variables and terms from the boundary of the
domain.

When we pick a certain argument function, its derivatives can be evaluated and
it can be fed in the functional expression to give as the output a certain number.
The main task of variational calculus (variaatiolaskenta) is to determine that
argument function giving the functional an extremum value. The necessary
condition for this is that the functional obtains a stationary value (stationaarinen
arvo). This means that for "small” changes of the argument function the changes
of the functional are zero. The corresponding argument function is called the
stationary function (stationaarinen funktio).

From the stationary condition so called Euler equation(s) or Euler-Lagrange
equation(s) (Euler-Lagrangen yhtil5(t)) with their boundary conditions can be
derived.

If we are able to find a functional, for which the stationary condition gives the
differential equations (DE) and boundary conditions (BC) we want to solve, we
have obtained a convenient way to perform a discretization of the problem, that
is, the numerical solution can be based instead on DE and BC on the functional.
This latter possibility offers considerable advaniages.

For any differential equation set a corresponding functional unfortunately does
not exist. A notably example are the Navier Stokes momentum equations. This
fact constraints the usefulness of the variational formulation.

To study the changes of functionals and functions when the argument function
experiences changes we need a way of thinking different from conventional
differential calculus. Certain notations and calculation rules have been
developed for this purpose which are considered next, Lanczos (1974).
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D.2.2 Variational notation

We again consider just the case of one independent variable x and one argument
function $(x). The function can experience two kinds of changes. The
infinitesimal change d¢ is due to the infinitesimal chance drx of x. The
infinitesimal change §¢(x), however, is effected by the change of moving from
the curve ¢(x)} to an infinitesimally near neighbouring curve ¢"(x)=
@(x) + d¢(x). In variational calculus this latter type of change is considered. The
variational symbol (variaatiomerkki} § is customarily used instead of the
symbol d to tell the difference. The quantity 8¢ is called the variation
(variaatio) — in more detail the first variation — of function ¢ and the new
function ¢~ is called the varied function or modified function or comparison
function (varioitu funktio),

X X+dx %
Figure D.3 Differential and variation.

If ¢{x) is the actval function representing some quantity, the generation of a
varied function means that some kind of mathematical thought experiment is
performed to obtain comparison results: what would be the outcome if instead
of ... 7

Remark D.6. In mechanics the most common example of the variation of a
function is probably the concept of virtual displacement. It is usually defined to
be an infinitely small imagined displacement which is thought to take place with
time "freezed”. This definition is seen to equivalent to the concept of the
variation of a function. (x means now the time and ¢ is one space coordinate of
a particle. Freezing time means that we move in vertical and not in horizontal
direction in Figure D.3.)0

The expressions containing the argument function and the functional in
particular obtain changes due the variation of the argument function. These
changes are also called variations and the & -symbol is again used. Table D.1
contains some calculation rules of variational calculus. These rules are valid also
in the case of several independent variables. The formulas are quite analogous to
the corresponding differentiation expressions.
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Table D.I Some rules of variational calculus

8(f, + [)=98f +6f> (1) | Variation of sum

S(kf) = kdf (2) | Transfer rule for a constant

8fi - f)=0/ -+ fi-6f (3)| Variation of product

S(f"y=nf"'6f (4) | Variation of power function
S(dp/ dx)=d(5¢)/ dx (5) | Varation of derivative
§J fdx={68fdx (6) | Variation of definite integral

The stationarity condition of a functional IT is represented in the form
STI=0 @

or the variation of the functional must be zero with respect to arbitrary
admissible variation of the argument function(s). The content of condition (1) is
called a variational principle (variaatioperiaate). Perhaps the most well known
variational principle of mechanics is the principle of stationary (or minimum)
potential energy: when the potential energy of a conservative system obtains a
stationary value, the corresponding configuration of the system is the
equilibrium position.

The argument functions competing in a functional must obey some smoothness
conditions (so that the functional can be evalvated) and in general some
boundary conditions. In this way defined argument functions are called
admissible functions (luvallinen funktio). The boundary conditions demanded in
advance from the admissible functions are called essential boundary conditions
(oleellinen reunaehto). The stationarity condition gives as consequences the
Euler-Lagrange differential equations and the so called natural or free or
additional boundary conditions {luonnollinen reunaehto). These features are
described in the following with some applications.

We now consider in more detail some of the concepts introduced above, For the
mathematical manipulations to follow, it is usefu! to present the variation in the
form

Op(x) = £n(x) (3

which resembles formulas (D.1.5). Here 1)(x) is an arbitrary smooth enough
function and £ is a parameter which is allowed to approach zero. By
considering the function 7(x) fixed during the derivation of a result, the
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variation can be thought to be a function of only one variable £, To see more
clearly the similarities with Section D.1.1, we may consider Figure D 4.

(a) 4

Figure D.4 (a) Function ¢(x) and the varied function ¢'(x). (b) Function
¢(x) and the varied function ¢°(x) roughly as points P and P*.

A very crude discrete information of a function ¢(x) is obtained say by dividing
the interval [a,b] into three equal length subintervals and by measuring the
function values at their midpoints. The function is then represented by three
values: ¢;,¢,,d;. We now associate a cartesian coordinate for each subinterval
and put the function values along these coordinate lines. A point P or vector
¢: (¢, 9,.¢3) represents the function in this new three-dimensional space.
Similarly, the modified function ¢ (x) = #(x) + 5(x) or ¢"(x)= ¢(x) +en(x) is
also represented as a point P* or vector ¢" :(¢;,¢7,93) in the three dimensional
space. The changes in the discrete values are

O¢ =€m, O, =¢€1,, Ofy=en;. (©6)

These formulas clearly resemble (D.1.5). (In Section D.1.1 we just denoted the
changes by the d-symbol.) The selected shape of n(x) somehow tells the
direction to which we are moving from pont P. Function 7(x) can thus be
considered to represent in some generalized sense the direction cosines of the
change direction and &£ again controls the magnitude of the change. If we
increase the number of subintervals and proceed similarly, we cannot any more
draw a picture of the space generated but we can still speak about the set of
discrete numbers as a vector in a finite dimensional space (direllisdimensioinen
avaruus). Continuing without limit leads us to speak about a function as a vector
in an infinite dimensional space (ddreténdimensionen avaruus) or shortly in a
Sfunction space (funktioavaruus). In mathematics, a topic called functional
analysis (funktionaalianalyysi), deals much with these latter concepits.
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When a function ¢ is replaced by the varied function ¢°, all expressions
containing ¢ also usually cbtain some changes. As an example, let us consider
the change of the function f(x, ¢, ¢"):

Af = f(x, 9", 9") = fx, 8,80 =f" = f )
where

9 =9+8¢=9+en,

¢" ="+ (BPY = ¢ +en

and where the dash refers shortly to the derivative with respect to x. We proceed
similarly as in Section D.1.1. When x, ¢ and 1 are kept fixed during the
derivations to follow, Af is a function of only one variable €

(8}

Af = &f (). ®
Function Af is expanded into a Taylor series around the point £ =0:
_Oay Ld?af LLdi
M=t ot *3 de? 7 leno® |s=0 2 ge? le=0® LY
The derivatives are calculated using the chain rule. Thus
df” Bf(x¢¢) 3f(X¢¢)
de a¢° M
dif _3%(x, 0%9%) AP f(x,0%9T)
= 1+ — T+ 11
dEz a¢ a¢ a¢ta¢- (11)
2 - W 2 LIt
(ISR i3 (CY .00
d¢” ¢ d9" ¢

When these are evaluated at £=0, ¢* — ¢, ¢~ — ¢’, the stars can be removed
and there remains

daf'y  _of . 9
de |s=o'a¢"+a¢’n’ (12)
dis 9%f 2., 9% 3%f .

e N v A

The change in f can thus finally be represented in the form
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Af=6'f+%62f+--- (13)

where
df” af af _,
= = en+= 14
¥ =g leo® | 365 25 " (14)
and
2 _df 2 9% 21 L9 o 5f2,2
0°f = ] 0f ——ad’z g‘n +28¢8¢’£ nn’ +a¢'2 n (15)

The combination terms §'f = §f in Af, containing & in the first power is
called the first variation (enSImmamen variaatio) of f, the combination 62 f,
containing & in the second power is called the second variation (toinen
variaatio) of f, etc, Langhaar (1962). The formula in the box of (14) is an
important general expression for the variation.

The first variation is seen to correspond the concept of total differential in the
respect that a first order change is considered. The cause of the change only is
different but the formulas obtained are analogous. In the following we only
operate with the first variation and we then call it shortly variation.

When formula (14) is applied to the specific function f=4¢", we obtain

S¢'=0-en+l-en =gy’ (16a)
or
53¢
=g’ 16b
dx (419)

This is the variation of a derivative. On the other hand, the derivative of a
variation

Lop==(em=cl=en. a7

Comparing (16) and (17), we have the important result

sde_d 0 pree
& dx6¢ 3¢ =(5¢Y, (18a, 18b)
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or the variation of a derivative is equal to the derivative of the variation. In
other words, variation and differentiation obey the commutative law, This result
appears in Table D.1 as rule (5).

Using (5) and (16), expression {14) obtains the form

ad d
of = 300+ 5058 )
Making use of the total differential expression
F L .. Of
df = % d¢+a¢ d¢ +axd.r (20)

for a function f(x,¢,¢"), we would get analogously
®+ @ W& @D

However, as discussed in connection with Figure D.3, the independent variable
experiences no variation, that is, we can put dx =0 in (21) and we thus arrive at
the correct formula (19).

Also the rules (1) to (4) of Table D.1 can be proved rather easily using the
definition (14} of the variation. In fact, after some practise il is more convenient
to drop the &£77-notation and to operate simply with the 8¢ -notation and rely on
familiar differentiation formulas.

The change of the value of a definite integral (2) is
ATl = _[:f(x,¢',¢" )dx-]’:f(x,gb,gb’)dx = j:(f" - P = j:Afdx
—_-_[:5fdx+ﬁ%62fdx+--- 22)

Form the definition of the variation, as the first term in the expansion contains &
in the first power,

ST = sj:fdx=j:’5f¢r (23)

or the variation of a definite integral is equal 1o the definite integral of the
variation. In other words, variation and integration (between fixed limits) obey
the commutative law. This result is given in Table D.1 as rule (6).
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The mathematical manipulations in the case of several independent and
dependent variables are ralher obvious from the presentation above. For
instance, let x and y be the independent variables and let us have two dependent
variables u(x,y) and v(x,y). The variations of u and v are represented in the
form

Su=eé(x,y), Ov=en(x,y) (24)

where &(x,y) and 7j(x,y) are arbitrary smooth enough functions and the
parameter £ controls the magnitude of the change. The expressions containing «
or v experience changes when u and v are replaced with «” and v*. For instance
the function

f=flx,yu,vug,uy,v,vy) (25)

where u, =du/dx, etc, experiencies the change

L] * L) L] -
Af = flx,y " V" g uy Ve v)) = U0, y,0,0 0, 0y, V,,9,)

=f - (26)

Again the change can be considered to depend on only one variable . There is
obtained

Af=6f+%62f Lo Q7

where the variation

_4f a1

T dg le= 0

_d of '

= E€+ en+ % XELE 65, xenx o, en, -
U . I of f af af

=3 6u+a 5v+a Ou +8u Bu y+K5vx+av—y§vy.

Further, for exampie, the operators § and d/dx or d/dy are commutative:

(Sa—r"['-—'a_(suy 6“_1-:(6“);'

dx ox

du_d (29)
5 a—y- = a—yﬁu . Suy = (5u)y .

These are generalizations of rule (5) of Table D.1. Obvious generalization is
alse valid for rule (6) with respect to the the integration domain.
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D.2.3 One independent and one dependent variable

We now consider in detail the case of the heading. The change of a functional
[T(¢) due to the variation S¢(x) = £n(x) of the dependent variable or argument
function ¢(x) is

AH=5H+%52H+--- 30)

As expressed in (D.2.4), the functional is said to have a stationary value when
its (first) variation disappears with respect Lo all admissible variations of the
argument function:

ST =0. (31

The stationarity is a necessary condition for an extremum. To find out the
character of the stationary point, the behaviour of the second variation must be
studied similarly as was done with the second differential in connection of
functions in Section D.1.1. The treatment becomes complicated. In mechanics,
however, the necessary equations are usually obtained already from the
stationary condition and we therefore do not consider the second variation here.
In addition, in practice we often immediately proceed with a discretized
formaulation, that is, we continue with the study of ordinary functions instead of
functionals.

The expression for the variation from (14) is

_ dI($+en)

de

. (32)
=0 £=0

Careful mathematical decivations usually treat the variation in the £1-form and
start from the condition

drr’
de

=0 (33)

e=0

equivalent to (31). The formulas become however little tidier when the variation
is denoted simply d¢ and condition (31) is used.

We consider first the basic case
b s
Ig) = [ f(x.9.¢"dx. (34)

Using formulas (23), (19) and (18) we have
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51'1=5J:fdt=J:Sfdxzj:(%&b-k%&b’)dx

- df dé¢
= %L 5gr L 998y, 35
KRG as sy (35)
The next step is based on the fact that the variation ¢ is arbitrary. No
conclusions can yet be drawn from expression (35) as it contains also the
derivative of 6¢. The derivative is removed by applying integration by parts.
Formula (B.1.1) with g = df /3¢ and h = §¢p gives

Ibaf ds¢ .. J 3f
a J¢’ dx dx a¢

b
af

and thus the stationarity condition obtains the form
b o
a0’

The expression (37) must vanish for an arbitrary 8¢. This means that the term
inside the brackets in the integral must vanish:

I _ 4.
a0 aop)

bdf d_ df
5t = J[a¢ el

3D

a<x<bh. (3%

This is the Euler-Lagrange differential equation corresponding to functional
(34). The partial derivatives df /d¢ and df /d¢" are formed considering x, ¢
and ¢ as independent variables in the expression of £ However, finally x is here
the only actual independent variable and (38) is thus an ordinary differential
equation. When the second term in (38) is developed by the chain rule, there is
obtained

_9%f d 9%f dp_3f & _,
o9’ dxl  Igag’ dx  dp A

39

50 the Euler-Lagrange equation is in general a second order differential
equation.

Example D.7. We consider functional (3):

11,
V=[50 - gvide (@)
representing the potential energy of a stretched string. Here
P
f(x,w.v)=E.S'(1.-)2 - qlx)v (b)
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and thus ¢ £ v. The Euler-Lagrange equation (38) is

d
7 4,

or

d 1
—g——{—52v}=0,
4= (552 =0

(d)
—-g—8v"=0
or finally
Sv'=—gq. (e)

In practice, it is usually more convenient Lo derive the Euler-Lagrange equation directly
in each case without having recourse to some general formulas like {c). Thus here,
making use of the rules of Table D.| and of integration by parts, we obtain
i1 X ] - t ’ ’
sV= jo[iszv Sv' — gdv)dx = J’D[sv (6v) - gdv]dx
1 !
= J'o[—(s ¥y 8y — gdv]dr + |Ds Vv

{ i
= ID[—S v’ —glévde + IDSv’Sv. 0]

Demanding this to vanish gives again the differential equation (¢).

We have not yet considered the boundary conditions which are classified in
connection with functionals as explained in Section D.2.2 into essenlial and
natural conditions. If, for instance, the essential boundary conditions consist of

¢la)=c, @b)=4. (40)

this means that all the competing admissible argument functions must satisfy in
advance the conditions (40). Thus in addition to the assumed stationary function
¢, also the varied function ¢ = ¢ + 8¢ must satisfy

¢ (@) =p(e)+Spla) =, ¢ (by=¢(b)+5Ep(b)=J. (1)
Subtracting (40) from (41} leads to the homogeneous conditions
p(a)=0, dP(b)=0 (42)

for the admisible variations. In this case the boundary terms in (37) vanish
automatically.

If, on the other hand, no essential conditions are presented, the variations of(a)

and 8¢(b) are arbitrary. Stationarity condition on expression (37) leads now to
the naturai boundary conditions
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o
o’

=0. (43)

]

x=a 87« x=b

Further, if the essential boundary condition would be say ¢(a) = a, the resulting
natural boundary condition would be (df / 3¢")|,_, = 0.

Let us return in more detail on the logic of getting the Euler-Lagrange equation
and the natural boundary conditions from the stationary condition (37). Use is
made of the so called fundamental lemma of variational calculus (variaatio-
laskennan peruslemma):

If the relation

[/ fegtaax =0 4d)

where f(x) is a continuous function, is valid for all
continuous functions g{x),

f(x)=0 in Q=]a,b[. (45)
K
— N .
a ¢ gd b %

Figure D.5 Bubble function.

This is proved roughly as follows. Let us consider an arbitrary point x = £ in the
open interval ]a,b[ and assume that contrary to what has been stated, f is there
ron-zero and say positive. Because of the continuity of f there exists a neigh-
bourhcod c¢<x<d of & where f is positive. We now select 7] as a
“bubble" (Figure D.5) say of the type

(x-cXd-x), c<x<d,
= (46)
0 elsewhere.
The first expression in (46) is then positive and thus
b d
| fgtnde = [ f(x)gnde > 0 @7

which is against (44).
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In our application the variation 8¢ has the role of g. In the weak forms treated
earlier the weighting function w has had the role of g. The lemma can be
extended in an obvious way to cases with several independent variables.

The possible natural boundary conditicns are derived in detail as follows. The
previous consideration showed that the integral in (37) vanishes and we are left
with the equation

o
¢’

o =0. (48)

x=h ‘ﬁ

If we have for instance the case with no essential boundary conditions we can
take first §p(b) 20, 6¢p(a) =0 and then S¢(e) =0, d¢(b)=0 to deduce the
natural boundary conditions (43). Other cases are dealt with similarly.

The generalization to formulations with higher order derivatives proceeds in a
straightforward way; more applications of integration by parts are just needed.
For instance, vatiation of the integral

T9) = [ £(x,9,4",9")dx (49)
gives first
%‘ I
a¢ﬂ5¢ )dx
_ b_ afd5¢ g d’5p
‘ja(a opt 39’ dx a¢" TRl &4
After integrations by parts we find
b of o
—j[a¢ = a¢ 2(a¢~”5‘°d"+
b o df PO
o dx(agb”)] 8¢+ 30" & an
The stationary condition 8[1 =0 gives the Euler-Lagrange equation
F_dF .
a9 dr a¢) de (aqb" o

The possible natural boundary conditions obtainable depend on the possible
essential boundary conditions and can be deduced from the remaining boundary
terms in (51).
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Example D.8. The goveming equilibrium equations for the elastic Bemoulli cantilever
beam of Figure {a) are derived by the principle of stationary polential energy.

(X}
3 Bl

T T — -
SN T )H
9!1—— - - l'lf——x -
I i &
Figure (a) ‘? WY
The expression for the potential energy is
Ve = [l EI6™Y - o= @)+ FvQ) @

where the argument function v(x) represents the lateral small deflection of the axis of
Lhe beam, g{x) is the lateral loading per unil length and Ei(x) the bending stiffness.
and M are the given shearing force and bending moment at the free end of the beam.
The essential boundary conditions are

v(0)=0,
V(0)=0 ®

due to the kinematics of the fixed end,

The functicnal differs from {49) in the respect that terms from the boundary of the
domain appear here. In the case of several independent variables the boundary terms are
integrals. Because no boundary lerms have been considered in connection of obtaining
the Euler-Lagrange equalion (52), we perform Lhe calculations starting directly from
expression (a).

Taking the variation of (a) gives first
8V = [[LEIY" 6"~ g8dx - Qou(i)+ Mov()
= j;[EIv”(5v)” —gbv]de— QS+ Msv'(l). (©
The integration by parts needed, goes in detail as follows:
j; EIV'(8)" dx= -j;(EIv")'(b'v)'dx-l— |;E1v”(6v)’
= j;(EIv”)”tSvd.r-lL(Elv”)’5v+IL EN(8vY. ()
Thus,
sV = J;[(Elv”)” - q]ﬁvdx—|:](51v")'6v+|:) EN"(5v) +
- @&h+Mev(h. (e
The stationary condition 3V =0 gives first the Euler-Lagrange equation

(EV")Y"—q=0 6

and we are left with the equation
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[-(ER"Y = Q)| _ Svi)+ (ENY]_ 8v(0) +

+[EN" + M| _,6v'(D - EW]_o8v(0)=0. {8)
Because of the essential boundary conditions (b},

Sv(®) =0,
V() =0. (h}

On the other hand, &v({} and Sv'({) are arbitrary, leading to the natural boundary
conditions

M=-EN"|__,.
Q =—(EM"Y), ;-

These mean physically that the exiernal stress resuliants are equal o the internally
evaluated stress resuliants at the free end.

0]

The differential equation () together with the boundary conditions {b) and (i) represents
the problem to solve the deflection v(x) of Lhe beamn. When the funclional (a) is used as
the slarting point for a numerical solution, considerable advantages are achieved, The
derivalive order appearing in the functional is two whereas in the differential equation it
is four. The approximation needs only to satisfy the simple essential conditions (b), the
more complicated natural conditions (i) are simulated aulomatically through Lhe

functional.

D.2.4 One independent and several dependent variables

The functional corresponding to the heading is now typically of the type

T, 2,0 8a) = [ S5 910820, 00 81,83, 97 ) . (53)

Boundary terms and higher order derivatives can additionally be present. By
taking certain functions ¢,¢,,-:-,¢,, the integral can be evaluated. The task is
again to determine those functions which make the functional IT stationary {or
to determine the conditions from which the functions can in principle be
determined.)

Similarly as earlier, the task is approached by taking the varied functions
o (y=¢;(x)+em(x),  i=1,2,,n (54)

and by considering the (first) variation

_dn” £=dﬂ(¢1+em.¢2 +ETgse P T ET,)

de de <0

(3%

which must vanish for arbitrary admissible functions F;(x). By taking the
consecutive selections
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m#0, 7;=0, n3=0,- or ¢ #0, ¢;=0, 5p=0

Th=0, 772?&0, T]3=0,"' or 6¢1=0, 5¢2¢O, 5¢3=0!... (56)

etc, that is, by varying only one function at a time, n Euler -Lagrange equations

o 4.9, _ (=12 ...
2, dx(ac;D, i=1,2,---,n (57

and the associated natural boundary conditions are arrived at. The Euler-
Lagrange equations form thus a system of ordinary differential equations. It is
seen that the structure of the equations is exactly the same as in (38).

Example D.9. We derive the equations of motion of the elastic spring sysiem
considered in Example D.4 using here Hamilton's principle.

My Wi
e %ik Fo
Uy e,

Flgure (a)

The particles in Figure (a) have masses #1 and m, and no external forces act on the
system. According Lo Hamilton's principle the motion of a conservative system happens
50 that the functional

j:’ (T~ V)ds (@
1
obtains a stationary value. T is the kinetic energy and V the potential enetgy of Lhe
system.
Here
I .z, 1 .3
T =—myi| +—myl
o ML+ iy (b)
and
V—lku2+lK(u — )?'+—l-ku2 {c)
g T Rl T oz

and thus we have the functional
I (uty, 12 )=j"[lm a8 st — L~ L e, vt - Lel)ar (d)
L2 n ‘2 1#1 ) 242 2 1 2 2 1 5 2

Comparison of {d) with (53) shows that hete n=2, x2r, ¢, 21, ¢; 2. (Y 2().
The admissible functions #;(1) and u;(t) have to correspond to the actual slate at 1 =1,
and ¢ = t;. These are essential conditions and thus the admissible variations 8u; and duy
have to vanishal t=1 and t=1¢,;:
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Su(=0, buly) =0,
Sus (1) =0, iy} =0. ©

The Euler-Lagrange equations (57) are
~kiy + Klug =) = %(mlft]) =0,
d g
"K(Hz - ul)_‘ku'z —a(mlﬂz) =0
or in matrix notation with a change of signs
k + K -K iy my 0 iil 0
+ = 1= 1ol (8)
=K k+K||lu 0 my|li; 0

Alternatively, Lhe same results can be derived without using the general formula (57).
The varation of {(d) is

5T = J"z [yt ety + mitiy Bty = vy ey = K{uy — 1) )81y = Suy) = kesty Suy Jdr

—I [mlul —l +m2&2 d u2 ]df+

+ I [—kuléul + K(uy — i )5::1 — K(uy — u) Youy — kuyOuy 1 dt

j‘2 [ d(MIuI) d("(;Qtul) 5“2]df + :'1 [mlr'qﬁul + mld25roz]+

+ I [—kulaul + K(ug — oy Yu; — K(uy — 1))01; — keyGuy | dt

- "2 [[ d(mlul)

d(mz 1)
ds

kul + K(HZ —ul)]5u| +
+[- = K(uy —uy) = kig | 8up ) de (h

The steps used are obvious. Demanding (h) to be stalionary for arbitrary Su; and Ju,
gives again equations (f).

We do not discuss here the diificultics emerging in the case K >>k.

D.2.5 Several independent variables

Let us consider first the case of two independent variables x and y and one
dependent (argument) function ¢(x, y). The functional is typically of the type

(@)= [ fix..6.8,.9,)dA. (58)

Boundary integrals and higher order derivatives can additionally be present. The
stationary condition leads to Euler-Lagrange partial differential equation and
possible to some natural boundary conditions. We do not present any general
formulas,
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Example D.10. We consider heal conduction in the domain A with boundary s (Figure

(2}

S
Y hY b N
-y
n
Figure (a) x
The governing field equation for steady heat conduction in an isotropic medium is
J ar, o ar .
—(-k—)+—(-k—)-0=0 inA a
ax( ax) ay( ay) Q (a)

where T(x,y) is the temperature to be determined, k the lhermal conductivily
(limmé&njohtavuus) of the medium and @ the heat source rate per unil volume
(limpé&lidhteen antoisuus).The conventional boundary conditions are the Dmcﬁlel type
condition o

T=T onsp (b)

where T(s) is the given temperature and the Neumann type condition
JaT o7
~k{n, —+n,—}=47, on s c
{n, Y 3y) g, N ©

where g, (5} is the given heal flow rale density (limpévirran tiheys). The two parts sp
and 5y form together the whole boundary s without gaps or overlaps; sp\sy =3,
5p M N = @,

There is a variational principle (without a well-established name) corresponding to the
above problem. The funciional is

(7 = L[zk[(_) (5 )1 QTIdA+ [, 7,Tds @

with the essential boundary cendition (b}, We show this in the following.

The variation of (d) is first

BT BT aT ar
8Tl = L[zk{za > a] Qar}de gaOTds
37‘35T araar -
=k a5 T—QST]dA+LNq,,5Tds. )

Integration by parts formulas (B.2.1a) give with g2kdT/dx and h2 6T and with
g 2kJdTidy and h = 8T, respectively
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LkgTa;TdA g (kaT)STdA+_[k LT,
¥ dx
JT d6T 3 aT f
Lka—y?y—dA— —Lav( % )a‘rdA+j k—arn ds.
Further, because of the essential boundary condition {b). the admissible variation must
salisfy
67T=0 on s5p. (g)

Taking (f} and (g) into account in (e) gives the expression

5H= (kaT 3( k—) Q)éTdA+

+ LN (kin, o ot 7T +7,16Tds. (h)

8

As Lhe variation 6T is arbllrary in A and on sy, lhe differential equation {a} and the

boundary condition (c) result by demanding 8T1 to vanish.

If the functional contains second or higher order partial derivatives, integration
by parts has to be applied consecutively more than once.

How to proceed in the case of more than one independent (argument) functions
should be obvious from the earlier text. The Euler-Lagrange equations form a
system of partial differential equations.

Example D.11. We consider the application of the principle of stationary polential
energy in connection of an isotropic homogeneous elastic body under small
displacements in the plane strain case {Figure (a}).

bdsg
Su. I
—
Y,V N
St
Figure (a) X,

The expression for the potential energy of the body (per unit length in the z- direction)
is (Lo simplifly the calculations we have taken the rather unrealistic case ol Poisson’s ratic
v=0)
1 . du | au
= —_ = = . v)dA
Vi =, 15 ELG) (ay’ *2573 ) 1= feu= fr)dA+

- J; (Fu+ fyv)ds. {a)

Here u(x,y) and v{x,y) are dispiacement components to be determined, £ is the elastic
modulus of the material {(assumed constant in space), f,(x,¥) and f.(x,y) are the body
force components per volume and 7 (s) and :J,(s) are the given traction componeats on
the boundary 5,. On Lhe rest of the boundary 5, the displacement components are given:
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=ik, v=¥ on §,. (b)

We shall derive the governing dilferential equations and the traction boundary
condilions by the principle of stationary polential energy.

The varialion of (a) is

e an &v c?u 1 au v, du _ov
V= —5— &=
5v=[ (EI5 85 +3,05 435 505, To5I

- fifu= fySv]d.A—L (r15u+ty5v)ds. (c)

The kinemaltic boundary condilions (b) are essential ones in the principle of slationary
potential energy. Thus the admissible variations du and &v have to satisfy

du=0, Sv=0 on s,. (d)
Taking these into account and proceeding similarly as in Example D.10 gives finally the
cxpression

% 1 _,d%
;sv:-_[&[us—f : E(gf - ay)+fx]5u+
v 1. %
+HES T+ 25(9 35 2)+f,]5vldA+
+L'[[n,Eiu-+ (‘;y" —)—f16u+
v av -
+[n,E— +n,2E(Jy E» ——)—1,16vjds. (e)

The stationarity condition gives clearly the Euler-Lagrange equations

u au v

E_f &y1 +a 3y)+fx

3% It 03]
ng E(a =z +—f)+ j;
in A and the natural (traction) boundary conditions
) v, .
n,Ea’: E(é‘y )= ©
o E(‘?“ CLoW) :
» r?y 3\‘ Ix ¥

on 5,. If the medium is not homogenecus (E is not constant in space), the equilibrium
equations (f) become very complicated but expression (a) remains the same this
indicating again the usefulness of the variational formulation.

D.2.6 Constrained stationary problems

Constrained stationary problems appear also often in connection of functionals.
Thus (using matrix notation} we have to determine the argument functions
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(®}= [¢|,¢2,---]T giving a functional TI([¢}) a stationary value and additionally
constraints

(C(leh) =1(0) (59)
in the form of differential (or algebraic) equations have to be satisfied.

As an example we may consider the functional associated with the slow or so
called "creeping flow" of a viscous incompressible Newtonian fluid in two
dimensions:

M) = [ G0 + G + 15+ S0P+
—pbyu—pb v}da - L (Foe+,v)ds. (60)

Here u(x,y) and v(x,y) are velocity components to be determined and g is the
viscosity of the medium. Some of the other notations can be understood on the
basis of Example D.11. The equations of motion are obtained from the
stationarity of (60) but the admissible argument functions must satisfy in
advance in addition to the essential (kinematic) boundary conditions

’ (61}

=
v

= =

on s, the incompressibility condition

§5+&=0 in A, (62)

dx &y

The constraints {(61) and (62) are examples of (59). We have considered
essential boundary conditions this far not "seriously” as constraints as they can
usually be taken into account rather easily directly both in an analytical or
numerical solution. This way to treat them could be called the elimination
method by the analogy to the discussion in Section D.1.2. However, they can be
considered strictly as constraints similarly as {(62) which is already difficult to
take care of by the elimination method.

The Lagrange multiplier method is the classical way to treat constraints also in
connection with functionals. Thus, we can form a modified functional

I'I[_(u.v;/l)=H(u.v)+jﬂl(~3%+g—3)d¢4 (63)
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to take care of (62). Here A(x,y) is a new unknown function; Lagrange
muldtiplier function (Lagrangen kertojafunktio), The admissible u and v need no
more to satisly in advance (62). Further, we can extend the functional to the
form

MMy (0, v3 A, A, Ay ) = ['I(u,v)-i-jﬂl(g—u-i-%)dﬁl#-
X

+ ] Ruu=D)+ A, (v—9))ds (64)

to take care additionally even of (61). Two new unknown Lagrange multiplier
functions A, {s) and A,(s) emerge. There is now no constraints on the
admissible v and v (except reascnable smoothness).

We do not consider the theoretical justification of the use of the Lagrange
multiplier function method here. On the the basis of Section D.1.2 it can
however be roughly understood as follows. Let us consider first the problem
discretize in such a form where the functions u and v are represented as a set of
pointwise values wy,uy, .. v|,vg,-+-. The equivalent of the constraint equation

(62) is a set of several algebraic equations
gk(ulvuZ!"'yv[VVZV'.'}=01 k=I:2:.“ (65)

These can be produced say by approximating (62) at certain points with the
finite difference method. In Section D.1.2 the function under study was
modified in connection of constraints by adding a term of the type

zk‘:)vkgk(w,Hzr",V],sz'")- {66)
In the limit this may be consider to transform into an integral
L Alx,y) Clu,v)dA (67)

where in the case at hand

du dv
C(u,v)-87+3—y- (68)

In the general case the constraints (59) can be taken into account by introducing
a modified functional

I ((9h (AN = TI(8) + [ (MG +2,C; +--)dQ (69)
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where {A] contains as many Lagrange multiplier functions as there are
constraints. Here we have assumed that the constraints are valid in the domain

€. If there are constraints valid on the boundary I', naturally corresponding
integrals over [ will appear.

The Euler-Lagrange equations are derived as earlier considering now in addition
the contributions from the variations SA. For instance, the variation of (63) is
first

J
Sl'lL=8H(u,v)+LSA(;%+%)dA+LA(6%+6§—£)dA. {70y

Without continuing, it is immediately seen that one Fuler-Lagrange equation
will be the constraint (62) as 54 is arbitrary.

The constraints can in some problems be in the form containing a definite
integral over the domain (or over the boundary), say

Jcdenda-c=0 (71

where ¢ is a given constant. These kind of conditions are called isoperimetric
constraints (isoperimetrinen rajoite} "since the first historically recorded
extremum problem, that of finding the maximum area bounded by a perimeter
of given length (Dido's problem) prescribes a condition of this nature”, Lanczos
(1974, p. 66). :

Constraint (71) can be taken into account by the Lagrange multplier method by
augmenting the original functional with the term

M Cgnd-o) (72)

where A is now an unknown multiplier and not a function. This can be
understood again by considering the problem first as discretized. The equivalent
of (71} is then always one algebraic equation be the discrete model however
large. If there are several isoperimetric constraints, the augmented term obviosly
consists of a sum of the terms like (72).

The penalty method can be used similarly as explained in Section D.1.3 also in
connection of functionals. Same advantages and disadvantages are present. For
instance, the penalty method versions for (63) and (64) would be

c?u ab‘ 2
JAa(Jx +av) dA (73)

l'Ip(u,v)=1'I(u,v)+%

and
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and the virtual work equation (8") obtains the specific form

[L(S18ENTDAS R - [ 8 plbldQ- | SiTilar=0.]  (28)

12.1.4 Sensitized principle of virtual work

Equilibrium equations (1) are in detail in the two-dimensionat case (substitute
expressions (11.2.2") into (1))

Ecr—"-rﬂ‘—ﬂ:uba:O,
da b 29)
Q-T"—"+éﬁ+pb =0
da ob b="
or
o
dida 0 3/ob]| ° b, 0
= 30
[ 0 3/ob a/aa] :” +p{b,,} {o} Gt
ab
or
{R({ah) = (L({oD}+ plb) = [E](0) + p(b) = {0}, (31)
where the equilibrium operator matrix
dide 0 o2/adb
[E]=[ 0 adb a/aa]' ©2)

It is seen that here [E]=[S]T. The least-squares functional corresponding to
equations (31) is (see Section D.2.8)

1 T
(o)) = [ (R[5} R)4Q. (33)
The symmetric matrix [7] is a sensitizing parameter matrix discussed in Section

D.2.9. We consider here just the case with one sensitizing integral. Demanding
(33) 1o have a stationary value gives the equation (see Section D.2.1 1)

JoiLasen TR oM = 0. (34)

As discussed in Section D.2.11, a sensitized weak form — here a sensitized
principle of virtual work — is obtained as a linear combination of (8"} and (34):
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[o(818un (0100 - [ 810 piblIQ - [ 5T ir1dr +

T (35)
+[, UE1(86) TN (o} + pib)dQ =0

!

The expression {60} is to interpreted here finally as the virtual change of
stresses due to a virtual displacement 8{u).

12.1.5 Sensitized principle of virtual work for an elastic body

For an elastic material we have the expression (27):

{c}=[DI[S](u) (36)
and thus
d(o} =[D][516{u). (37N

The virtual work equation (35) obtains the specific form

[, @186)TIDNSIMdR - [ 81 plblAQ - [ 81T inpar +

(38)
+J UENDNS)S () T IIENDIS) ) + pib))d2 = 0.

Again it should be noticed that the operator matrices are to be applied on the
(total) quantities on the right-hand sides of them as far as indicated by
parentheses.

12.2 LARGE DISPLACEMENTS
12.2.1 Principle of virtual work

The govermning equilibrium equations are in the body

906 +2 20 in v ()

aaj

and on the body surface
T="n,T/ on °S. (2)

These are exactly of the same form as equations (1) and (2) in Section 12.1, only
the lower case traction symbols replaced here with the capital ones. Repeating
the manipulation with the weighting function

w(a) = w,(a)i; {3
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produces thus the counterpart of equation (6) in Section 12.1:
. ow
0 o L) 7.0
Joy b owdV + [, Tewd’s— |, 1/ .aajdv_o. (@)

The interpretation

W= 5!‘ =du = 5ukik = 5u|i1 + 5“21'2 + 5u3i3

= Bui + 5vj + Swhk (3)

leads to the principle of virtual work (statics) for a continuum in the case of
large displacements:

by "pb+6ud’V + [, T+ud'S- [, S:6Ed°V=0. (6)

Similarly as in Section 12.2, this can be written
5'W=6'W, +8W, =0 Q)
with

§W,, = .[ov b« Sud’V +I"S T.6ud"s,

®
Wiy ==, S:8Ed"V.
The double-dot product is in rectangular cartesian coordinates
S :6E = S‘J'SEU = S”(SE” +S]25E|2 + S]35E[3 +
+810Ey; + 8328E; + 5538E); +
+ .5'315531 + 5326532 + S33&33 . (9)
The terms
1 du; u;  Ju, Ju
SE; =8~ L=tk
2 (Ja da; oa | da, da; aa e
- _1_(3614 35“ 85uk duy 4+ 9% Ju, aauk) (10)
2 da; aa,- ; da;  da; dg;

are virtual Green strains. The detailed derivation concerning internal virtual
work is performed in Example 12.2.

|  Example 12.2. We consider the term
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aw 2éu
r.—=71/.
da; da, i @

in (4). We have

T/ =S5,G, G, =i, + 24, Su = Suiy. (b}
da

The first and second forms in (b) are given in (11.2.7") and (10.2.23’). Thus

déu 36y, . 8u , N Ju
T"E“s G e, ‘*”f"a_afg""‘:s' Ta, ik Sk
d ad
=35y a—"t'(’sik = 5&) (5|k a:"_
=5, (35”1 g‘fﬂ‘ﬁ_a—“&)
& da; da;
J ¥
1o (a.su, aauk dup 1o (asu EL
2" da; ; dgt 2 4 da; da
lsu(acSu, aﬁuk ﬁ) 5, 35“, 4+ 90 E;L‘L)
2 da; da; dg; da; du;
-5 1(35;1, 35“ JrSuk i‘ﬂ_ Jul aéu! ©
2" da; Bal da; du; i da;

The steps used should be rather obvious. Symmeiry of the Kirchhoff siress has been
made use of. The expression for the Green strain from (10.2.36) is

_ 12y 3" +8uk_z&)

s d
972 Ga; " 5, " 20; 9a @
Its variation EE,-- is seen to appear in (¢) and thus
yii .8 _ = S;0E;. (e
aa]

Remark 12.5. We repeat here the discussion of Remark 12.1. If we let the
weighting function w remain finite and take no specific interpretation, we have
from formula (c) of Example 12.2 the result
Ti. ow aw _o 1 aw; +3Wj +3wk8ﬂ+ﬂ3wk .
c?aj i 2 c? aﬂi aa,- aaj aai aaj

(In

The large displacement theory is seen to be present via the current displacement
state 4. We apain see that there is no absolute need to consider w as
infinitesimal and as the variation of u. [f we consider w to be the current finite
displacement &, we obtain
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du v’
La(£+a—y) dA +

+%L [0 (e — 1) + e, (v=9)2ds, (74)

Mp(u,v)= l'[(u,v)i-%

respectively. Here a(x,y), «,(s), a,(s) are given functions (normally
constants).

D.2.7 Finding a variational principle

We have considered the Euler-Lagrange equations and natural boundary
conditions above as the consequency of the stationarity condition. These are
always arrived at in principle easily by performing certain mathematical
manipulations. To proceed in the opposite direction is more difficult: Is there a
variational principle equivalent (and what is the functional and what are the
essential boundary conditions) to a given set of differential equations and
boundary conditions? This problem is dealt with for instance in Finlayson and
Sriven (1967). We do not consider it here. It is usually, however, well
documented in the literature, which kind of problems are amenable to the
variational treatment. If a varational principle is not available, the numerical
solution must be based on a suitable weak form.

Even in the case where a variational principle is available it seems that when
numerical methods are used, it is convenient to perform first the variation in
analytical form to obtain in fact a weak form and only then apply the
discretization. So the most convenient and consistent starting point is always a
weak form and we do not actually care if there is a variational principle
somewhere in the background. This theme is treated more in Section 2.10.

D.2.8 Least-squares functional
Let us consider the set of differential equations

(RU#D} = (0) 75

in a domain £} concerning certain functions ¢ with certain boundary conditions
on the boundary T". We write a functional

g = 5 [, (R TToiRIdR 76)

where [@] is a positive definite nx n matrix which may be called the weight
Jactor matrix (painotekijimatriisi). First, the multiplier 1/2 in front of the
integral is included just for aesthetic reasons. Second, the weight factor matrix
can be taken symmetric without loss of generality (See Example D.2). Third, the
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elements in the weight factor matrix must naturally have such physical
dimensions that the whole expression remains physically dimensionally

homogeneous. The admissible ¢ are assumed to satisfy in advance the boundary
conditions.

It is obvious why (76) is called the least-squares functional (pienimmin nelitn
funktionaali). It is also obvious that when the functional obtains a stationary
value — which is actually a minimum (when [¢] is taken to be positive definite)
and has the value zero — the admissible functions are the solution of the differ-
ential equations (75).

A least-squares functional with its stationary principle can apparently thus be
formed without difficulty for any set of differential equations — linear or
nonlinear — and the approach seems at the outset to be very promising.
However, in practice there are serious disadvantages. The admissible functions
must have higher continuity than in the corresponding weak forms. All the
boundary conditions must be satisfied in advance. It is difficult to find a logic
how to select the elements of the weight factor matrix. If the boundary
conditions are not satisfied in advance (in strong sense) they can obviously be
appended to the functional (76) as an additional least-squares integral over the
boundary but then again the question of suitable weights arises.

Here we have introduced the concept of the least-squares functional mainly
because it can be used advantageously as a "sensitizing” appended term to a
conventional functional to enhance the discrete solution behaviour. This is
considered in Section D.2.9.

Remark D.6. The fact that the stationarity of the least-squares functional is not
really a "proper” variational principle is seen by looking at the corresponding
Euler-Lagrange equations. It is found that they are not directly the original
differential equations of the problem but some differentiated forms of them (See
Example D.12).0

Remark D.7. In the applications of the least-squares method in the literature,
often new unknowns are introduced into the formulation so that the order of
derivatives appearing in the equations get lower and less continuity is needed
from the approximations in discrete solutions (See example D.12). The problem
with the selection of the proper values for the weight factors, however, remains
and in fact gets more difficult. O

Example D.12. We consider the simple stretched string problem studied in Example
D.7 starting now from the differential equation
Riv)s-5v"-g=0, O<x<! (a)

with the boundary conditions
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wW0)=0, vih=0. (b)

(The left-hand side of the differential equation can naturally be wrilten with an arbitrary
sign change without any effect on the final results; the minus sign used here is selected

for acsthelic reasons appearing later.) The least-squares functional corresponding to (a)
is

1 ¢t el o
M)=2 Iodex=Ej0(—Sv - qPdr (©)

where the admissible v(x) has Lo satisfy conditions (b). No weight factor is needed as
there is only one differential equation, The varialion is

S = j;(— SV = g-S&")dx = J;S( SV + q)v" dx
. j(;[S( SV + @) & dx +|:) S(Sv” + g)6v"
= [[15(5v" + @)1 Bvede— || (S(S” + )Y B+ | S(SV" + )
=[[IS(5v" + )" v + |, S(SV" + ). @
Due to the essential boundary conditions (b), 6W0)=0, &v(h=0, and the corre-

sponding terms above vanish. From (d), the Euler-Lagrange differential equation is (S is
constant)

(Sv"+q)"' =0, O0<x<l ©
and the natural boundary condilions are
(Sv"+ De=0=0, (5" + ey =0. (0

Thus, in fact, the boundary conditions are Lhe original differential equation evaluated at
the ends and the Euler-Lagrange equalion is a fourth order differential equation obtained
by differentation from the original second order equation.

The second derivative of v appears in expression (c). To use {c) as the starting poinl for a
discrete solution would demand a C? -continuous approximation. This can be avoided al
the price of introducing a new unknown function u = v*, Now the problem reads

Ra-Su'-g=0, O<x<l

Ry=u—v=0, O<x<! ®
wilh the boundary conditions
v0)=0, wN=0. (h)

The least-squares functional would be

T
L [R) Ten oA .

Mv.u)y=— d:
0 ZJD{Rz} ["21 e | R ] @
where the admissible v(x) has to satisfy (h). We face the problem of selecting the
elements of the weight factor matrix. Actually, only the ratios between the elements are

essential. Usually the matrix is taken for lack of better logic as diagonal and if we further
put arbitrarily @) = |, we end with the expression
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_lfR1T10R| _la . n2 q
n(v'“)_ZJU{RZ} [0 azz]{R* d.r—Eju[(—Su =) + oy (0= v ]dx, ()

Now it would be encugh to have a C° - continuous approximation for v and ». Some
numerical experimentation could hopefully give a clue to select the proper value for 3,
for a certain discrete formulation.

D.2.9 Sensitized functional

Courant has presented in two articles from years 1923 and 1943 a formulation
where a conventional variational principle is "sensitized" by appending the
variational expression with terms of higher order which vanish for the actual
solution. This powerful formulation has found practical use with finite elements
only quite recently.

We quote from Courant (1943): "These facts which are intimately related to
more profound questions in the general theory of the variational calculus have
suggested the following method for obtaining better convergence in the
Rayleigh-Ritz method. Instead of considering the simple variational problem for
the corresponding boundary value problem, we modify the former problem
without changing the solution of the latter. This is accomplished by adding to
the original variational expression terms of higher order which vanish for the
actual solution «. For example, we may formulate the equilibrium problem for a
membrane under the external pressure f as follows:

1) = [[, 02 93 + sy + [, k(v - 1) dvdy = min.

where £ is an arbitrary positive constant or function. Such additional terms make
I(v) more sensitive to the variations of v without changing the solution. In other
words, minimizing sequences attached to such a "sensitized" functional will by
force behave better as regards convergence [7].

The practical value of the method of sensitizing the integral by the addition
of terms of higher order has not yet been sufficiently explored. Certainly the
sensitizing terms will lead to a more complicated system of equations for the ¢;.
This means that a compromise must be made for a suitable choice of the
arbitrary positive function & so that good convergence is assured while the
necessary labor is kept within bounds.™

We further quote from Courant (1923); "Zur Erliiuterung behandeln wir die
Randwertaufgabe der Potentialtheorie fiir einen Bereich G in der xy-Ebene. Die
vorgegebenen Randwerte mogen identisch sein mit den Werten, die ein
Polynom p(x,v) auf dem Rand annimmt. Der Rand von G moge abgesehen von
endlich vielen Ecken eine sich stetig drehende Tangente besitzen. Wir betrachen
das Integral
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(1) Dlp]= fG [0 + 05 +(40)7 +(49,)% +(49,)% +(Ap,,)? +--Jdxdy,

wobei rechts liber alle in Frage kommenden Ableitungen zu summieren ist, und
fordern, das Integral D[@] zum Minimum zu machen, wenn zum Vergleiche
alle in G mit ihren Ableitungen stetigen Funktionen ¢ zugelassen werden,
welche die vorgeschriebenen Randwerte besitzen.”

Remark D.8. In the formula of the quotation from Courant {1943) there is
obviousty a slight misprint and there should probably read

1) = [ 2 492 + 2y )dsdy + ] KAy~ P )

Remark D.9. From the formula of the quotation from Courant (1923) it is
apparent that the presentation there is assumed to be in a dimensionless form as
otherwise the total expression would not be dimensionally homogeneous. 0

Let us assume that corresponding to the set of differential equations (75) with
some boundary conditions we have a functional IT{(¢}) with a variational
principle 611=10. In other words, the govemning differential equations are the
Euler-Lagrange differential equations of the variational principle. We proceed
the way suggested by Courant and write a sensitized functional (sensitoitu
funktionaali)

1,060 =TI+ f (RITErI® (RIdQ +

I d emTmd
+2 Jo g (RITEI —{R)aQ+
SE. (78)

where the nxn matrices (7], [7]{), ... can be called sensitizing parameter
matrices {sensitointiparametrimatriisi}). In addition to an appended least-squares
functional a so called gradient least-squares functional (gradientti pienimmin
nelién funktionaali) has been appended etc. It is realized that by differentiating
the governing differential equations with respect to the independent variables we
can produce new differential equations which can again be included by the least
squares method into the formulation. This is apparent from the quotation above
from Courant {1923) In (78) we have assumed a one-dimensional case for
simplicity of presentation. Also, as remarked in the quotation from Courant
{1943), the appended terms vanish for the actual solution. Of course, we must
have some logic to determine suitable values for the sensitizing parameters. This
is considered in the connection of the finite element method in Section 13.3. In
any case, we are no more just "at the mercy" of the pure conventional
variational principle. We have now available the possibility to try to steer the

D-51

discrete solution in the direction we want by suitable selection of the values of
the sensitizing parameters.

Example D.13. We consider the stretched string problem studied in Example D.7 and
D.12 and formulate a sensitized variational principle.

The governing differential equation is
Rvi=-5v"-¢g=0, 0O<x<{. (a)

Differing from the earlier cases, we now take for demonstration purposes the non-
homogeneous boundary conditions

v(0) = vg, (b
s'ih=Y (c)

where v and Vi are given quantities. Thus, at the lcft-hand end the Dirichlet type
boundary condition fixes the vertical displacement of the suppart. The physical content
of the Neumann type boundary condilion al the right-hand end tells thal a vertical force
of magnitude V; acts there (positive when acting in the positive direction of v} in
addition Lo the horizontal string force S. (Small displacement theory is assumed.) The
potential energy functional corresponding to the problem is

V(v):j;[%S(v’)l_qv]dx—V}v([). {d)
The admissible v(x) has Lo satisfy the essential boundary condition (b). The natural

boundary condition (c} is found to be a consequence of the variational principle. The
reader is suggested to find this by performing the variation.

The sensitized variational principle is thus (only the least-squares sensitizing term is
included here)

1
Y =Vi+ o jonr Rdx
X 14t "
= J'O[ES(-.: )z—qv]dx—V,v(l)+E jor(—sv - q) s, (e)

Only one sensilizing parameter T appears. It should be noticed that the parameter must
again have such a physical dimension that the whole cxpression (e) remains

dimensionally homogeneous.

D.2.10 Obtaining a weak form

Section 12.1 contains some discussion of the concept of a weak form in
connection with the principle of virtual work. We repeat here some themes
discussed earlier but now in a more general context so the terminology is not
necessarily the same as earlier with the principle of virtual work. We here first
explain how a weak form can always be generated from a variational principle.
The steps needed are just: write the stationarity condition, call the variations of
the argument functions weight functions and use new notation for them. This is
explained in Example D.14.
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Example D.14. We consider the stretched string problem studied in Exampie D.13.

The governing differential equation is

RWM=-5v"=-g=0, O<x<i (a)
and the boundary conditions are

v(0) = vy, (b)

Svih=V,. (©

The corresponding functional is
Vo) = [ 5507 = ol = Vvt @

where the admissible v(x) must salisfy the essential boundary condition (b).

The variational principle gives Lhe equation
5V = J:[Sv’ﬁv’ ~ q&v)dx -V, WD)
= [ 15V~ Bugldx— By, =0. (©)
We now denote

ovaw, ]

call w weighting function and wrile () again:
{
jo(w'sv'— wq)dx — w(l)V] = 0. &

From the essential boundary condition follows that $#(0) =0 so (he weighting function
has also lo satisfy

w(0)=0. (h

Equation like (g) is called a weak form and it is a ready starting point for a discrete
solution, in fact, a more convenient starting point than the corresponding functional. For
instance, it is seen that here in (g) the unknown function is present only linearly but in
(d) also quadratic terms appear.

Finally, il we had started from the differential equation (a) with the signs changed,
obviously the weak form (g) would have emerged also with different signs. If we would
have preferred for aesthetic reason just the present oullook (g}, we could have naturally
changed the signs at the end.

If a variational principle is not available, a weak form is produced typically as
follows. Let us consider the set (75) or written in more detail the set

R (¢.0:..9,)=0,
Ry(¢y.¢5.---.8,)=0,
. in 2 79

Ry(d).02.-.¢,)=0
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with some boundary conditions on I'. Functions @ (x}, $1(x), .-, ¢, (x) are the
unknowns to be determined and x refers to the generic pointin Q@ =QUT. The
left-hand sides of the differential equations are called often residuals (residuaali,
jifinnods) in the literature. When the differential equations are satisfied the
residuals vanish. We multiply (both sides of) the differential equations by
arbitrary functions wi(x), w,(x), ---, w,(x) — called weighting functions
(painofunktio) — integrate (both sides of) the resulting equations and add (both
sides of) the resulting equations to obtain finally one scalar equation

J T (RIQ =0 (80)

or in more detaijl
[ MRy 4wy Ry 4+ 5w, R,)dQ = 0. (81)

This is called a weak form (heikko muoto) of the problem. (The differential
equations (79) are said in this connection to present the problem in a strong
form.) As the weighting functions in the weak form are arbitrary, we see by
applying the fundamental lemma of variational calculus (Section D.2.3) that the
satisfaction of the weak form for any arbitrary set of weighting functions gives
as a consequence the satisfaction of the differential equations (See remark
D.10). It is thus understandable that we can start Lhe discrete solutions instead of
directly from the differential equations also from the weak form and indeed this
latter approach has many advantages.

We have not yet discussed the boundary conditions. To apply form (80) would
demand that the functions to be determined would have to satisfy in advance (in
a strong sense) all the boundary conditions. However, in practice nearly always
integrations by parts are performed in the preliminary weak form so that some
higher derivatives in the unknown functions vanish and some derivatives appear
in the weighting functions. Boundary terms emerge in the integrations by parts
operations and very often some information from the boundary conditions can
be fed into the weak form through them so that finally only part of the boundary
conditions have to be satisfied in advance and the rest of the boundary
conditions are satisfied implicitly (in a weak sense). Also here it is usuval to
speak about essential and natural boundary conditions with an obvious meaning.
We do not attempt to write down a general form of the weak form manipulated
by integration by parts etc. Also this resulting form is still called a weak form.
The particular examples treated later give indication of the steps used in the
manipulations.

Remark D.10. In mathematical texts, careful description of the properties and
smoothness of the unknown functions and the weighting functions have to be
discussed to be able to draw conclusions about the equivalence of the strong and
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weak formulation of a problem. This is outside the scope of this text. However,
in the discrete methods we are mainly interested in, some rather simple rules are
usually enough to give us converging solutions. 0

Remark D.11. The weighting functions must naturally have such physical
dimensions between them that the total left hand side of a weak form is
dimensionally homogeneous. J

Example D.15. The string problem of Example D.14 is used again. We assume now
thal we are not aware of Lhe exislence of a variational principle and start from the strong

form
R(wa-Sv'-g=0, O<x<l {a)
with the boundary conditions
v(0) =vp., ®)
SV =Y. {c)

The preliminary weak form is
|
_[ow(— SV —q)dxr =0,
{
.[0(_ wiv” — wq)dx=0, G))

As there is only one differential equation, the weighting function w(x) can have here
any physical dimensicn. Integration by parts of the first term in the integral gives the
form

j;[(wS)'v' — wqlde [ wsy* =0,
I;[(W'Sv' —wqydx — w(}SV'(D+ w(0)Sv' ()= 0. (e)

It has been taken inlo account that that § is a constant. At x=0, v is not given. We can
avoid its appearance in the weak form by restricting the weighting function to disappear
at x=0, i.e. we take w(0)=0. At x=1, v" (or direclly 5v') is given. We substitute this
information from boundary condition (c) into the weak form. The final weak form is thus

I;(W'Sv'—-wq)dx—w(l)Vj =0. (3]

It is identical 1o the form obtained via another route in Example D.14 (formula (g)). As
boundary condition (b} has not yet been taken inlo account, it must be satisfied in
advance in the the weak form: it is an essential boundary condition. Information about
boundary condition {c) was iniroduced into the weak form so this boundary condition is
natural. Finally, the weighting function must satisfy the condition

w(0)=0. {g)
D.2.11 Sensitized weak form

Courant presented his sensitizing idea in connection with variational principles.
By starting from this point of view and performing the variation, the basis to
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obtain a sensitized weak form in connection with any standard weak form can
be easily detected,

Let us write equations (79) now in the form

R (0.02..¢,) = Li(§1. 45, 8,) - £ =0,
Ry(. 2. 0,)= Ly(9).95.-.0,) - £ =0,

in Q (G
Rn(¢l'¢2""'¢n) = Ln(¢l=¢21""¢n) _fn =0
where the symbols L;, L, .-+, L, refer 1o linear differential operators and the
given quantities f;, f5, ---, f, are often called source terms (lihdetermi). For
instance, the differential equation (a) in Example D.15 can be written as
d%v
RW)=L(v)-f=-8§—5—-¢q=0 (83)
dx
so here
d?v
Lyvy=—8§—, =q. 84
o f=q (84)

By the notation L;(¢.¢;,-+,¢,), etc. we just mean that we have some given
rules by which the functions ¢,, ¢,, ---, ¢, are operated on by the cperators.

We have assumed that the differential equations are here linear. The sensitizing
terms can be appended clearly as such also in non-linear cases. To proceed in
more detail we, however, assume linear (or linearized) behaviour in the
following.

The sensitized functional considered in Section D.2.9 was written as

i
T((gh = TI(PD + [ (RYTT11 O (R}dQ +
1 d Tr.1(1) d
+—| —{R —{R}MQ+
> Jo g (RITIEY —(R)
o (85)
The variational equation obtained from the stationarity of (85) is

5T1, = 6T+ [ (L8021 (Re(o) a2+

d T d
+ ﬂdx[L([&b])} [t] dr{R([¢])}dQ+

+---=0. (86)
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We show in detail how the first varied sensitized term is arrived at:
1 T (@) L0 Ty, (0}
5(2 jn{R: [t] {R}dQ) = 2jn5{m (e {RAQ +

+%IQ[R]T[r](°)6lR]dQ
= [ SR (RIdQ = [ (L8911 tz) ¥ (ReGgh 140 87)

Rules of variational calculus — such as those shown in Table D.1 — have been
used. Further, the symmetry of the sensitizing parameter matrix has been taken
into account. Finally, it is realized that again by the rules of variational calculus

S(R({9})) = {L([50})}. (88)
As a simple example from (83),

2 2
6R(v)=6(—5%;— q)=~s°:k—‘§"= L(5v). (89)

The second varied sensitized term can be explained similarly. Now we make the
interpretation and notational change

(8] = [w} {90)

and write (86) in the form

|F+F‘°)+F‘”+---=o on
where
F = 68T, (more generally, the left — hand side 92)
of the standard weak form)
FO = [ LcwD) "I RN 162, (93)
FO = [ L ipqun T Lirgeniea 94
Qdx dx '

Let us now forget the variational principle and consider that a standard weak
form F =0 has been arrived at from the governing differential equations (82) by
multiplying them with the weighting functions, integrating over the domain,
integrating by parts in the usual way etc. A "least-squares weak form" F(® =0
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is seen to be arrived at directly [rom the corresponding least-squares functional.
Similarly “the gradient least-squares weak form” F =0 is seen to follow from
the corresponding gradient leasl-squares functional etc. The sensitized weak
form (sensitoitu heikko muote) (91) can thus be interpreted as a linear
combination (lineaarikombinaatio) of several weak forms. It contains free
parameters by which we can again try to steer the discrete solution in the
direction we want.

Remark D.12. When applying a sensitized formulation in connection with a
variational principle, the sensitizing parameter matrices could be taken
symmetric without loss of generality. In a sensitized weak form we can, on Lhe
contrary, finally alter the sensitizing matrices non-symmetric in the hope of
achieving more modelling possibilities. It is seen, for instance, that in (93) the
integrand consists just of a linear combination of differential equation residuals
and it remains naturally zero for the exact solutions even in the case of a non-
symmetric matrix. We at the same time now drop the interpretation that the
weak form F® = 0 was arrived at starting from a least-squares functional. 0

Remark D.13. Sensitized weak forms have gained lately much use in fluid
mechanics with finite elements where earlier difficulties to cope with convection
terms have disappeared by sensitizing. However, in fluid mechanics literature
the tenm " stabilized" formulation is employed usually in this context. O

Remark D.14. The sensitizing terms are of the least-squares type in connection
with a variational principle and consist in connection with a weak form in any
case of the equation residuals. In Section D.2.8 the drawbacks (for instance the
higher demand on continuity of the approximation with discrete methods) of the
least-squares method were discussed. Fortunately, it will be found that at least
when applying the finite element method these drawbacks to a great deal vanish.
This is shortly because the standard formulation takes care of convergence when
the mesh gets denser and the sensitizing terms are actually just needed to give
accurate results already with coarse meshes. A kind of parch test (lilkkutesti)
can be used to determine suitable values for the sensitizing parameters and it
will be found that the parameter values tend to zero with the element sizes. This
means among other things that some "crimes" against conventional rules given
in the literature can be performed when evaluating the sensitizing terms.

Example D.16. We employ the selling of Example D.15 with the only change that the
string now rests on an elastic foundation having foundation modulus k.

The differential equation is
RiMsLiv)-g=-5v"+kv-g=0. O<x<! (a)

wilh the boundary conditions

v(0) =y, (b
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SV(hy=V,. (€

The elastic foundation means that the reactive force per unit length from the foundation
on the string is of the form kv. This can be taken conveniently into account by
performing the substilution

g:=g—kv (d)

in lhe differential equation (a) of Example D.15 where the elastic foundalion was
missing. (In (a), the positive direction of ¢ has been taken to be the same as the positive
direction of v.)

The potential energy functional is available also in this case and it is
V)= [lEES0 + 302 - golde - Yud ©
02 2
with the essential boundary condition (b). However, we pretend that we do not know this
and we produce a weak form slarting from (a), (b) and (c). The manipulations proceed
similarly as in Example D.15 and we obtain

I;(W’Sv’ +wkv—wg)dx - w(l)V; =0 ®

with the essential boundary condition (b) and with the restriclion w{0)=0. As a check
we can perform the variation in {¢) Lo see readily the correctness of {H.

The sensitized weak form (91) with two sensitizing terms is

FeFO 4+ F =g ®
where here

F= J:(w’Sv’ +wkv - wg)dx - w(l)V; ()

FO = j; Loyt @R dx = | ; (=Sw” + W) T (= 5" + kv - g}, 0

FD 2 j{: E[j? Liwyr) % R(v)dx = L;[—Sw’" + (W) 1T Sv™ + (kvY — gldx. ()
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D.3 DISCRETIZATION

As has been emphasized frequently earlier, we can base our calculations on a
variational principle or more generally on a weak form and in fact a variational
principle can be always reformulated as a weak form. A discrete version based
on a weak form is called often as a residual method or a weighted residual
method or a residual formulation (jiinndsmenetelmd, painotettujen jidnndsten
menetelmd, jadnndsformulaatio) in the literature. Same type of approximations
is used both in variational formulations and in residual formulations. The only
difference comes from the way of generating the system equations to determine
the unknown parameters of the approximation.

D.3.1 Ritz method

The most common discretization procedure in connection with variational
principles is the Rayleigh-Ritz method or shortly the Ritz method (Ritzin
menetelmi), Ritz (1909). Let us consider first the case of only one independent
variable x and only one dependent variable ¢(x). The starting point is to assume
an approximation of the type — called trial solution (yriteratkaisu, yrite)

Px)=a;9,(x) |= @) (x) + @y Py (X) +++ 2,0, (x). (0

where @;(x) are given functions, called coordinate functions, (trial) basis
Jfunctions, trial functions (koordinaattifunktio, kantafunktio, yritefunktio) and
the multipliers a; — called indetermined parameters (miiriimaton parametri)
— are unknown constants. Approximation (I) is mathematically a linear
combination (lineaarikombinaatio) of the trial functions. It is often said that the
trial solution is spanned (viriltdi) by the trial basis functions. This type of
representation abounds in mathematics. For instance, Fourier series is one
important example, the basis functions consisting of sines and cosines. After
agreeing on a suitable form of (1), the only task left is to select "good" values

for the unknown parameters a -

When a variational principle is available, approximation (1) is substituted into
the corresponding functional [1(¢). After performing in principle the indicated
integrations over €2 and T (it is not necessary and not efficient to actually do
the integrations at this phase), the functional becomes in fact an ordinary
Junction

M(a,,ay,++,a,) = T1(¢) ¥}

in the undetermined parameters. This relationship is indicated here shortly with
the notation [1({a}). The variational principle in the form of the stationarity
condition_6T1 =0 is transformed into the stationarity condition of the ordinary
function IM({a}):
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M_o.| i=1,20n (3a)
da;

or shortly,
)8
—=1{0}. 3b
3al {0} (3b)

These are the discrete equations, called in the following the system equations
(systeemiyhtild), from which the parameters a are determined. The principle of
the Ritz method is contained in formulas (1) to (3).

Remark D.15. Tt is often useful to represent the unknown function in the form

| 90 =9(x)+A¢(x) | )

where @(x) is a given function in Q, a "smooth extension” of the boundary data
from the essential boundary conditions and A¢(x) is a new unknown function to
be determined. First, this formulation has the advantage that as the non-
homogeneous essential (linear) boundary conditions are satisfied by 5 , the
function A¢ has only to satisfy the essential conditions in the homogeneous
form (= with zero right hand side). Second, in non-linear problems @ may
represent conveniently the initial solution guess or the current updated solution
in an iterative procedure. We will call formulation (4) as the deltaform
(deltamuoto)} in the following. Using approximation (1), the essential boundary
conditions must be satisfied; at least approximately. This means in fact that
some of the parameters a are used for this purpose and are not included any
more as free variables in equations (3). A modified version of approximation
(1), corresponding to the deltaform (4), may be written as

| ()= 0y (1) +a,0,(x) |= 06 (x) + @@, (x) + 3,0, (X) +- -+ @, 0, (x).  (5)

Here @y (x) is a given function satisfying the essential boundary conditions, in
fact, we can have @, = ¢. This form of approximation will be called similarly
the deltaform approximation in the following. O

In the general case, the functional will be of the type

M8} = [ £z, (9),--)aQ+ [_g(x, {9),+)dT (6)
where the meaning of the notations should be rather obvious, the dots referring
to some lists of derivatives of the argument functions (¢}. Let the

approximations of the argument functions be of the types of (1) or (5) giving
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approximatios {¢} and f = f(x.[@},-), g = g(x,{P},---). The system equations
are, using more detail than in (3a),

@: i ig_ = ;= .
ol d9+'[raaidr_o, i=1,2, (7

As the undetermined quantities @ are parameters in the definite integrals, it is
permissible to take the partial derivatives with respect to a inside the integrals.
The detailed system equation form (7) is usually more convenient in practice
than form (3a) where the integrals are supposed to be evaluated before the
differentiations.

Remark D.16. A complicated question in connection of all numerical work is
the possible convergence of the approximate solution {¢} to the exact solution
(¢} measured in some norm as trial basis is enlarged without limit. In Ppractice
only a finite dimensional basis can be used and the resulting error is difficult to
estimate and some "engineering judgment" is normally necessary. In this course
we are satisfied to introduce the main approximate procedures and leave the
detailed error analyses to more advanced presentations. In equilibrium problems
some qualitative knowledge of the error can be obtained by simply comparing
the fictitious loading corresponding to the approximate sclution to the actual
loading. This is demonstated in Example D.17.0

Example D.17. Figure (a) represent a stretched string on an elastic foundation under a
point load F at the midpoint. We determine the deflection of the string by the Ritz
method using the principle of slationary potential energy.

Figure (a) Ny
The expression for the potential energy of the system is
_(rlema Ly, o 1
V(v)—IO[ES(v) + kv ldx Fu(3). (2)

where the main of the notations are clear from Example D.16. The deflections at the
supports at the ends are given:

1 F 1 F
O)=v=a——, N=va——,

== O n L2
These are the essential boundary conditions.

We take the approximation (5):

ﬁ(\f) = ¢0(t) + a]‘Pl ().‘) + ﬂ'z(Pz(.f) + (13@3(.1') +- (c)
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Perhaps the simplest choice for function @, is here the constant value
_ 1
Po(x) =7 = @

There is an infinite number of smooth extensions available and a very clever guess could
in principle in the best case give directly the exact solution, The “delta part"

APy () + 339, (x) + @y@y (x) ++ - (e)
should now satisfy the homogeneous boundary conditions
w0)y=0, v(=0. )]
This is achieved if each of the basis functions PP, -+ separately satisfies these
conditions. The sine functions
, WX . 3nx . Snx . (2j-Dn=x
q»]=51nT, %:smT. %:smT.---, ®; =sm—l—-—.--- (g}

for example, depicted in Figure (b), are here one suitable possibility. The odd factors in
the expansion have been selected in advance on the basis of the obvious symmetry of the
problem.

€

Fy APEE IR

A
NAA
IRV,

2]

Figure (b)
The approximation is wrilten shortly

¥(x) = @g(x) + 2,9, (x) )
and thus
V{(x) = @p(x)+a;@j(x) (i)

Functional (a) iransforms into
= {1
Pilal) = 12095 + 972" + 2k(@y + 9y ldx +
{ {
~Fleo()+ 49 (E)]- ()]

Equations (7) are
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a‘-/ t ’ ’ ’ i
a—; = _[O[S(q:0 +a; @) + k{pg +a, @, )p, Jdx — ngl.(i)
‘ ’ * l L [
= ]0(54’.- @; + k@@ )a;dx+ jﬂ(Sco.wo +kp, poddx— Fo,(2)

‘ 7 r ’ r s 1
= [ (500 + ko) Jdxa; + [ (Seigh + k@, @q)dx- Foi()

= K,_—ra_, -b,=0, (k)

that is, a system of linear equations

Kuﬂ} = b.‘ (l)

where
’ i 7’
K;= ID(S(p,- @} + ko0, )dx,

| S S (m)
b= Foi) - [ (Spi0G + kpigp)dx.
The steps used to obtain (k) should be obvious. Chain derivation is applied and it is
again realized that the quantities a are paramelrs with respect to integration and can be
taken outside the integral sign.

It may be mentioned that (a) is an example of a quadratic functional (kvadraattinen
funktionaali) — meaning that the argument functions and its derivatives appear at most
quadratically in it. The Ritz method applied to a quadratic funclional abways produces a
linear system of equations for the undetermined parameters. Further, the coefficient
matrix — which is called here the stiffress matrix (jiykkyysmatriisi) — is then always
symmetric. This is seen to be valid in {m). In the general case this is seen as follows.
Alter discretization, a quadratic functional TH{@}) contains the undetermined parameters
a at most_guadratically. Clearly, the term K= 8(8“([(1])/80;)9:11 and the term
K; = 5(8H({a])lar1j )9a;. As the differentiation order does not change’ the value of the
derivative, El,’;d= Ky.

In (m), § is a constant and & is here assumed 1o be a constant. Continuing in more detail,

f . 9
o (24 1)7txcos(21 [§7/54

(2i-Dr (2j-Dn
Kj=5"— - _[0 - )+
. 2i-Nax . (2j-Dax
+ kI051n 7 sin ; Ydx, (n)

- .
b= FsinM-kﬁj sin=0me
2 0 I

Performing the integralions gives

Klff=0’ i;"'jl
Qi-1y°x? 1

K(r)(i)='TS+5k[‘

bi=F-—2 _u5, iis odd, ©
2i—-Dx

b=~ -—;Idv. iis even.
2i-Ir



The basis functions happen to be here orthogonal and the coefficienl matrix is thus
diagonal. For example in the case /k/§! =4 and taking nine basis functions, the system
of equations (1) are

[OR0R4 @ 0 0 0 0 1] 0 o Jfay 0.9363
0 3276 O 0 0 1] 0 0 0 |lsy -1.0212
0 0 8211 0 1} 1] 0 0 0 ||lay 0.9873
0 0 ¢ 1561 0 0 0 0 0 ||a, -1.0091
k| 0 0 0 0 2548 0O o 0 0 Hasr=Fq 05929 1, M
0 0 0 0 0 3782 0O 0 0 flag -1.0056
0 0 0 0 0 0 52,62 0 [} ay 0.9951
0 0 0 0 0 0 0 6950 0 [|ag —-1.0042
0 0 0 0 1] 0 0 0 89.63 | a, 0.9963

It is thus wrivial to solve this for the parameters. After substituting them in (c} we have
the deflection. If more terms are taken into the approximation this happens here
conveniently as the earlier parameters a keep their old values unchanged.

The exact solulion is available in this simple case. The differential equation is (See
Example D.16)

=S +kv—g=0 ()]
where here g =0, At the midpoint the differential equation is not valid but must be
replaced by the jump condition
F
V’ - n+ = e 3
) - (v 3 (0
concerning the left and right hand side limit values of the derivative. The exact solution
is found to be

v=(2 sinh(4x/1) +L
cosh2 10

[cosh{dx/{)—tanh2 -sinh(4x!l)]]£-, 0sxs é (s)

Due 1o symmetry, the solution on 1/2 5 xS/ is obtained by reflection about the point
x=1{/2. The exact and the nine parameter approximate solution are shown in Figure (c).
The graphs are nearly identical except in the neighbourhood of the point load. It is
understandable that here the smooth basis functions have difficulties in simulating the
kink in the exact solulion.

v
L=y E\(uc“ —

F/k)

Figure (¢)

At the midpoint w({/2)=1L955F/(kl) and %(I/2)=1.865F/k]) so the error of the
approximaie solution is there about 4.6%. Figure (d) shows the approximate midpoint
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deflection ¥({/2) as a function of the number n of parameters in the approximatjon. The
exact value is scen to be approached here from below. This behaviour under a single
paint load is in fact not accidental (strictly only in the case where the displacements of
the supports would be zero) but is based on the fact that the principle of staljonary
polential energy is here a minimum principle.

v(t/2) . .
Xac

. . "

A 71 % 4 5 ¢ 7 8 2 n
Figure (d)

Considering the differential equalion (q) we can feed in the approximate #(x) and
determine the fictitious lateral loading intensily §(x), necessary lo keep the system in
equilibrium:

=-S5V +kv. ]

This way of thinking has been commented on in Remark D.16. For this loading the
approximate solution is the exact one. Figure (e) shows the loading in the case of nine
basis funclions considered above. This gives some idea of the nature of the solution. The
value of integral

j:édx = 1.038F @

is nol very far from the exact value F.

st AL
10 :
5} '
\./A‘b-'./ﬁ/\\//}\:lj \(VQ\VAMAV,\I ¥ /(
Figure (e)

It is obvious how the Ritz method can be applied in the case of several
independent and dependent variables. For instance, say in the case treated in
Example D.11, we could have the type of approximations

a(x, ) =0 (x, 7))+ a9l x ),

_ . (v (8)
7(x,y) = 9§ (x, )+ aplx ).
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Supercripts (u) and (v) have been employed to discemn the relevant quantities.
The ranges for the summation index j can be in principle different for # and 7.
Usually the same basis functions are used for all the dependent variables in
which case we can write

i(x,5) = 00" (x.y)+ ag;(x, ),

& (v} (v} ©)
W, )=y (x.y)+a; @ (x. ).

Remark D.17. If a sensitized variational principle is taken as the starting point
for the discetization — we may then speak about a sensitized Ritz method
(sensitoitu Ritzin menetelmd) — the system equations can be produced in
principle exactly in the same way as explained above; evaluation of the least-
squares type contributions just mean some extra calculations. Of course, some
criterion must be available to select proper values for the sensitizing
parameters. 0

D.3.2. Galerkin method

In this section we consider shortly the discretization of weak forms, i.e. residual
formulations. Again we explain the ideas for simplicity first in the case of only
one independent variable x and only one dependent variable ¢(x). The basic
idea is extremely simple and general. The trial solution ¢(x) (expression (1) or
in case of the deltaform, expression (5)) is substituted for ¢(x). It is realized that
the field equation and the boundary conditions cannot in general be satisfied
exactly for any selection of the values of the undetermined parameters. The
parameters can be selected, however, so that the equations are satisfied in some
average, integral sense through satisfying the weak form with respect to some
suitable weighting functions. This procedure produces the system equations
from which the parameters can be determined.

Different versions of the residual formulation are obtained according to type of
finite dimensional weighting functions used. The most common versions are the
Galerkin method (Galerkinin keino), the subdomain method or subdomain
collocation (osa-aluekeino), collocation or point collocation (kollokaatio). These
are explained very clearly in Crandall (1956). The least-squares method as a
discrete form of the least-squares functional stationarity principle can be also be
interpreted as a residual method.

In the Galerkin method the weighting functions are taken from the set of trial
basis functions. (What is meant by this in a general case of several unknown
functions with different type of approximations is not necessarily quite
obvious.) The Galerkin method is in practice by far the most important version.
Sometimes the Galerkin methed is called the Bubnov-Galerkin method and as its
opposite, if the weighting functions are not from the set of trial functions, the
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name Petrov-Galerkin method is used. In fluid mechanics finite element
applications, for example, some efforts to overcome problems with dominant
convection have been based on using so called upwinding (yldvirtapainotus)
which means a kind of Petrov-Galerkin method,

Remark D.18. When using the variational formulation as the basis for the
discretization — and thus the Ritz method — after the applier has decided on
the approximation, there is nothing else to decide on (of course in a sensitized
principle the sensitizing parameter values); the system equations follow by
turning the handle in a prescribed way. In a residual formulation, on the
contrary, there exists in addition the decision on the type of weighting functions
to be used. This clearly increases the discrete modelling capabilities but it also
makes things more complicated for the applier. In practice the Galerkin method
is a good compromise and when it is applied it in connection with a sensitized
weak form — then it may be called a sensitized Galerkin method (sensitoitu
Galerkinin keino) — increased modelling capabilities come through the
sensitizing parameter values. In the following, we sometimes use the termi-
nology standard Galerkin method when the Galerkin method is used in its pure
classical form as opposed to the sensitized form. O

How one proceeds in detail in the Galerkin method and the generalization to
other cases should become clear from the following example.

Example D.18. We look at Example D.17 now from the corresponding weak form poinl
of view using the Galerkin methed.

The weak form is

j;( WSV’ + wkv)dx— w(é)F: 0 ()
wilh
__LF _._I1F
vi)=Vv =1—6E' vh=V= ol {b)

as essential boundary conditions and with the restrictions w(0) =0 and w{{) =0. These
can be obtained immediately from the variational presentation of Example D.17 in the
way explained in Example D.14. If we start alternatively from the differential equation,
when employing integralion by parts, care must be exercised to lake into account the
discontinuity in the first derivative of v due to the poinl load.

We take the same approximalion
V() = Po(x) + 0,9 (x) (c)

as in Example D.17. When this is substituted in (a), the left-kand side is transformed into

! , i
J'n[w'S(qo;, + @@ )+ wkigy + @ )1de - w()F. (d)

The system equations
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F=0. i=1.2,- (e)
usirtg the Galerkin method, are oblained by taking conscculively w=@,, w=gq,, ..
and by demanding the discrete weak form Lo be valid:

i , 4 .
F,sjow:swa+a_,:p,)w.k(cp.,+a,qo,)1dx-a=.-(5)F=o. i=1,2, (R

Further manipulation produces exactly the same linear system of equations
Ka, = b, {g)

as in Example D.17. It is in fact a general resuit that application of 1he Ritz method with
a variational principle is equivalent to the application of the Galerkin method with the
corresponding weak form. However, as stressed earlier, the Galerkin method can be
applied in connection with weak forms even in those cases where there exist no
corresponding variational principles,

D.33 Kantorovitch method

In some applications the independent variables are of distincly different
character. In a bridge, the coordinates in a cross-sectional direction and the
coordinate in the spanwise direction have clearly a different role. The most
obvious example is the difference in character between the space coordinates
and the time coordinate in a dynamics problem. It is then quite natural to let this
kind of situation to affect the type of approximation used. As an example, let us
consider a time dependent displacement field in two space dimensions. A
consistent generalization of (8) would be
d(x,y.0= 0§ (x,y,0 +aM(x, 3.1,

#x, 3.0 =08 (x, 5,0 + a}")q)g-")(x 1),

(10)
that is, the basis functions are defined in the xyr-space and the undetermined
parameters a are again unknown constants. An alternative, giving the time a
different role wouid be

a(x,y.0 =93 (x,y.0+aM (09 x y),

11
#x,y.0 =08 (x,y,0+ a7 (008 (x.y). (o
Here the undetermined parameters a are unknown functions of time. This kind of
representation applied in connection with variational principles is called the
Kantorovitch method (Kantorovitchin menetelmi). More generally, a repre-
sentation like (11) is called for obvious reasons as semidiscretization (semi-
diskretointi, osittainen diskretointi).

When a semidiscrete form like (11) is substituted into a corresponding
functional and integration over (in this case) the space coordinates is performed
there remains a transformed approximate functional in the form of a definite
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integral with ¢ (here) as the independent variable containing several arguments
functions a(s). This is the case considered already in Section D.2.4. The
stationarity condition gives several Euler-Lagrange ordinary differential
equations and possible natural boundary conditions. This problem must usually
be solved in practice again by some numerical method.

Example D.19. We consider the problem of vibration of a stretched string on (he
x -axis (Figure (a)).

g
{ |

5

|
[ 9 v
Flgure (a)

Some of the relevant notalions have appeared carlier. The solution domain in the
xf-plane is shown in Figure (b). The differential equation formulation of the problem
cotisists of the partial differential equalion

atv W
-5 -g=0
P ok 7 @
with the boundary conditions
w0.0=Ve(t), W=7 ()]

and the initial condilions
W50 =gl 2(50) = A, ©

Here p(x) is the mass density (per unit length) of the string. The dynamic differential
equation is obtained from Lhe corresponding static one just by the substitution
¢:=gq-pd*v/ot* and by some obvious change in notation. The quantities %y{r), (1),
g(x), h{x} in the boundary and initial conditions are given functions.

I_
—F=ty
Fobeso
X

Figure (b}
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An alternative is Lo start from the Hamilton's principle applied already in Example D.9.
The functional is

_ U | av 2 1 aV 2
)= [ {12 pG0? =5 8500 + qvidside. C

If ¢ depends on time, it is no more conservalive but however monogenic (See Section
4.1.3) and Hamillon's principle is still valid. The essential boundary conditions for the
argument [unction v{x,f) consist first of all of the boundary conditions (b) similarly as
would be the case in a slalic problem using the principle of stationary potential energy.
Further, the argument function must satisfy the first of (¢) at =1, =0 and a similar
condition at ¢ =, where Lhe condition is is fact not available but nothing prevents us for
the time being Lo imagine that we know it. At the end we find that we do not actually
need this condition to solve the problem.

We take a representation like (11):
¥(x, 1) = @o(x.0) + @; (x)a; (1). (e)

Function ey could be for instance a linear interpolation in the x -direction between the
values ¥, and ¥:

@olx. 1) =(L— x/1)- T (1) + x/1-5(1). 16}

One convenient selection for the basis functions @; is

@ (x)= sinJTmr . ®)
This choice makes the representation {e) to satisfy the boundary conditions (b).
From (e),

av _ dp,  do(x) 2L

=R =22 L w'a. h

dx dx * dx %) ax + oG )
and

v _dp da;(¢)  deg . .

Tl A i L L &

Substituting these into the functional produces first
=12 0222 4 9.6.)(0% 4 0,4

Metah) = [ 2[5 P52 +0:6 )50 4 @iy +

1. 9oy

5%

2 ( dx

It should be noliced that for instance in the expression (@9/31)* = (397 INIo! Ir) we

must use different letters for the summation indices to avoid errors. Performing the

integrations with respect to x and taking into account that a; and &j do not depend on x
we artive at

+oja; )(%”f- + Piar) + 9(Pg +9;9))ldx}dr. Y

5 1 ¢t - |
Mclal = [ 15 (o0 @iy o ([ Sojoidniaza, +
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1 L . 1 .3 ,
+([ya9,809 +(f p S0, a0, ~([,55 20} dx)a; + cds. (k)
Shorthand notalion ¢ refers Lo those terms not containing functions a and a. Afler
performing the integration with respect 1o x, there remains at most the dependence on 1.
Functional is of the type (D.2.53). If orthogonal basis funclions such as (g) are used, (k)
simplifies. We do not continue into the details. Constant (¢ with respect to the argument
funclions) has no effecl on the Euler-Lagrange equations.

After deriving the Euler-Lagrange differential equations we can forget the imaginary
boundary condition at the future lime ¢ =r, and start to make use of both of (he initial
conditions (c). Wilh a finite number of basis funclions we cannol in general satisfy Lhese
condilions exactly. A residual formulalion, for instance, can be used here. As an
example, a least squares formulalion is described. We form the integral

IKla0)) = 3 [, [7(x.0) - g

= 2 9000+ 8, (33, 0 g3 0)
Demanding this to be stationary wilh respect to ;{0 gives a linear sct
Kya{0)=b {m)
with
Ky = I:, @;p;dx,

I (n)
b= Io (9,8 —P:@o(x,0)]dx

from which the a,(0) can be determined. A similar formulation can be used with respect
to the second boundary condition starting from

(a0 = %I{: [%(1'0) ~ h(x)Pdx
a .
- %J: [%:Q (x.0)+@; (x)d; (0) - A(x)]dx. .

This gives the &j (0). Thercafter the pure initial value problem with the given initial
values a; (0) and Ezj(O) can be solved in one or the other way.

Semidiscretization can be applied naturally also in connection of a weak form.
The following example gives an illustration.

Example D.20. A weak form corresponding to case of vibration of a stretched string
considered in the previous example is

i dw _dv v _
jﬂ(_a-;s;+wPTr-—wq)dr—o (a)

with the essential boundary conditions

(0.0 =%, vI.D=7" (b)
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and with the restrictions
w(0,)=0, w({l.0)=0. (c)

Equation (a) is arrived at in the same way as explained for instance in Example D.15.
This is in accordance with the semidiscretization to follow: the solution domain is in
space and time but we here concentrate first on a fixed moment of time and integrate just
over the space coordinale to obtain the weak form. Similarly, we do not care about Lhe
initial conditions at all yet.

Approximation

¥(x,0) = @olx . )+ @;{x)a, (1) (d}
is substituted into (a) and the left-hand side ransformes into
1w 3‘?0 ¢ a!¢ .
D[Esfx*'%aj)+Wﬂ(#+¢jﬂj)—“’91d1- O]
The syslem equations
F(N=0, i=12,- ()]

using the Galerkin method, are obtained by taking consecutively w=g;, w=g,, ...
and by demanding the discrete weak form to be valid:

b e 7 d* .. )

Fns |, lcP.-S(j'}w,-aj)+¢,-p(?f§‘l+q>,-aj)-¢,.q]dx=o. i=1,2,- ()
When these are manipulated further in delail, we find that the have obtained a linear
system of ordinary differential equations with time as the independent variable:

M‘ft‘l"} + K,Jaj = bi (h)

where
!
M;= J.opq?" ®;dx,
! 3 .
K= jo S@;@jdr, (M

{ ., ! 32
b= joq"qu _Ioswfi;fa— Iopqp"jrgo-dx'

It is seen that the right-hand side of (h) can depend on Lime through g and @g. Matrix
with the clements A, is called the mass matrix (massamatriisi). It is seen to be
symmetric, This is clearly due to the Galerkin way of selecting the discrete weighting
functions. The initia! conditions on a, (1) can be oblained the way explained in Example
D.19.

It is obvious thal by starting from the weak form we can arrive at the discrete equations
with less effort than by using Hamilton's principle.

Remark D.19. In dynamics, a procedure familiar from particle mechanics to
generate the equations of motion is the application of Lagrange's equations
(Section 5.6). We can alternatively rely directly on this method when faced with
a continuum problem. After applying semidiscretization and by then

D-73

interpreting the undetermined parameters, say, ag")(r) and a}") (), in equations
like (11) to be generalized coordinates g(r) we are at the position to apply
Lagrange's equations of motion. We just first form the discretized expressions
for the kinetic energy of the system and for the generalized forces. There is then
actually no need even to see the corresponding continuum equations. Naturally,
system equations for equilibrium problems are obtained also as special cases of
Lagrange's equations with zero kinetic energy. 0

Example D.21. We consider the problem treated in Examples D.19 and D.20 once more
now making use Lagrange's equations of motion,

The kinetic energy of the string is
i av.a
=3 PG @
and strain energy (potential energy of the internal forces) is
1¢_ v 2
Vi == S{(—)dx
e =7 _[0 Gy )
We deal with the distributed loading here by considering its virtual work
!
W, = joqau dr. (c)
The approximation

¥(x.0) = @ (x. 1} + @; (x)a; (1) (@

is inireduced. Expressions {a), (b} and (c) are transformed into
= Ll de . L O, .
T=Efop(3}g+¢jﬂ;)(3q+¢kﬂ¢)dx
1 ... 3y, .l 9@y
= E(JUP%%CD‘)“; a +(JDPEQ'%¢‘)01 + ELP(—‘;‘&) dx, (e)

% 1 a¢ + 3¢ ’
Vim = Ejns(—ﬁ'+ ‘Pjaj)(Eq' +@pa,)de

1, , 1 .dpy , 1t do
= E(J‘O-g%%d-t)ﬂ, a +(JOS§Q¢de)aj + EJOS(EQ)ldx' (D
o { 1
5Woy, = [ 9389 )dx = ([ g 0; d0) ;. ®

IL is seen that some terms appearing in Hamillon's principle in Example D.19 naturally
emerge also here, It is realized that the varialion & in ils discretized form &5 is
restricted to the variations da, of the undetermined parameters.

We write further
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f:lMﬂaarHIP gdﬂa+—fp@@h

2
i - av T = K.a jsa% ¢ dr, (b)
(5'“'“‘ = Q;ltsaj

with the mass matrix and stiffness matrix elements defined earlier and with

g =] qw;dx. 0

It can now be said that "the syslem can nol see the difference if it is the the result of a
discretization or if an original finite degree of freedom problem is represented.” We
obtain by applying formulas of Section 5.6 the system equations as the Lagrange's
equations

ext |nt_£a_f . j
oT e T dtog IS 0

Wriling thesc in delail, it is found that equations (h) of Example D.20 are reproduced.
D.3.4 Finite element method

Introduction. In the immediately following presentation we assume some basic
knowledge of the finite element method from the reader, We later elaborate in
more detail on the subject. In the finite element approximation (elementti-
approksimaatio) the basis functions are defined in a piecewise manner. Let us
consider Figure D.6 showing schematically two typical basis functions of the
classical Ritz method and of the finite element method in a simple two-
dimensional rectangular domain with one dependent function ¢{x,y).

Figure D.6 (a) Two basis functions of the classical Ritz method. (b) Two
typical basis functions of the finite element method.
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In both methods the approximation is mathematically stili a linear combination
of the basis functions (we leave here out the possible @p(x,y) part in the
approximation; see Remark D.15):

$(x.y)=a;@; (x,), (12)

the difference is in the character of the basis functions used. In the Ritz method
— or to emphasize the old original form of the Ritz method we might call it the
classical Ritz method — the basis functions are smooth functions in general
non-zero in the whole domain €. In contrast, in the finite element method, the
basis functions are due to their piecewise definition non-smooth and they are
non-zero only in a small subdomain of Q. Further, an additional difference is in
the interpretation of the parameters a. In the classical Ritz method they usually
have no clear physical meaning; in the finite element method they are the values
of the function to be determined at certain points, called nodal points or nodes.
Using the conventional notation established in the finite element literature, we
can write (12} in a the form

B0 =N (5,0, | (13)

where ¢, are the nodal values and N, (x,y) are the basis functions, called
usually shape functions.

In the classical Ritz method it is often very difficult to find suitable basis
functions in complicated geometries satisfying the essential boundary
conditions. By defining the basis functions in a piecewise — elementwise —
manner, it is easy to satisfy the boundary conditions at least in an accurate
approximate way.

The final system equations after discretization are in a linear problem of the
linear type

Kia; =b;. (14)
both in the classical Ritz method and in the finite element method. If the basis
functions have no special properties the system coefficient matrix becomes fully

populated and the solution is expensive. It would be advantageous to have
orthogonal basis functions satisfying

[j@ifoaa=0, i=j. (15)

If these type of relations are valid in all terms forming X,;, we end up with a
diagonal coefficient matrix which would be ideal from the computauona] point
of view. (In Example D.17 this happened to be the case.). In two or more
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dimensions it is usually not possible two achieve this in practice completely.
However, the finite element method automatically almost achieves this goal . It
is namely realized that

-[n N;fN;dQ=0,  when nodes i and j do not belong
together to any element in the mesh. (16)

This is obvious from a look at Figure D.6(b). In a mesh of say hundreds or
thousands of elements, two shape functions ¥; an N; are each non-zero in small
subdomains consisting of just those elements having node i or j common,
respectively. The non-zero parts thus seldom happen to overlap leading to most
of the coefficients X|; to have the value zero. We could thus say that the finite
element shape functions are "almost orthogonal” basis functions. This is
computationally extremly advantageous and one main reason for the practical
success of the finite element method.

Finite element approximation. Due to the practical importance of the finite
element method we describe concisely in some detail the main concepts and
terminology of it.

Essential in the finite element method is its systematic way to approximate
continuous functions by a discrete model (diskreetti malli). The model is
generated by dividing the domain of the function under consideration in sub-
domains or so called finite elements (elementti) (total number n,). On the
boundaries of the elements and often also inside them certain points, so called
nodal points or shortly nodes (solmupiste, solmu) (total number n,,), are further
selected. The resulting configuration is called the element mesh (elementti-
verkko).

Figure D.7 Division of a two-dimensional domain in triangular elements
(n, =14, n, =13),
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Figure D.8 Linear approximation of ¢(x, y) in an element having nodes &, I, m.

—/7%--7}\ Ly

&
N 43
e

A{ Y,

Ny (!,")\

()
Figure D.9 (a) Approximation ¢ of ¢. (b) Three global shape functions.
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The function is approximated in each element with simple functions — usually
polynomials — by which it is interpolated inside the element employing its
values at the nodes, the so called nodal velues (solmuarvo). This procedure is
illuminated in Figures D.7, D.8 and D.9 for a function ¢(x,y) of two
independent variables x and y.

We can realize with the help of Figure D.9 that it is possible to define
interpolation functions or in the finite element terminology so called shape
JSunctions (muotofunktio) N;(x,y), i=1,2,-- -1, 50 that the approximation in the
whole domain can be expressed in the linear form (with respect to the nodal
values) :

Bx )= 3N, (6 )8 | = Ny(x, )0, + Ny(x,3)0, +-- a7

i=1

A shape function obtains the value one at the node corresponding to its index
and the value zero at all other nodes and differs from zero at most in the
elements connected to the node in question.

After a certain element mesh with its corresponding shape functions has been
selected, according (1) the approximation is wholly determined by fixing the
discrete nodal values ¢;.

The way of presentation (1) is suitable for theoretical considerations but in
practical calculations these so called global shape functions (gobaali
muotofunktio) N; are not used. Namely in the domain of a certain element e,
approximation (17) can be clearly given simply as

§°(x.3) = Y Nf (1,305 | = NECRYIOE + N (x, )5 +-- (18)
i=l

where the quantities N are so called local or element shape functions (lokaa-
linen muotofunktio, paikallinen muotofunktio, elementtimuotofunktio) which
have been defined only in the domain of element e. (They coincide with the
global shape functions in the element domain because the global shape functions
are obtained in a piecewise manner from the local ones.) n is the total number
of nodes of element e. The values 1,2,.--,n; of index i refer to the so called
local node numbers or local indices or node identifiers (sis4inen, paikallinen,
lokaali solmunumero). At a local node r

¢; = ¢; (19)
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where i is the so called global node number (ulkoinen, globaali selmunumero)
corresponding to the local node number r. In (19), we can similarly also speak
about local and global nodal values. The global and local numbering of the
nodes and also the numbering of the elements is performed normally starting
from number | without "gaps”. Figure D.10 describes the local shape functions
in our example case in a generic element e.

. TN Glebal b 'F
e = e Y - v node number
$ (x,4) .__Z;N'(xll?]‘i" —;:Zk‘]:l‘,':xﬂﬂ".

N3(X ),
Nm (x )
(b)

Figure D.10 (a) Approximation of ¢ in element e. (b) Element shape functions.

Let us consider as a specific example the element 5 of Figure. D.7. Let the local
node numbering for it be that shown in Figure. D.11. Thus according to (18)
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Figure D.11 Element 5.

0> (x,y)= N} (x, )07 + N3 (x, )63 + N3 (x, )93 (20)

and as additional information there exists the correspondence given in the
following table

Local number r Global number i
1 = 7
2 = 4 1)
3 = 6

This type of data for each element is enough to describe the connection between
the global and local shape functions and between the global and local nodal
values. For instance, we now know based on the table and equation (19) that

=0, ¢3=0s 0= (22)

The element used in this demonstration example is called three-noded or linear
triangular element (kolmisolmunen tai lineaarinen kolmioelementti). There are
many kinds of elements well documented in the literature. We do not attempt to
describe them at any length, some are considered in the applications.

System equations and the assembly process. It should again be emphasized
that the finite element method applied in connection of a variational principle is
just a version of the general Ritz method. Thus the system equations are still
obtained from (3):

o1

a-:=0. (23)

Remark D.20. This far we have called the discrete unknowns in the finite
element method as nodal values (solmuarvo). This is appropriate if we have
only one unknown quantity per node, say the nodal value of the temperature. In
more general situations we may have several unknowns per node, say two
displacement component components, the temperature, etc. The discrete
unknowns are numbered starting from number one (usually in some fashion
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following the nodal numbering both for the mesh and for an element) and we
shall call them here in general as nodal parameters (solmuparametri). A much
used synonym in the literature is degree of freedom (vapausaste} but this is not
very pertinent as the proper term from classical mechanics would be generalized
coordinate; see Section 4.1.2. We often still use the general notation a for the
nodal parameters as in (23).0

One basic property of the finite element method — not present in the classical
Ritz method — is the following formula

[Joda=3 [ odo (24)

e=1

based clearly on the properties of the definite integral. This simple fact is
fundamental in the finite element method: the integral over Q2 can be evaluated
by evaluating separate integrals over the subdomains Q° of Q and by summing
the contributions. (A similar statement can be given with respect to T"))

In the variational finite element method this means first that
n!
=7y ¢ 25)
e=1

and second that

ne
n=>%rn- (26)
=]
and finally that
= o oo
II _ soll” 27
da; .2 0a;

The meaning of the notations should be obvious. The last result means that the
left-hand sides of the system equations can be assembled by summation from
separate element contributions. Literature contains detailed bookkeeping rules
for the assembly process (kokoamisprosessi) based on the connections between
local and global nodal parameter numbers. In practice this phase is important for
efficient calculations. However, in the small simple demonstration applications
of this course we will generate the system equations without using any detailed
assembly processes.
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Example D.22. The problem of a stretched string on an elastic foundation of Example
D.17 and D.18 is treated here by the finite element method.

Two-noded or linear line elements (kaksisolmuinen tai lineaarinen janaelementti) are
used. The element shape functions are {Figure (a))

N=1-E  Nf=g @

where £=x/h (0S£<1) is a dimensionless elementwise coordinate, x is a local
elementwise coordinate measured from the left-hand end of the element (this double
usage of the notation x should not cause confusion) and # is the length of the element.

< [
4 N4 28 4 N 2

Figure (a)

The interval [0,{] is discretized by eight equal length h={/8 elements. The global
numbering of Lhe nodes is consecutively from left 1o right. Figure (b) shows the graphs
of the first four global shape functions and their derivatives.

M. 1 Ny
77 35 %75 9 A T T AE 1
Vs SR
Ny | Nz
N |
Ny 1 N
\/ 1_‘
- N — Na
7 .
Flgure (b)
The finite element approximation is
9
F(x)= 3 N(x)v;. ®)

j=l

The nodal paramelers v; are here approximate nodal values of the deflection v. The
essential boundary conditions (0} = v(/} = ¥ can be salisfied by taking
1 F

v]=vg=FEEH. (©

This is an example of the simplicity in the finite element method to deal with the
essential boundary conditions. There are two ways to proceed in delail with respect to
the boundary conditions. This is connecied to Remark D.15. First, we can introduce a
@y - function (or using Lhe current notation, a A -function) as

Pl x) = Ni(x)v + No(x)vg. (d)
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This is cleatly the simplest possibility using the finite element representation. The
corresponding graph is shown in Figure (c).

2 Po g 1

N S

<]
\

Figure (c)

The parameters v| and vy have been made use of for taking care of the boundary
conditions and only the resi of the parameirs are free to be used in connection of the
stationary condition. An altemative way to proceed, often employed in the literature and
practice, is to "forget” the boundary conditions al this phase and to take them into
account later. We proceed in this second fashion here.

The potential energy functional is
LT P I T ) 1
Vv = Io[—sz(v 7+ kv dx - Fu(). (e)

We will derive the relevant expressions without Lhe assembly details. The Ritz method in
Example D.17 gave the system equations

Kljaf = b,‘ (f)
with the expressions

i
Ky = [, (S0i 9} + ko:@; )dx,

oo, (2)
b.'=F‘P.-(E)-ID(S‘P.'#’o*'k?’ﬂ’o)d—r.

There is no need to repeat the steps as we would naturally get the same result only with
a little bit different notation. Thus we have the system equations

9
YKy =b, i=1,2,-9 (h)
j=l
with (as we have ignored the boundary conditions at this phase, we put here @g = 0)
I ’ ’
K; = [,(SN{Nj +kN; N, )dx, _
[ @
bl' = FN.(E).

The terms can be produced by Mathematica or as § and k are constants, they can be
rather easily evaluated just by the help of Figure (b). The final outcome is (again the case
Jk/ 51 =4 is taken)
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[6 22 0 0 o 0 0 o0 0}y )
21 52 =220 0 0 0 0 0w 0
0 =23 52 23 0 0 0 V] 0 || 0
0 0 =23 52 -22 0 0 0 0 ||y 0
:—; 0 0 0 -23 52 -23 0 0 0 [vt=r1} 0
0 0 0 0 -23 52 -23 0 O (v 0
0 0 0 0 0 -23 52 =23 0 |ln 0
0 0 0 0 0 0 -23 52 -23|v )
0 0 0 ©° 0 0 0 -2 26]% 0

The coefficient matrix is no more diagonal but it is however rather sparsely populated
for reasons discussed above. Now it is yemembered that variables v, and vq are not free
and thus the [irst and last equations dV/dw =0 and dV/Jwy =0 are in fact not correct.
They are discarded from the set and in the res! of the equations the given values w=v
and vy =¥ are introduced and the corresponding terms (enly two tenms) are transferred
lo the right hand side. This gives the final set

(52 =23 0 0 0 0 01w 23
23 52 -2 0 0 0 0 |y 0
0 -1 52 -3 0 0 0| 0
:_; 0 0 -23 52 23 0 0 {v "T;J 480!, (9
0 0 0 23 52 23 0 v
0 0 0 0 -23 52 -23v 0
LO 0 0 0 0 23 52w 73

The solution is

vy = vg = 0.334 FKKI), vy = vy = 0.655 FAkI), N
vg = vg = 1146 FAKL), vs ~1.937 FAKI). (

At the midpoint the deflection ¥#(1/2)= v = 1.937F /(kI) whose error compared with Lhe
exact value v({/2)=1955F/(k!) is now only 0.9%.

The solution by the Ritz method formulation of Example D.17 using five undetermined
parameters and the present finite element solution with four elements are shown in
Figure (d). To sce the differencies clearly, only this small number of parameters have
been used. Though the finite clement solution generates jumps in the derivative at points
where the exact solution is smooth, it can on the other hand automatically simulate the
kink under the point force where he classical Ritz method has poor approximation
properties.

0.2 0.4 .6 3.8 I/l

0.75 R':"Z

S
1.25} ~ Finite
150 element
MR/ (k)

Figure (d)
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It should be mentioned that the order of the numbering of the nodes of a mesh
influencies the distribution of the non-zero terms in the system coefficient matrix
because normally the equations are listed in the order indicated by the numbering. Thus,
for inslance, if the numbering here would be the one shown in Figure (e}, say the second
system equation would conlain the nodal values v, vy, vy which would be quite
different from the corresponding equation in (j) which contains the values v, v,, vy Ifa
5o called banded solver is used, the numbering of Figure (e) would be disadvantagcous.

4 L 5 & ¥ 3

Flgure (e)

We have described the application of the finite element method and especially
the assembly process this far from the variational principle point of view. If a
weak form is taken as the starting point, it is readily seen that the assembly
process remains the same in the sense that that the Jeft-hand sides of the system
equations can be generated from summations from the elements. As an example,
let us consider the third system equation in Example D.22 using the Galerkin
method. It is obtained by taking in the discretized weak form

j;(w'sa' + k) dx - w(é)F =0 28)

the weighting function w to be the global shape function N;. We see from
Figure (b) of Example D.22 that the contributions to the left-hand side of the
system equation come separately from element 2 and element 3. The use of the
finite element method in connection with a weak form is explained further in the
next section.

D.3.5 Sensitized Mnite element method

The sensitizing idea of Courant has advanced combined with the finite element
method recently so far that specific recipes can be given (at least in one
dimensional cases) for the appropriate sensitizing parameter values. We will
describe this in connection with the setting of Example D.16.

The govemning differential equation is
RW=L(v)—-g=-Sv"+kv-g=0, O<x<l. 29)

We employ here the weak formulation and the Galerkin method. The standard
weak form is

J;(W’Sv’+wkv—wq)dx+bt=0 (&]0)]

with some essential boundary conditions. The notation bt refers to some
possible boundary terms due to the natural boundary conditions.
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An ideal finite element solution would be such that its nodal values are exact, in
other words, it would be the interpolant to the exact solution. A nodally exact
solution cannot be unstable and it is a very good starting point for adaptive
procedures and for error estimation.

Let us consider (29) in a specific case with zero loading, with some given
boundary displacements v(0) = v(!) = v and the case of a very high value of the
representative foundation modulus . In more detail, the dimensionless number

ki®
=75 B0

is large. Figure D.12 shows the solution obtained with four equal length two
noded (linear) elements in the case of constant k and with C = 1600 using the
standard Galerkin method.

Figure D.12 Exact solution (E), standard Galerkin finite element solution (G),
finite element interpolant to the exact solution (1), sensitized Galerkin finite
element solution (§G).

The exact solution shows boundary layer (rajakerros) behaviour. The higher the
value of C, the shorter the length of the interval near the ends where the solution
is essentially non-zero. The standard Galerkin method solution is in fact the best
solution in the so called energy norm

vl = [jn’(u'swwkv)dx]” 2, (32)

This result is, however, not at all satisfactory in practice. Although the desired
interpolant to the exact solution, indicated also in Figure D. 12, is similarly very
far from the exact solution, it is clearly a better starting point for refining the
mesh adaptively as it is relatively easy to evaluate the errors in the elements
(errors are clearly large in the first and in the last element) as we have exact
boundary conditions available for each element.
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Some consideration shows that the oscillations in connection with the boundary
layer type behaviour can be removed here in particular by the gradient least
squares sensitizing term. Thus we write the sensitized weak form

J’n(w'sv' + wkv — wq) dQ + bt + jn% Lw)r® % R(MdQ =0 (33)
where

d i/ , r

—R(V)==-5v" +(kv) — ¢,

dx (34)

d

S LOW) == 5w+ (ow".

We have used general domain notations to simplify the subsequent expressions.
The discretized version of the weak form (33) looks (two noded linear elements
are used)

crece  mps o - d o d oy
)Ejn,(w S7 +wkv—wq)dQ+bt+‘€,jn,d—x-L(w)t L RoHe=0 05
where the summation is over the elements of the mesh used. Here, in an

element,

d
—R(¥) = =S¥ + ki — ¢’ = k¥’ — ¢,
o (¥) q q

4
dx

(36)
L(W)=-Sw"” + kw' = kw'.

The latter expressions are due to the first degree approximation used. It is seen
that the expressions have been also simplified by assuming some constant
representative value for k even in the case where it might depend on position.
Based on a similar argument as that explained in Remark D.21, no violation
with respect to convergence is introduced. It should also be noticed that by the
notation w is meant here that the weighting function is taken from a finite
dimensional set (here in fact from the set of trial functions); the tilde above the
symbol w does not mean approximation as it means above the symbol v; we
cannot approximate a weighting function, we just select a weighting function to
be employed in a weak form,

Remark D.21. At a first glance, an objection about the formulation could be
easily raised with respect to the low continuity of the approximation. For
instance, the derivative v"" appears in the gradient residual dR(7)/dx.
According to well-known conventional rules of the finite element literature, this

would demand a C2-continuous approximation for convergence. However, it
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must be remembered that when studying convergence, the element sizes tend by
definition towards zero. Thus roughly speaking, with finite sizes of the elements
any kind of extra terms producing beneficial behaviour can be used if these
terms vanish fast enough when the mesh gets denser. The sensitizing term is in
fact later seen to vanish when the element size gets to zero. We need no
sensitizing in the theoretical limit never reached in reality. It is good to know
that a formulation is a converging one, but in practice, after all, the main thing
we are interesting in is to have accurate results already with reasonable meshes.
o

We can now see why the sensitizing term may produce the behaviour we want.
The term is in detail

d SR} d ~ _ =1} epmr  r
j,aL(w)r Ex-R(v)dn_jn,kwr (kD' — g"HdQ2
=jn,(w'r“’k2rﬂ-w'r(”kq')dn. @an

Comparison with the standard part in (35) shows that we can interpret the
multiplier 7¢°k% as an additional tension in the string (if the sensitizing
parameter ¢! is positive) and comrespondingly, an additional source term is
introduced. If ¢ is constant, this source term vanishes. Now the elementwise
non-dimensional measure

khl
= 38
5 (38)
where # is the element length, gets effectively smaller meaning that the effective
tension is larger and the oscillations near the boundary layers are damped.

For demonstration purposes, the sensitizing parameter is taken to be here orig-
inally a second degree polynomial in x. Using the elementwise non-dimensional
coordinate £, introduced in Example D.22, we take in particular

Al =a+ﬁ(§—%)+y§(l—§). (39

This form has been selected so that parameters &, f, ¥ to be determined have
rather obvious geometrical interpretations.

For the goal of achieving the nodally exact solution a version of the parch test
(tilkkutesti), Zienkiewicz and Taylor (1989), can be used. The main point is to
have a set of solutions, called reference solutions (referenssiratkaisu), injecting
important information of the real local solution behaviour into the discrete
formulation. These reference solutions are employed via a patch test to produce
a system of equations from which the sensitizing parameter values can be
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determined. This procedure has been described to our knowledge for the first
time in Salonen and Freund (1994).

First the data in the operators of the differential equations under study are
replaced by some constant local representative values so that we arrive at a
constant coefficient system which is simpler to deal with but still contains the
essential features of the problem. In (29) this means that also k is considered to
be a representative constant in the neighbourhood of the position under study.
For convenience of presentation we assume a local origin x =0 to this position.
The continuous loading is assumed to be represented as a power series {Taylor
series) in the form

’ ]' »
Q(x)=¢Io+f10'x+qu'x2+‘“ (40)

where the meaning of the notations is obvious. According to the theory for
linear differential equations the solution consist of the general solution of the
homogeneous system (29) plus of the particular solutions for the full system.
There is found

v(x):Aem" + Be VE/S +q0%+q6%x+q6(k%+-2l—kx2)+--- (41)
This can be written also as
{V(X)}=A{e kls.x}+B{e— us-;}+
q(x) 0 0
R -l SR

In more detail we mean by this that here five different reference solution-source
pairs (v,q} are available with the consecutive selections A 20, 820, q 20,
gy 20, go=0.

(-4 X L+4
h W ]

D.13 Two element patch.

The next step is to "clone" a generic (here two noded) element to form a
uniform mesh and to consider a typical two element patch (Figure D.13). Finite
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element system equation corresponding to node i is formed using the discretized
weak form (35) with expression (39) for 7. Now the nodal values are taken
from the reference solutions by choosing consecutively each of the factors A, B,
etc. non-zero. Correspondingly, there are obtained the following five system
equations (some preliminary details are given in Example (D.23)):

S Kok yk? ye~ETS A

h 6 h h
S kh oak® _yk?

+(2-+4—+2—+2 )1+
h 6 h h
2 2
s S Ok KT ETSh g (43)
h 6 h  h

R 6 h h
S kh _ak® _yk?

Sk ak?  yi e ETSH

+2—+4—+2——+21 )+
A6 J h
2
LNy ﬁ.)e“fm"' =0, (44)
k6 R h
2 2
(_£+£’.I._£_E_)l+
h 6 h Rk
2 2
+(2§+4E+2a—k-+2&)1+
h 6 h h Tk
2 2
s Sk _ak? oy (45)
h 6 h Rk
S kh ak® yk®_ h
(- E Tyt
h 6 h h &k
S kh ak® _yk?
+(2—4+4—+2—+2)0)+
{ h 5 N n )]
S kh ok® yk®_h
+(-E2+ 2 -2 ) Sy=0, 46
(h 6k P )(k) (46)
S kh ak® yk® S &
——t— )5+ )+
Xt T Th h)(kz 2%
2 2
+(2£+4ﬁ+2£+2—&)(—55)+
ho6 h h Tk
S kh oak® k.S A W Bkh  ykh
tHee—t——— "N+ ) =——kh+—-L—, i
Cate T TR @t T T e e
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It is readily seen that equations (45) and (46) are satisfied irrespective of the
values of the sensitizing parameters. The three equations (43), (44}, (47) contain
the three parameters &, 3, ¥ linearly and they should hopefully be determined
from these equations. We, however, consider from this on only the case of a
constant " = @ so that B and y are put to zero in (39) and thus also in
equations (43) to (47). Either of equations (43) or (44) gives the value

2

am _h° 1 coshvc+2 1

T m—_ . 48
k(6coshx/E—1 c) “8)

where c is defined by formula (38). As the finite element system equations are
linear with respect to the nodal values and with respect to the source term, the
patch test is now passed for the full expression (42) with arbitrary values of A,
B, etc. up to the linear (in x) source term. Thus, in the case of constant
properties, uniform mesh and constant or linear source term, the finite element
solution will be nodally exact. Further, even though the sensitizing parameter
expression has been determined using a regular mesh, it is reasonable to expect
— and the numerical results confirm this — that this generic expression can be
employed with good accuracy for individual elements in an irregular mesh.

For instance, the sensitized formulation in the problem discussed in connection
with Figure D.12 is found to produce the nodally exact solution. However, if the
loading consists of a point load, the numerical results are found not to be very
accurate with the parameter value (48). This is understandable as the point load
can be interpreted as a Dirac delta function loading which is far from the case
considered when expression (48) was derived. The point load case thus needs
further study.

The sensitized formulation will be applied in a more practical problem setting in
Section 13.3.

Example D.23. We develop the system equation for the midpoint of the patch in Figure
D.13. Taking expression (37} into acccount, the discretized weak form (35) is

):jnr (W'SF + Wk — W) dQ2 + bt + zjn, (# 1V — 't Pkg)dQ = 0. (a)
’ L3
Using the Galerkin methed, a typical system equation is thus
Kyv, =8 ()
with

_ ron (1332 5pe
K, =% [ isw +NAN, YO+, [ NN,
©

b=%| Ngd2+Z| NTVkgdO.
= X[ NadarIf ¥
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We have assumed that node { is inside the domain so that no contributions come from
the boundary terms. With constant § and &, the element contributions are in more detail

€ _ roap 2202 ape
Ky = [ (NISN; + NN, )dQ -+ J’n, N3N0
=S| NIN;OQuk[ NN, dQ+
+ak’ [ NINJQ + B[ (6= V2NN + 7 [ E1- HNNAQ, ()

bi= [ Niga+ [ NieOkqran= |, N,qdmfjﬂ. NrO[B + 701~ 28)HQ
=ajn, N,-d.Q+E_[n,(§—1/2)Mdﬂ+7jn,§(l-§)1v,-dﬂ+

=k 5 - .

+alfo o Naa+y [ 1-20)Na0)+
—k N Sk ,

LB [ G- 1N 7€ - 020N, 0]+
-k . "

+71By o B0-ONaR+7E [ - £x1- 290N (@)

To simplify the presentation, the element indices have been left cut from the shape
funclion symbols. The second degree loading (40) has been cxpressed here in an element
as

9=+ PE-2)+750-0) ®

where the values of the coefficients &, B, 7 are casily found from (40) when the
position of the element is given. Similarly, the derivative

sl =
q =;[ﬂ +¥(1-28)]. (g)
Performing the {(by hand) tedious integrations gives Lhe following element contributions

S[1 -1 ka2 17 ak®[1 -1] yk2[1 -1

[KF—I[-l 1]+?[| 2]+T[-1 1]+T -1 1] e
ah(l Bu -1 #h (1 Bk [-1 ¥E[ L Bk (-1

[b},=a_h L i +“ﬂ"f _,_ﬁ]’kI +7}5'kf _ @)
FRURNTRRURETA /AR DU TR TR

We number the nodes and the elements of the two element paich of Figure D. 13 here for
simplicity as shown in Figure (a).

1M T mm 3
' X
o h ‘
DRSS h_,.,_.
Figure (a)
The system equation for node 2 is
Koy + Ky + Ky = by 1)
D-93

and the assembly process gives the formulas

i
K=Ky, Kp=Kp+Kh., Ky=kh

i ““
The cocfficients in (j) are thus
S kh ok yk?
Ky=-S4—0—-2" _412 |
HTURT6 h h
S kb ak® vk
Kyp=2—+4—+2—+24—, 1
A ®
2 2
Kyy=-Sikh ok

R 6 h k-
It is seen that the parameter f§ does not appear in them. The right hand side of )]
depends on the loading and is evaluated scparalely for the reference cases.

In the first case the nodal values are

vy = e VEISH va=1, vy=VHISH (m)

and there is no loading so
b =0. (n)

{The coefficient A would appear as a multiplier in all the lecms in the system equalion
for node 2 and we cancel it by formally taking A =1.)

In the second case the nodal values are

JETSh va=1, vy =e VIS (©)

‘D‘I =¢e
and there is no loading so

b =0. ()
In the third case,
1

P @

| —

1
P|=I. V==, vy =

and the loading is g=1. In clements | and 2, & =1, f =0, ¥ = 0. There is obtained

1_hJl 1_h[l
{b] —2{1}' {b] —'2{1}v (r)

In the fourth case,
h h
\J[=—F, Vi =0, V3=I‘ (S)

d the loading is g =x. Inelement |, & =-h/2, E:h. ¥=0.Inelement 2, T =h/2,
=h, ¥ = 0. There is obtained

an
B
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| 2ral -1 -1
THLIELED il GRS ) GRSl B .3
4 -1 i2]1 1 611
20 21 -1 -1
eI L O Yk
B} = 4{l}+|2{1}+ak{l}+ 6{!}' )
In the fifth case

v = +£ v—s v—-S+— (w)
T TR e

and the loading is ¢ =1/2-x2. In element 1, & =1/4- R, B=—1/2-h*, F==1/2-K"
Inelement2, @=1/4-k*, B=1/2-h*, 7=—1/2-h%. There is obtained

RTINS J i
Al

The resultmg five sysiem equalions are written down in the main text as equations (43)
to (47).

D.3.6 Global-local method

The global-local method (globaali-lokaalimenettely) is a mixture of the classical
Ritz method and the finite element method, Mote (1971). Approximation

$(x) = 9y (x) +a; 9; (x) (49)

is written in the form

LI 1

| 80x) = @o(x) + a;; (1) +0; "9} (x). | (50)

Here the tpk (x) are classical (global) Ritz basis functions and the (p, *(x) are
finite element shape functions. (The term "global" means here that the Ritz basis
functions are defined to be generally non-zero in the whole domain. Thus it has
nothing to do with term "global" shape function used in connection of the finite
element method.) The ranges of the summation indices k and / usually differ.
The parameters a, no more simply have the meaning of nodal function values
as they now give the change or "correction” with respect to the global
approximation.

With a careful selection of the type of representation (50} one can achieve in
some cases with a relatively small number of parameters good accuracy.
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Figure D.14 Quadrant of a circular plate.

Figure D.14 shows a case modified from Mote (1971). The case concern the
vibration of a circular plate. The plate has on line ABC a cut which is assumed
to be infinitely narrow. It is easy to generate suitable global basis functions for a
circular plate without the cut. The neighbourhood of the cut is patched in order
by six four-noded quadrllateral elements. At points B and C the necessary
discontinuity in deflection is achieved by associating two nodes at a
geometrically same point which belong to different sides of the cut. At the
nodes denoted with x the corresponding finite element nodal parameter value is
fixed to zero to achieve a continuous deflection approximation.

It is possible to apply the global local method also in such a form that the global
form is a suitable given function.

The drawbacks of the method are the complicated form of the system equations:
The basis functions @; and @;” are generally not orthogonal and the system
equations thus contain corresponding couplings.

Example D.24. The stretched siring on an elastic foundation treated in Examples D.17,
D.18 and D.22 is considered again now using the global-local methad,

Approximation according to (50) is here

() = Qo (x)+ @y p(x) + & "y (x)
= @g(x) +a1@; (x) + @103 (x)} + 2303 (x)} +a; 9" (x). (a)
We take as in Example D.17

1F

Pl =¥ =150

(b)

The basis funclions used are shown in Figure (a). The global basis funciions are the
same as used in Example D.17. The only local basis function is the shape function Ny of
Example D.22,
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Flgure (a)

The system equations are found again as equalions (1) and (m) from Example D.17. Here
the Mathematica program is especially convenient for performing the integrations. There
is obtained (/k/S5{=4)

08084 0 0 01995 |(af 0.9363
o O s o —omss|gi| |-to2| -

0 0 82106 14723 ||a} 0.9873

0.1995 -07285 14723 10833 |(o 0.9875

The solution is

af =LOI52FKkD), ay =—0.1829F/(kl), ay =0.0164 F/(kl),

p (d)
a)" = 0.5793 F/(kl).

The deflection is shown in Figure (b). At the midpoint, ¥({/2) = 1.894 F/(kl). This is
more accurate than the resull by the conventional Ritz method in Example D.17
employing nine basis functions.

1.5} \¥s
IR
Flgure (b)

D.3.7 Finite difference method

We assume in the following some knowledge from the reader of the finite
difference method. The most common way to apply the finite difference method
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(differenssimenetelmd) is to simulate problems expressed in differential
equation forms. However, it is possible to use the method also in connection
with functionals. It is then sometimes called the variational finite difference
method (variaatiodifferenssimenetelmi). The finite difference method resembles
the finite element method in the respect that the discrete variables are again
approximations to the unknown function values at certain points, called usually
gridpoints (hilapiste). However, contrary to the finite element method, no
unique representation between the gridpoints is assumed. The derivatives
appearing in functionals are replaced by pointwise difference quotients and
integrations by numerical quadratures. According to the literature, Courant and
Hilbert (1953), Euler applied the finite difference method already in 1744 to the
study of functionals. Here we do not emphasize the use of the variational finite
difference method and give just one example.

Example D.25. The stretched string on an elastic foundation is considered once more.
The grid is uniform and consists of five grid points (Figure (a)).

4 3 4 5

Flgure (a)
The potential energy functional is

]
Viv) = '[ﬂ[%scu')2 + ékvz Jdx— Fv(é) (a)
or as S is constant and k is assumed to be constant,
LIPS ) L. a2 {
V(v)—ESJG(v) d.r+§k_|'0v dr=Fy). {b)

This is approximated by

W[an%su‘@;"l)z-h+(”3;"2)1-h+

+(”“;"3)2-h+r"i;”‘)2-h1+

+v; )2
2

l ¥y + V.
= She (=2 e
+2k[( ( 3 )

+(V3;'V4)2_h+('u4;Vs)l_h]_Fv:’. tc)

For v, a conventional difference quotient expression between two gridpoint values is
used and this is assumed to be valid lor the whole interval. Similarly, v is approximated
as the mean value between two gridpoint values and again assumed to be valid for the
whole interval. Obviously, these selections are not the only possibilities to obtain a
reasonable approximation.

We form @V/dv, =0 as an example for a typical system equation. We have
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CANSERIPY bkl Lpmatszvaly,
dv, 2 h h koA
rlipitnl,ontuly,
2 2 2 2 2
=%(-v, +2v, —v3)+%(v| +2v3+vy)=0. (d)

The rest of the sysiem equations are formed similarly. There is obtained (VkiSt=4)

gyl 030 ol o
0 -3 10 -3 0 fvyp=F{l}. (c)

16
0 0 -3 10 -3)jv,

The equations comresponding to v and v; have nol been formed as they are replaced by
the information from the boundary conditions:

V|=V=—"—" VS=\T=——— (D

] [ ."3} Zj}i(.i;]. ®
160-310\;‘ 1601

The solution is
vy = vy = 0.622 F/(kl), vy =1.9T3Fi(kl). (b}

The exact vajue at the midpoint is v(I/2)=1.955F/(kl). Thus, contrary to the earlier
results, the comresponding approximate value v; here overestimates the deflection.

Let us consider the typical discrete equalion (d) somewhat more, After division by A and
with a change of sign it reads

%(V1—2v2+v3)—§(v|+2v2 +vy)=0. (i)

This clearly a finite difference approximation to the goveming differential equation
Sv-kv=0 6]
at gridpoint 2.
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LIST OF SYMBOLS

Some of the notations used in the text are collected here.

Sets

U union {yhdisle)

' intersection (leikkaus)
%) empty sel

la,b[  openintervai
[a.b] closed interval

Matrices

1 square or reclangular matrix

{) column matrix called column vector {pystyvektori)
[]T matrix transpose

[ ]'l matrix inverse

= -1\T Ty-1

0" arhT=M

{a) column vector of undetermined parameter
{5} right-hand side column vector of given quantities
[D] stress-strain matrix

[E] equilibrium operator matrix

[K] stiffness matrix

[/] inertia matrix

[M] mass matrix

{N] shape function matrix

{R} equation residual column vector

[5] strain-displacement operator matrix

{w} weighting function column vector

[e] weight factor matrix

[7] sensitizing parameter matrix
Latin symbols

ab,c Cartesian coordinates in Lagrangian description

a acceleration

A plane surface, cross section arca
c coefficient of viscous damping

C Young's modulus

e unit vector

E Young's modulus, internal energy
E Green slrain tensor
f internal force

F force

L-1

Qa0 Q=

i,j.k

n"‘n

Py

o~
-
=

RATT T QTR ENgTC UL R RO Y 2R NN RS

Xy

5
z

e
NN

oy

acceleration of gravity

shear modulus

basis vector in large displacement theory
Green's deformation tensor

scale factor, element length

Cartesian unit basis vectors with coordinales a,b,¢ or x, ¥, 2
moment of inertia

product of inertia

Cartesian unit basis vectors with coordinates X, Y, Z
Jacobian determinant

spring constant, foundation modulus, thermal conductivity
kinetic energy

length

Lagrangian funciion, linear operator,

moment of momentum

mass, mass per unit length

moment

outward unil normal veclor

normal force, shape funclion

momentum

power

generalized coordinate, loading per unit length
generalized force, shearing force

moment per unit length

position vector

residual

resultant force

curve length, bar length

curved surface, internal scalar force, string tension
Kirchhoff stress tensor

time, thickness

slress vector (traction)

kinetic energy, temperature

pseudo-stress vector (pseudo-traction)
Cartesian displacement components
displacement

velocity

volume, potential energy

weighting function

vector weighting function

work

Cartesian coordinates

Cartesian coordinates, inertial, local auxiliary
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Greek symbols

a penalty parameter

a angular acceleration

o,8.,7 curvilinear coordinates, coefficients

é variation symbol,

5, Kronecker delta

Eijk permutation symbol

4 small parameter in variational calculus
£ small strain tensor

P mass density

e polar angle, cross-section rotation

IT functional

¢.0,y Euler angles

¢ typical unknown function

@ trial function

Y shearing strain, constant of gravitation
A Lagrange muttiplier, Lame parameter

v Poisson’s ratio

T shear stress, tuning parameter

o Cauchy stress tensor

Q general domain symbol (alue)

Q closure of £2 = domain and its boundary
r general boundary of £} (alueen reuna)
@ angular velocity

§,n,¢  auxiliary coordinates with Euler angles, natural coordinates
Superscripts

04 apparent

0O° conservative

0° quantity connected with eth element

()I inertia

0 £ constitutive

o" nonconservative

Or constrainl

O time derivative

0O malerial time derivative

(_) approximation, finite dimensional, skew-symmetric
3] given quaniity, connecled with center of mass
0O amplitude, dimensionless quantity

L-3

°0 reference state, initial stale
Subscripts
Op Dirichlet
Ok external
()il'll internal
n outward normal
On Neumann
0o connected with heat transfer
O relative
0, sensitized
0, given traction
0. given displacement
Miscellaneous
bt terms arising from boundary
Er bending stiffness
GA shearing stiffness
aw virtual work
= substitution symbol



Mat-5,160 Variational principles of mechanics, exercise 1

I.  Write down the Taylor series of function f = f(x,y} at x=y=0. Use notations
X = x, ¥y, f; =0f /dr; and the summation convention, First, write the series
with respect to x only and after that with respect to both variables x and y.

2. Let A; be a vector,3;; the Kronecker delta and £ the permutation symbol, Show that
equations

(a) SUB,J =3, (b) sijkejkl' =6, (c) E’ijkAjAlc =0

hold when i, jke{l.3}. To verify equation (b) you need the relationship
EjjkEigr =0 By — 84,8 ;. Also, verily equations (b) and (¢) by direct calculation with
the Mathematica program (you need to define the permutation symbol Ejx s a list of
three indices, say).

3. Prove the following formulas

(a) div($v) = dpdiv(y) + v - grad(d),
(byax(bxe)=(a-e)b-(a-b)e,
©u-(Vu)= V(-%u-u)-—ux(vxu).

Hint: You may need the relationship € Eir = js81y — 81,8 ;1.

4. Use Mathematica program to solve the following system of linear equations:
Xx+3y+z=2, =x=2y+z=5 and 3x+7y+z=-3. Apply the Mathematica function
(a) LinearSolve, {b) Solve and (c) FindMinimum.

5. Whatis the detailed expression for dfp / d{x}, if

JeixD =%{.:}T [Al{x}+(x])T {a) +C+l([G] {x)+{dDT [a] ((G] {x) + {d]) ,

Ixn naxaax] Ixn axl mxnaxl mx]l mxm mxanx] mxl

where [A] and [o] are symmetric and where [A), [@]. ¢, [G] and {d} are independent of
(x}?

Problem 1.1

Write down the Taylor series of function f = f(x,¥) at x =y =0. Use notations
X=X, y—=2 X, f;=0df /dx; and the summation convention. First, write the
series with respect to x only and after that with respect to both variables x and

Yy

Solution
The well-known formula gives when written using the index notation

=1 Q)+ fOx) T+ f O T

or with the summation convention and /, j,...€ {1}

_ A il
f—f(O,XZ)+f(01x2),r i +f(0'x2)-u (1'+j)!-”

The Taylor series with respect to both variables can be produced simply by
changing the index set (try it) {, j,k...e {1,2}. Now, it is quite obvious how to
proceed in the cases of three or more variables.

Problem 1.2
Let A; be a vector,§; the Kronecker delta and €; the permutation symbol.
Show that equations

(a) S,JSU =3, (b EijkE jki =6, (¢ Ejjk AjAk =0

hold when i, j,k €{1...3). To verify equation (b) you need the relationship
EjjkBist =0 jyOp —Bxs0 . Also, verify equations (b) and (c) by direct




calculation with the Mathematica program (you need to define the permutation
symbol €5 as a list of three indices, say).

Solution
(a) The brute force approach works in this case:

8iiBij = X; jeq1..3) Biidy =811811 + 812813 + 813813 +
+87182) + 822827 + 823823 + 831831 + 832833 +833833 =3.
{(b) Since the summation convention is to be applied with respect to all the
indices, formula € € = (8,845 — 8 58y, ) applies:
BkE jhi = —Eiik€itj = —(8 xSt — 8 Bt ) = (8 ;; = 8 ;81 ) = —(3-9) =6.
(c) A trick based on symmetry:

1 1 1 1
EijkAjAk =§EijkAjAk +EgijkAjAk =E£ijkAjAk —EE,‘ijjAk =

1 1 1 1
=E£ijkAjAk —EE;ijkAj =581jkAjAk _EeikajAk =0,

The Mathematica solution follows.

In :=
(* Let us define first the permutation symbol as a table with three indices. After that
equations (b) and (c) can be verified by direct summing. *)

eps = Table[0, (i,1,3},(j,1,3},(k,1,3};
eps([1,2,3]] = eps[[2,3,11] = eps[[3,1,2]] = 1;
eps([2,1,3]] = epsi[3,2,1]) = eps[1,3,2]] = - 1;

Sumf eps[[i,j,k]I*epslljk,il],{i,1,3),{,1,3),(k,1,3}]
i=1;

Simplify[Sum([eps[i,j,kI*A[G]* Ak, (j: 1,3}, (k,1,3}1]

i=2;

Simplifyl Sum[eps([ij,k11*A[1*A K], {j,1,3),(k,1,3) 1]
i=3;
Simplify[Sum[eps([[i,j,k]1*A[1* Akl {j,1,3},{k,1,3}1]

G@OG\Q

Problem 1.3
Prove the following formulas

(a) div(¢v) = ddiv(v) + v - grad(p),
{(byax(bxc)=(a-c)b—(a-b)c,
(d)u-(Vu)=V(%u'u)—ux(qu).
Hint: You may need the relationship ;€75 =8 ;84 — 8358 5.
Sclution

(2) div(gv) = -a—(¢v,-) = q)iv,- +v; iq; =¢div(v) + v - grad(d)
a.r,- ax,' E)x,-

(b) Let us consider a typical component;
[ax(bxc)]; = E;jkaj(b Xe) = s,-jkajek,,mbmc,, =
= —Ejikmna jbmCn = ‘(Sjmain =8 jndim )@ jbycy =

=—(a;bjc; —abci) = (a-c)b]; - (a-b)lc]; .

(c) Let us start from u x (V x u) and consider the typical component:




d
[ux(V xw)); = egu;(V xu); =E"fk“f(a""‘"axi -
m

m
du du duy,
=_(8jm6fﬂ ,m)u.’a—— Sjmsmuj a — +5 Smuj a _—=
du; ou; du; W1 a 1
= ujg;'l'uja—’ti: "a — (ujuj)“ —-(u- Vu1)+5$(u u).
Problem 1.4

Use Mathematica program to solve the following system of linear equations:
x+3y+z=2, —x—2y+z=5 and 3x+7y+z=-3. Apply the Mathematica
function (a) LinearSolve, {(b) Solve and (c) FindMinimum.

Solution

()

In =

malrix = ([113:1li{'l!'2=1}:(3i7il]];
vector = {2,5,-3};
LinearSolve[matrix,vector] // N

Qut ;=
{-6.5, 2., 2.5}

&

In:=

eqs = {1*x+3%y+1%z == 2,.1¥x-2%y+1%z2 == 5,
I+ Try+1%z == -3};

vars i=(x,y,z};

Solve[eqs , vars] /N

Out :=
{{x->-6.5,y > 2,z ->2.5}}

(©)

In:=

fun := (1*x+3*y+1%z - 2)*2+(-1"x-2*y+1%z - 5)"2+
(3*x+7*y+1%z + 3" 2;

FindMinimum(fun, {x,0},{y,0},{z,0}] /N

Out ==
{1.75285 10~-18, (x -> -6.5, y -> 2., z -> 2.5}}

Problem 1.5
What is the detailed expression for dfp / 9{x}, if

fp({x])=—{x]T[A]{I]+{x} {a}+c+— ([G] () + {dD)T [a] ([G] (x] + {d))

l><n axnaxl 1xn nxl mxnnxl mxl  mxm mxnaxl mxl

where [A] and (&) are symmetric and where [A], [®], ¢, [G] and {d] are
independent of {x)?

Solution

Let us use the result 3(x}T /3{x) =1, which follows directly from the definition
of the derivative with respect to a vector (if the index notation is applied, the
result can be wrilten as dx; / dx; = 8;;), and consider each term separately. The
first term takes the form




1.9 iyt AU R - 18
250 () LA =220 Al +5 50

_1a9 o 1.0 o 8 Wow
=230 ) (Al + 250 (W (AT k) =

(2} Al =

=1 L nTia-
—2[A]{x] +2[A] {x}=[Al{x}],
the second term reduces into

0 aT o
Sy el =ta)

and the third gives a zero contribution. The fourth term can be manipulated as
follows

91 T _
372 16} + 1)) (ed(Glx} + ()

= %([G]T[a]([G] (x] + {d]) + %([G]T[a]T([G] (x) + (d]) =
= [G]T%([a] +[01TYIG] (%} + (1) =[GIT[)([G] {x) + (d]).

Altogether the result is 8fp / 9[x) =[A)(x} + [G]T[a]([G] (x)+1(d)).




Mat-5.160 Variational principles of mechanics, exercise 2

1.  Derive formula

V= (Bfu

hahﬂ o (hufp)]

ap

for the expression of divergence in a rectangular curvilinear coordinate system.

2. Show that the functions f = r,g =8 satisfy the integration by parts formulas

.[r'9 fg—fdrde = —j ——gdrdﬁ +_[ fg—ds

f f—drde-_[ —gdrd9+ j fangds

for polar coordinates in the domain of the figure.

3. Has the function f(x,y)= —x2y2 +x2 +y2
aminimum value 0 at x=0, y=07?

4. Find the greatest and the least values of z on the ellipse formed by the intersection of the
plane x+y+z=1 and the ellipsoid 16x> +4y% 42> =16, Then, apply the
Mathematica Fanction Solve to find the values numerically,

5. Repeat the second part of problem 4 (i.c.apply Mathematica) with the penalty method,

Problem 2.1
Derive formula
1

v-£ 2 o)+

hahﬁ e (hocfﬁ)]

ap

for the expression of divergence in a rectangular curvilinear coordinate system.

Solution
Let us apply the basic formulas of Appendix C for a rectangular curvilinear
coordinate system (summation convention is not employed).

3 _ 19 i_la aea__iaha
X hy oo Y M P’ oo mop P
Jdeg 1 o deg _1_% dep _ _ 1ok
B e B map T B hg e

The definition gives
V.= (— T+ — ])—

o (fa o+ fpep) eq + (faeu + fpep)-ep =

ha hﬁaﬁ

i Lok, 1 0, 19 B
ha a +0+0+fﬁhﬁ a[3)+hﬂ(0 Jﬁtham-l-t_)\B 0)=

1, iy 1 Oy, 1 oy 14dfp

A 0 hahaaﬁ ooty 30 g 0B
1

hahﬁ aa

(fahﬁ)'f' (fﬁha)]




The second row is a direct translation of the definition of the Cartesian system
on Lhe first row 1o a curvilinear system. On the third row we have used the given
formulas,

Problem 2,2
Show that the functions f =r,g =0 satisfy the
integration by parts formulas

dg _ af n
Jro f;drdﬁ——j‘r!e 3, gdrdo+ f, fgtds,

de o
I fogdri0==[ 4 =cedrdo+ [, femeds

for polar cocrdinates in the domain of the figure.

Solution
7]
/2 P - e
4l .3
x 1 ZJ r
4
a b

The figure shows the domain in the r,8 -system where the formulas are 1o be
applied. The unit outward normal to the boundary (appearing in the formulas)
has the components:

side 1-2: n. =0, ng=-1,
side2~3: n. =1, ng=0,
side3—4: n.=0, ig=1,
sided4-1:. n.=-1, ng=0,

The first equation gives
i r-0drd®==[ o 6drd® + [ n,6ds =

=—I5* [* edrd0 + [} ebda— [ Bade =

=—(b-a)[7'* 6do + (’)"2 0bd6 — [/ 6ad6 = 0.

The second equation can be verified in the way similar to that used above:

[1.g rdrd@=={ ,08drd0+ [ rngds =

=% rodr+ [ rodr=1[ . rdrdo.
1 4 r.B

Problem 2.3
Has the function f(x,y)=-x?y% + x2 + y2 a minimum value 0 at x =0, y=07?




Solution

The function has a local minimum at a point inside the domain if the partial
derivatives vanish and if the Hessian is positive definite at that point. Let us first
venify that the given point is stationary

if(x,y) =-2x% +2x=0,
ox

d 2
—f(x¥)=-2x"y+2y=0.
dy

A solution is clearly x =0,y =0. Then, let us verify the second condition

d 9 _ 5.2 J d _
axaxf(x’y)"' 2y +2, Byaxf(x’y)__4xy
a4 _ 99 A2
axayf(-’-‘,y)——‘ixy. ayayf(x,})— 2x- +2

At x=0,y=0 the Hessian

20
[, 3]

is clearly positive definite. Conclusion: the function takes a minimum at the
origin of the coordinate system.

Problem 2.4

Find the greatest and the least values of z on the ellipse formed by the
intersection of the plane x+y+z=1 and the ellipsoid 16.\:2+!«1ry2+z2 =16.
Then, apply the Mathematica function Solve to find the values numerically.

Solution

The problem is to minimize f =z under the constraints gy = x+ y+z—1=0 and
g =16x2 +4y2 + 2 _j6=0. Alternatively one may seek the extremum value
for

fr=f+hg=z+Mlx+y+z-D+Ay (1657 +4y% + 22 -16) .

At the point where the function takes the extremum value, the partial derivatives
with respect to the variables satisfy

a—afo=lI+327sz=0, a—any=7\.]+SZ.2y=0,

d d
—fr=1+A;+2hoz=0, s fr=x+y+z-1=0,
asz T A] 2z a’»lfL Xty+z

ifL=16J.‘2 +4y% + 22 ~16=0.
M,

In general, a non-linear equation system (even only quadratic in the variables)
may be very difficull 10 solve. In this case one may use, however, the fact that
the two first equations are consistent only if y=4x. Then the second last
equation gives x =(1-z)/5. Finally, the using of the relationships to eliminate
x,y from the last equation results into

2122 —32z-64=0
giving z=8/3 and z =-8/ 7 as the maximum and minimum values.

The mathematica solution follows:

In:=
(* Solve finds the solution to a given system of equations *)




equations := (L1+32*L2*x = 0, L1+8*L2%*y — (),
14L142%L2%z = 0, x+y+2-1 = 0,16®x"244%yA24242-16 = 0];
variables :={L1,L2,x,y,z};

Solve[equations,variables] /N

Ount :=
((L1 -> -0.857143, L2 -> 0.0625, x -> 0.428571, y -»> 1.71429, z -> -1.14286}, {L1 -> -
0.666667, L2 -> -0.0625, x -> -0.333333, y > -1.33333, z -> 2.66667]}

In:=

(* A more convenient way is to define a function for finding the extremum point *}
GRAD[exp_,var_]:= Map[D[exp,i] &, Flatten[var]];

function := z + LI*(x+y+2z-1)+L2%(16*xA24+4%y A 2+22-16);

variables :={L.1,L2,x,y,z);

equations = GRAD[function,variables];

Solve[equations = 0,variables] //N

Qut:=
[(L1 -> -0.857143, L2 -> 0.0625, x -> 0.428571, y -> 1.71429, z -> -1.14286), {L1 -> -
0.666667, L2 > -0.0625, x ->> -0.333333, y > -1.33333, z -> 2.66667)}

Problem 2.5
Repeat the second part of problem 4 (i.e. apply Marhemarica) with the penalty
method.

Solution

In :=
(* some function definilions are needed here *}

GRADI[fun_,var_J:= Map[D{fun,#)&,var];

RULE[a_,b_] := Table[a[[il] -> b[[i]},(i,1,Length[a]}];

EXTREMIZE[fun_,var_,var0_]:= Module[{FUN, HESS},
FUN = GRAD[fun,var]; HESS = GRAD[FUN,var};
FixedPoint[(# - LinearSolve[(HESS /. RULE[var#]),
(FUN /. RULE[var,#])])&,
varl), SameTest -> (Max[Abs[#1-#2]] < 10~-5&)]];

(* then the delinitions related 10 problem 2.5 *)

alfa = beta = 100;

fun = z + alla®(x+y+2-1)"2 + beta®(16*x"2+4*y~2+z2-16)"2;
var = {x,y,z];

var0 = (1,,1.,-1.};

EXTREMIZE([fun,var,var{]

Out :=
{0.428563, 1.71424, -1.14323}




Mat-5.160 Variational principles of mechanies, exercise 3

L Write a Mathematica program for the Lagrange multiplier/penalty method algorithm.
Then, use the program to solve problem 4 of exercise 2.

2. Derive the Euler-Lagrange equation corresponding to functional

1160 = [} (L) + (6% + 2r(x0N

¥ d o

where p, g and r given conlinuous functions (a) by using formula - — — (=) =0,
pP.q E (a) by 4 % & o (b}
by performing the variation directly on the functional.

3. Derive the Euler-Lagrange equation and the natwrel boundary condition for the
functional

!
Viu}= _[0 [%‘-E‘-(u’]2 — ugldx— Pull)

with the essential boundary condition w(0)=0. The quantities AE and q are
independent of u but they may depend on x and P is constant.

4. Deflection v of a simply supported elastic beam can be obtained from the stationarity of
the functional

{
vim=|) [%(v")2 ~vgldx

in the set of smooth functions satisfying the essential boundary conditions
v(Q)=v(l)=0. Knowing that, derive the comesponding boundary value problem.
Assume that Ef and ¢ are given functions of x.

5. Use Mathematica program to find an approximate solution to the deflection problem
above. Substitute the polynomial approximation

v= a(x/ i xd1-1),

i (L.}

where the g;:s are free parameters and minimize the function (after substitution the left
hand side is an ordinary function of the g;:s) with respect to them, Consider the cases
g=x/l-sin(x/1}, EI=1,1=1and ne (2, 4}.

Problem 3.1
Write a Mathematica program for the Lagrange multiplier/penalty method
algorithm. Then, use the program to solve problem 4 of exercise 2.

Solution
See the examples section of ALP,

Problem 3.2
Derive the Euler-Lagrange equation corresponding to functional

b ,
() =, [P(x)6) +q(x)p? +2r(x)9)dx ,
where p, ¢ and r given continuous functions

o _d o

(2) using formula 31; i (an’

)=0

(b) by performing the variation directly on the functional.

Solution

(2) The expression for the integrand is f = p(x)(9")2 + g(x)p? +2r(x}. Thus
ar d df d , o
=7 _— =— =
% q(x) +2r(x). . 84)') dxap(x)q)) (2p(x)¢)

giving as the Euler-Lagrange equation (2p(x)$’) +2q(x)9 +2r(x)=0.




(b) The first variation of the functional is
8I1= [ [2p(x)0'80" + 29(x)65 + 2r(x)54)dx =
= J‘? [_(2P(I)¢')’ + 2q(.t)¢ + Zr(x)]&bdx + ZIE[H}J} (2P(I)¢|'rlx )8(:) = 0-

Let us first consider the set of functions whose members vanish at the
boundaries. Then the last term is zero and the standard argument gives the
Euler-Lagrange equation

CpdY +2q(x)0+2r(x)=0 xela,b[ .

Knowing that, one may omit the first integral and consider the set of functions
satisfying the field equation only. Then, the natural boundary condition is seen
to be

2p(x)'n, =0 xe{ab).

Problem 3.3
Derive the Euler-Lagrange equation and the natural boundary condition for the
functional

V) =y 1550 ~uglte - Pu)

with the essential boundary condition 1(0)=0. The quantities AE and g are
independent of u but they may depend on x and P is a constant.

Solution
The first variation of the functional gives

oV = J; [EAu'du’ + gbuldx — PBu =
- L’: (~(AEWY + gl8udx + [(EAu'n, — P)ou)yey =0

which should be satisfied for any selection of the variation du restricted by
Su(0) =0. Let us first consider the set of functions whose members vanish at
x =1 also. Then the Iast term is zero and the Euler-Lagrange equation is seen to
be

—(AEu'Y +q=0 xej0,( .

Knowing that, one may omit the first integral and consider the set of functions
satisfying the field equation. This gives the natural boundary condition

EAu'n, - P=0 x=I.

Problem 3.4
Deflection v of an elastic beam can be obtained from the stationarity of the
functional

V)= £ 02 -vqkin

in the set of smooth funclions satisfying the essential boundary conditions
v(0)=v{l)=0. Knowing that, derive the corresponding boundary value
problem. Assume that E7 and g are given functions of x.




Solution
The first variation of the functional gives

Sv = J'; [ER"8v" + gév]dx =
! ’ ’ . s
=JO [-(Ef") 8v ""15"]‘:[1"*’2,\-5{0_(] [EN'n,8v'] =

l LAY " #
= J, WEM") +qlvdx+ 3 o [ENV'n8v']=0

since &v(0) = dv(l) = 0. The equation should be satisfied for any selection of the
variation dv restrcted by &v(0)=3v(l)=0. Let us first consider the set of
functions with the property dw’'(0) = 8v/(f) = 0. Then the last term is zero and the
the Euler-Lagrange equation is clearly

(ENVY +q=0 xel0, .

Afler thal one may consider the set of functions satisfying the field equation and
discard the first integral. The remaining equation implies the natural boundary
condition

Ev'n, =0 xe(0).

Problem 3.5
Use Mathematica program to find an approximate solution 1o the deflection
problem above. Substitute the polynomial approximation

v=2,.E“__n]a,-(xu)"(xu—1),

where the g;:s are free paramelers and minimize the function (after substitution
the left hand side is an ordinary function of the g;:s) with respect to them.
Consider the cases g =x/1-sin(x /1), EI=1,1=1and ne(2.. 4}.

Solution

Plo={};

ElI =1;

1 =1;

[§ = x/1*Sin[x1];
wik )= (1-x1*(xM)*k;
Dol

Y = Sum|w[k]*a[k],{k,1,n}];

V =Integrate[EL2*D[y,{x,2}]*2-y*,{x,0,1)];

B = Solve[Table[D[V,a[k]] = 0,{k,1,n}], Table[a[k],{k,1,n}]I;

z[n] = N[(y /. B}{[1]1};

Plo = Append([Plo,Plot[z[n],(x,0,1}, DisplayFunclion -> Identity]],
{n,2,5));

Show[GraphicsArray[Partition[Ple,2]], DisplayFunction -> $DisplayFunction];
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Mat-5.160 Variational principles of mechanics, exercise 4

1. Derive the weak formulation for the diffusion-convection-reaction equation

—%(k%)+u%+cT—-s=0 xel0. I,

where the diffusion coefficient &, velocity 4 and the sink factor ¢ are independent of the
uniknown function T and the boundary condition is T—T =0 xe [0, L) (T is the given
value on the boundary).

2. Let us consider the displacement field u of an elastic body £ in the case where the
displacement is known on the boundary [, T, wT, =I", T, NI, =@. The potential
energy functional is

1
Vi{u)= EJ.Q C,jk[u,-.juk.,dﬂ .

in which the quantities Cjy are independent of u. Write down the boundary value
problem whose solution makes the functional stationary,

3. Write down the functional for the problem of finding the domain < IR® with
minimum boundary length when the area is given. Also, derive Lhe corresponding
boundary value problem and verify that a circular boundary curve is the solution.

4, The potential energy for an axially inextensible column subjected to a ‘ P
compressing force P is —

A - RS  B
V= 207 - Pl 0 e,
Find the minimum value for P causing the column to buckle. i

3. What is the underlying boundary value problem of the weak formulation;
find $ —§ €V, such that

dw do _
-[n (D E%—wf)dﬂ+‘[m whil =0 YweV,

where V = [vive CHQ) WMy =0) and T =T uTy. Tp NIy =37

Problem 4.1
Derive the weak formulation for the diffusion-convection-reaction equation

——(ka)+u&;+cT—s=0 xe]0, L],

where the diffusion coefficient &, velocity u and the sink factor ¢ are
independent of the unknown function T and the boundary conditionis T—-T =0
x€{0,L) (T is the given value on the boundary).

Solution
The starting point is the field equation multiplied by the weighting function.
Integration over the solution domain gives

L . d,dT, dT
jo W[-E(ka—;)+ua+cT—s]dx—0.

or when integration by parts (assuming a smooth enough integrand) is

performed
L dw dT  dT d7 ar
I [aka+wuawcT—ws]dx—(wka)pL+(wka)x=0=0. (1)

When the boundary condition is of the Dirichlet type, one usvally sets w=0 at
the corresponding part of the boundary. Here T—T =0 x€{0,L) which means
the selection w(0)=w(L)=0 makes the boundary terms to disappear. Thus the
weak form of the problem reads: find T(x) satisfying 7(0)=Ty and T(L)="T},
such that

x [d—wk£+wu£wcT-ws]dx=0
0 "dr dx dx




for any w(x) satisfying w{0)=0 and w(L)=0.

Problem 4.2

Let us consider the displacement field u of an elastic body Q in the case where
the displacement is known on the boundary I, T, UT, =T, I, "I} =@. The
potential energy funclional is

1
Vin)= EJQ- QJklui,j”k,ldQ ,

where the quantities Cjjz; are independent of u, Write down the boundary value
problem whose solution makes the functional stationary.,

Solution
The functional takes a stationary value when the first variation vanishes i.e.

1
3V (u)= EIQ Cijit By juy, 1 + 1 ;Buy 1)dQ =
1 1
=[Gt Guag g +14; yBup )AQ+~ [ Gy (Bumjuag 4 + ;. jryBuay JAQ =
270 2T,

1 1
= Efg (Gt i + Crjittag, j1 Y0u;d2 +5fn (Cijran jug 1 + Cipu, jny)0u;d<2 = 0

The original domain of the boundary integral T' =T}, T, has been changed to
I; since &u;IT, =0. Let us consider first variations that vanish everywhere on
the boundary. The necessary condition for the expression to vanish is then

Cijtty i + Cjitty 1 =0 x€Q.

Using the standard argument the natural boundary is found to be

qjk[”juk,l + Ckﬁluk’jn( =0 xeIl;.
Finally, to complete the system of equations, the restriction
y—i; =0 xeT,

where % is known, has to be included.

Problem 4.3

Write down the functional for the problem of finding the domain Q R? with
minimum boundary length when the area is given. Also, derive the
corresponding boundary value problem and da

verify that a circular boundary curve is the y

solution.

Solution 2;
The notations to be used are shown in the =

figure. In this case il is convenient to use the
polar coordinate system. Then

F=rcos@i +rsin@ j ,

dF = (drcos0 - rsin® df)i + (drsin®+rcosf8dd) 7 .
dA=Lirxdri=Lra0,
2 2

dS =fdr -daF =+r'2 +r2de.

The independent variable is chosen to be 6. Let us minimize the length of the
boundary curve under the constraint that the area of the domain inside the curve
is constant A, say. The corresponding functional is




() = [0 Vr? +r2de +ALJ>" %rzdﬂ - Al

Al the stationary point the first variation vanishes

2n  _r'ér’ +rér 2n 1

BII(r M) =) [W +Ar8ride + AL, Erzde - Al=
20 d r r
= [-—¢( )+ + Ar]érdf +
I0 dr J 22 Jr,z 2
r'ngdr

)+ A2 %rsz— A]=0

+ Xoe(0.2n) (—_r,z 2
N

where the boundary terms vanishes if one assumes that r & C2, i.e. that the
boundary curve is smooth, The system of equations (together with the
smoothness assumptions) is
d r’ r
prp— )+
dr '\./r’2+r2 '\/r’2+r2

r'(0)=r'(2r), r(0)=r(2n),

+Ar=0 ©6e]02n],

2 Lage-a=o
0 2

The easiest way to proceed from that point on is simply to use a guess
r=R=conslant giving after some simple manipulations A=nR? and
A =-1/ R. With these selections all the equations are salisfied which means that

the solution is found.

Problem 4.4 P
The potential energy for an axially inextensible column subjected

to a compressing force P is
_d El 2 )
v = 50" Jdx - P[, [0 dx.

Find the minimum value for P causing the column to buckle.

Solution !
Before going into the actual subject a few words aboul the physical background.
The potential energy of the column consists of the internal and the external parts
Vint and VXt respectively. The extemnal part j.e. the potential energy of the
external force P follows from the vertical displacement of the upper end when
the displacements of the column elements (see the
figure) are summed giving

L
Ve ) ==Py ) dx

The internal part having to do with the stress field,
follows from the basic formula

i 1
yint vy= JV EE,‘ngdV

when the usual kinematical and stress-strain relationships ©,, = Eg,,
€y =du/dx, wu=-ydv/dx are substiited and integration over the cross
section is performed (see the figure) .

Now, let us minimize the functional in the function set whose members salisfy
the essential conditions w(0) =v(0) = 0.




8V =) [EV"8v" — Pv8y/]dx =
= [y [(EIV"YBY' + Pv"8v)dx -+ EIv"8v'ny ~ Pr'nySv]sy =
= jé [(EIV"Y” + Py 18vdx +(~(EIv"Y Svny + ENV"8v'n, — Pvn,Sv],ey =0.
The boundary terms at x=0 vanish since &v(0)=3&(0)=0. The Euler-
Lagrange equations with the natural and the essential conditions are then
(ERY"+Pv"=0 xel0l,
(ER"Y + Pv' =0 x=1,

En"=0 x=1,

v=v'=0 x=0.

The solution to the problem is of the form v =g+ bx + csinox + d cosox where
o.=+/ P/ El. When substituted to the boundary condition, the solution gives

1 0 0 1 a
0 l o 0 bl
0 0 —asind —ocosad | ¢
0 o? 0 0 d

For a non-trivial solution the determinant of the matrix must vanish. Thus
cosad =0 giving o/ =nn/2 and P=EJ /12 - (n/2)2.

Problem 4.5
What is the underlying boundary value problem of the weak formulation: find
t—@ eV, such that

o (Pop— o a¢ ~Wf)IQ+ [, whl =0 YweV,

where V = {vive CO(Q),WI, =0} and T=Tp Wy, Tp NIy =97

Solution
Assuming that the solution to the problem is smooth, integration by parts gives
first
Jo (-5—(D, ¢)ngf)dﬂj’ wng D, ¢r+j whdl" =0,
Q a P Fen reurp el 3 AU+ e

or, since wilp =0,

¢

jn (— ( o 3 ) wf)dm-jr w(naDaBi;M)dr =0.

Thus the boundary value problem consists of equations

_r( (1[3 ) f=0 in £,

d
naDuﬁ-axi;m:o on TI'.

6-¢=0 on Tp.




Mat-5.160 Variational principles of mechanics, exercise 5
(to be returned before March 12 )

Find the ratio of radius R to height H that will minimize the total surface ares of a
cylinder of fixed volume. Use the Lagrange multiplier method.

The length S of a curve between points (x;, y;)} and (x;,¥,) is given by

_ plxa.¥2)
(x).x)

where ds? = dx? +dy2. Show thal the minimizer of § is a straight line between the end

points.
What is the minimum value of the compressing force P causing the ¢ P
system of the figure to buckle? The bars are rigid and weightless, and
the springs linear.
kL

Use the Ritz’s method with

= . k
V=2 e (2my G 't

to find an approximation to the buckling force of problem 4.4. Consider cases n € {2...5).

Find an approximation to function f(x):szsin(m‘) xe[01] by using the weak
formulation

j(: Wb fidr=0 VweV,

where V={vv= 215[0”’4] a;x'} (polynomials up to and including degree 4).

Problem 5.1
Find the ratio of radins R to height H that will minimize the total surface area
of a cylinder of fixed volume. Use the Lagrange multiplier method.

Solution
The total surface area and the volume of the cylinder are given by

A=nR%+nR? +2nRH,
V =nR2H,

respectively. The functional to be extremized
TR, H,A)=21R(R + H)+ AV — "R*H)

gives

3_1; =2n(2R + H)~ A2nRH =0,

a_n =27R - MR = 0,
oH

orl 2
&V _nR2H =0
"

By eliminating the Lagrange multiplier from the two first equations we get
2R+H-2H=0
or

RIH=1/2




Problem 5.2
The length § of a curve between points (xq, v;) and (x7, y2) is given by

I(xl )’z)ds
(a0}

where ds® = de? +dy2. Show that the minimizer of § is a straight line between
the end points.

Solution
Let us consider x as the independent variable. Then, the length to be extremized
is

S(y) =_[::12,[1+y'dx,

where y(x)) =y and y(xp) = y,. The variation of the functional should vanish
i.e. (the boundary terms arising from integration by parts vanish since Sy =0 at
the end points)

led 1

8S(y)= j 1+y N Eaadutel N T ey it rﬁ[—(f)ﬁy] 0

giving

4t y=0
dx :}1+y’ o

The solution to this equaticn is y=ax+#b. The two constants follow from the
boundary conditions. Therefore the minimizer is given by

_X—x 4 X=X

X — Xy X9 — X

which represents a straight line between the given points.

l P
Problem 5.3 -
Determine the force P causing the system of the figure to

buckle. The bars are assumed totally rigid and massless, and

torsion springs linear i.e. M = kAB. L

D) &

Ly
1118113

Solution A
The potential energies (see the figure) of the point force and the ——Q = ul
torsion springs are given by

Vlz%(z—cosa—cosﬁ), t2(2 cos o — cosp)

1 1 2
Vz=—kr.1c2 +—k(f-0)",
3 > B-o)

respectively. At the equilibrium the derivatives of | &
V=V1+V? with respect to the generalized

coordinates o and 8 vanish. So

Vv
B_ =ko—k{o—f) —-ﬁsina =0,
do 2

v _

T k(- a)——smB 0.




When the problem is linearized at the obvious equilibrium position a=p=0,
the result is

2k-pLi2i ok o]
-k k-pPLI2||B]”

having other solutions than a=3=0 only if the determinant of the matrix
vanishes. This gives (2k — PL/2)(k - PL/2)-k2=0o0r

(PLY? —6kPL—4k*> =0 = PL=(6k £v36k% —4-4k%)/2= 315k,

Conclusion: the minimum force causing the system to loose ils stability is
P=(3-5)k/L.

Problem 5.4
Use the Ritz's method with

v= Eie{l.ﬂ} ax’

to find an approximation to the buckling force of problem 4.4. Censider cases
ne{2..5}.

Solution
Let us extremize the functional

- f ﬂ Iy 2 l _1 ; 2
voy= [y 15 ) 1de- Py () dx
in the set of polynomials. When the approximation is substituted, the result is an

ordinary equation taking a stationary value, if the partial derivatives with respect
Lo the parameters vanish i.e.

pr? _
Ejell.;;}(“"ij “?ij)ﬂj =0 Vie{2..n},

where

N B i+j—4 4_ 1 Ha-1j=1
Aj = [ WG~ DG =D/ D e o e

o i+j-2 2 1 g
B,-j—jo (b Jdx /! “TTiT

and D = EI. The linear system of equations has a non-trivial solution, if one the
eigenvalues of the matrix B-!A is PI2 / D. The mathematica solution follows:

Do[
A = Table[i*(i-1)*]*(j-1)* (1/(i+j-3)),(i,2,0},{j,)2,m}];
B = Table[i*j/(i+j-1),(i,2,n},{j,2,n}];
Print["n=",n," P/D*1*2=",
Min[Eigenvalues[Inverse[N[B]] . AH],

{n,2,6}]

n=2 B/Dx1"2 =3,
ns=23 PyDx172 =2,48596
n=4 P/D«172 =2.46774
n=>5 P/Dx1”2 =2.4674
Problem 5.5

Find an approximation to function f(x)=5xsin(mx) x€[0,1] by using the
weak formulalion




jé w(t— f)dx=0 YweV,
where V = (viv = Yig(0.. 4) a,—xi } (polynomials up to and including degree 4).

Solution

Substituting the approximation and selecting w = x gives
1 ; )

_[0 x'(Yjel0. 4} ajx) - f)dx=0 Vie{0..4] <

Y jefo..4) Kijaj—b; =0 Vie(0..4},

where

K= xxlax=1/(+j+1),
| Y .
b,--_[o x' - 5x<sin{me)dr .

The latter integral can be calculated for example with the aid of Mathematica
program. The linear equation system above gives then the unknown a jis of the
approximation § =3 je(0, 4)a;x'. The approximation is compared with the

exacl solution in the figures below when n e {0..3).




Mat-5.160 Variational principles of mechanics, exercise 6

1.

The potential energy of an elastic bar is given by 4 q
[ = e — - e e
| EA du, E s
V(u)=_[0 [T(E) —ugldz— P-u(l), f_l_,,_ xu P

|
where =1, P=1, ¢=1, E=1 and A=1. Let us apply the Rilz's method with a
piecewise continuous finite element approximation 7 =T, jetl.m) N;(x)u;. The basis
functions on a regularly spaced set of points x; ={-(j—1)/(n~1) j&(l...n} ore

(x—xj_l)lh, XE{Xj_l,Ij]
Nixy=qxj—-xfh xelxpxpy)
0, otherwise

Write down the typical difference equation 9V /Ju, =0 and solve it analytically.
The potential energy of a stretched string on an elastic foundation is given by

1 1 dvs 1 9
Vivi=| [= (=) +—v*]dx,
wy=[) S+
where v{(0) =0 and v(I})=1. Knowing that the exact solution to the problem is the
minimizer of the functional, solve the problem by the finite clement method. The
approximation is the same as in problem 6.1. Hint: write down the typical difference
equation 8V / 9v; =0 and solve it analyiieally.

The poteniial energy of a certain stretched string on a non-linearly elastic foundation can

be written as

P10 dvg 1 4 1 49
Vivy=| [— (=) +=v"+=—v“]dx,
W=[) (F 4ot + v

where v(0) =v(1)=1. If the problem is solved numerically with the approximaticn of
problem 6.1, write down the typical difference equation 9¥ /9y, = 0.

Selve problems 6.1, 6.2 and 6.3 numerically by the finite element method and
approximation with n=>5. Use the Mathematica function Extremize of the Lmp
notebook.

5. Derive the detailed Euler-Lagrange equations and initial conditions for the functions
a;(t) of Example D.13 in the case of ¢ ;(x)=sin jre/l je[123), vo(r) =vi(1) =0,
g(x)=x(1-x) and H(x)=0 (I=1).

Problem 6.1

The potential energy of an elastic bar is given by - ——
_l (EA du 2 — xu

v =|, [ () ~walde= Pru(l) !

where [=1, P=1,¢g=1, E=1and A =1 Letus apply the Ritz’s method with a
piecewise continuous finile element approximation & =%, jell..n} N j(x)u - The
basis functions on a regularly spaced set of points x I =l-(j-1/(n=-1)
je€{l...n} are

(x—xj_l)lh, xe{xj_l,xj}
Nij(xy=<(xjp1—x} b, xelxjxjy}
0, otherwise

Write down the typical difference equation 9V / 9u; = 0 and solve it analytically.

Solution
Variation of the potential energy functional with & = EA gives

1 ddE, diE oo
I ) K3y ~daa)dx- Poi(h =0,

when also the approximation is substituted there. In this case the variation 8
can be taken 10 be the typical basis function ¥; (having the support Ix1,x:490)
Thus assuming that node i is not located at the boundary

——




5 ANy di
it _ N =
L‘i-l ( dx & dx ig)dx

% 1 M- i1 LY et
Tk deH 0 [k dr +
L‘f-l (h h '{xx [ h h Jdx

. X=X i 1T
_J"‘l *fl,qu_ﬁ.ﬁl L R,
1

il h h qdx=0

If i =n the comresponding equation is

Xy dNi'Ikd_iI_N dr=P= Xa lkun_unfldx_*_
Ixﬂ-] o o~ Ix"-l O h

_J"xn X=Xp-1 gdx—P=0
Xn-1 h

After integrations, Lhe equations give an ordinary second order difference
problem

y—-u=0,

k .
;(-—u,-_] +2u —1p)—gh=0 ie{2..n-1),

%(u,,—u,,_l)—thQ—P=0,

assuming that the grid is uniform and the coefficients constants. The discrete
problem can be treated in the same manner as a continuous problem consisting
of a differential equation and boundary conditions. For a particular solution we
assume (hat i; = Ai2, to get

—AG -2+ )+ 247 —AG 421+ D-R2 =0 = A=-hH2/2.

For the solution to the homogeneous problem we assume that u; = B, to get

rP-2r+120 = r=1.

Due to the double root, the solution to the homogeneous problem is of the form
u; = B + Ci and therefore the solution reads

w=B+Ci—ith* /2.

The two constants B and C can be determined with the aid of the boundary
conditions:

u]=0,
Uy —ty_1—h*12=h=0

giving C=h>12-[n® =(n=12 +1]+hand B=h2/2-C.

Problem 6.2
The potential energy of a stretched string on an elastic foundation is given by

1
V)= |y L + 2

where v(0) =0 and v(1) =1. Knowing that the exact solution to the problem is
the minimizer of the functional, solve the problem by the finite element method.
The approximation is the same as in problem 6.1. Hint: write down the typical
difference equation 3V / dv; = 0 and solve it analytically.

Solution
Variation of the potential energy functional gives




_[0 (di"d—" +78F)dr =0,

when the approximation is substituted there. Also now, the variation 87 can be

taken as the typical basis function ¥; (having the support 1x;_j, %, [). Thus

assuming that node i is not located at the boundary

fTm (dN I\ Nyae=
de dx

X1

X lvf Vil X~ X X—X X=X
= + Vi + v )dx +
=l G PR R a

X; v 1—v;i X4 —X Xj41—X xX—X;
+J.I_‘+l [ - I+1h l+ l+iI ( H-;I 1‘,i;_|_ p !"i+1)]dx=0 .

The outcome is the difference problem

1 h .

E(—VE_] + 2\«',' —¥41) +E(V,'_] +4v,- +¥e)=0 ie(2...n-1},
v=0,v,=0

assuming that the grid is uniform. Note: By using the shorthand notation
o=(1/h—h/6)/(2/h+4h/6) the difference equation can also be written as
—0wj_] +v; — avjy = 0. Let us assume that v; = Ar', to get

—atr-or?=0 & r=+Vi-402)/20.

Because there are two possible r:s the solution is of the form
= Aj(n)' + Ay(n)". The two constants Ay and A, follow from the boundary

conditions:

VIEA]I]'f'AzQ:O = [ ’l '2 }[Al]=[0]
Ve = A"+ Ay (n) =1 CURNGYE RS

and the solution can be written as

__:’iAl_ii’lQ_lO.
v =[n rn][AJ—[n Q][q,, Q,,] H ie(l..n).

Problem 6.3
The potential energy of a certain stretched string on a non-linearly elastic
foundation can be wrilten as

Vo) =fy E + id

+ v ]dx

where w(0)=wv(1)=1. If the problem is solved numerically with the
approximation of problem 6.1, write down the typical difference equation
oV /v =0

Solution

The functional contains now higher than quadratic terms, which means that the
equation system obtained by the Ritz's method is non-linear in the unknown
parameters. Let us take the first variation before substituting the approximation

'o‘vm:jo {Iogf%i—"q-vf‘svwﬁv]dx:o.

The next step is to replace the non-linear term by its truncated Taylor series at
reference solution ¥, i.e., v3 — ¥3 + 372Av. Similar decomposition v=¥ + Av is
applied also in the other terms. The comection Av is chosen to satisfy the
homogeneous essential boundary conditions and, at this phase, ¥ is a smooth
extension of the boundary conditions ¥ =1, say. Then




jo [10 d(“;AV) d:;l" +(73 +392Av)3Ay + (7 + Av)BAV]dx =

dAv dﬁAv
= IO

[ 10— +352AvBAv + AvAv]dy +

+V3BAY + 78AV]dx = 0

Since ¥ is assumed to be known (temporarily), the result is a linear system of
equations (note that the variation 3Av can be chosen to be the typical shape
function) whose typical equation { is given hy

jo 110@@—+3\T2A17N,»+A5Ni]dx+jo [10"—"% VIN; +TN;ldx =0 .

The non-linear problem can be solved now by starting from ¥ =1 and solving
the comection AV. After that ¥ — ¥+ A7 is chosen as the new reference
solution. This is repeated until the norm of the change AV falls below a given
limit.

Problem 6.4

Solve problems 6.1, 6.2 and 6.3 numerically by the finite element method and
approximation with n=35. Use the Mathematica function Extremize of the Lmp
notebook.

Solution
See the examples section of Mathematica notebook Ritz.ma.

Problem 6.5

Derive the detailed Euler-Lagrange equations and initial conditions for the
functions a;(r) of Example D.13 in the case of ¢ jlxy=sinjmx /! je{l,2,3],
vo(t)=w (1) =0, g{x)=x(1-x) and A(x) =0 (I =1).

Solution
Hamilton's principle for the problem of the example reads

ne=f2 [g [— (—-) -—S( =) Jdxdr

In this case the approximation is of the form
¥{x,1) =sin{ jmx) - a;j(t},

where one may use the index set je{1,3), since the initial conditions are
symmetric with respect to the point x=1/2. Substituting the expression and
performing the integrations with respect to the spatial coordinate gives the
following reduced principle (see the remark)
I 1aa aa

n 2= ————-—S n a;lde .

(a)=f [2 R 2(1) 74,1
The Euler-Lagrange equations are obtained by considering the first variation
{(one has to assume that the variation vanishes at the end points of the domain)

da; dda;
=" S g 8a - 1df =
2.8IT= t [pw?—s(‘]'ﬂ:) aj&lj]dl—

2
—”[p L_s(jm2a;8ajdt=0




which implies

d a;

pd +.Sj1ra =0 je{l3}.
'

The two initial conditions needed are obtained for example by projecting the
original initialconditions onto the subset spanned by the basis functions.
Equivalently one may minimize the least-squares functionals

nw=fy 3-8,

ney =) l(5314:) dr ,

giving

ajn)y=2]; sin(jmx)gdz=2f] sin(jex)r(i—xds,

d
Eaj(tl) =0.

Remark: j(') sin(inx) - sin(jrx)de = §;; /2, j(; cos(inx) - cos( jrx)dx = 8;; /2




Mat-5.160 Variational principles of mechanics, exercise 7

1. A system consists of three particles 1,2,3 with masses ny = 2kg, m; = 3kg and m; = dkg
with the following position vectors, velocities and external forces acting on them:

ry=@j+4km, v, =(li+lk)m/s,  F,=2kN,
ry=(li+3jim,  vy=(j-lk)m/s, F,=IjN,
ra=(li+2k)m,  v3=(2i-3))m/s,  Fy=4jN.

Determine (a) the positicn vector ro of the mass center of the system, (b) the velocity
v ¢ of the mass center, (c) the acceleration a o of the mass center, (d) the rate of change
of the momentum dp/dsr of the system, (e) the rate of change of the moment of
momentum dL/dt of the system with respect to the origin and () the kinetic energy K
of the system.

2. Determine the displacements u;(#) of the particles of the systern of the figure. The
initially zero spring forces are proportional to the extension with the spring constant k,
u;(0)=0and ;(0) =g, and the particles are identical with masses m.

) u u
ol -
MWAN-O
k. m k m k m k m

3. The potential energy of a stretched string on an elastic foundation and subjected to
distributed force ¢ is

Viv)= j; [%(v’)2 %(v)z —gv]dr.

The displacements at the end points are v{0)=v(1) =1 and the distributed force is zero
except in the neighborhood of the centerpoint where g =10 x € (04,0.6). The domain is
divided into 10 elements of equal size and the global-local approximation is

¥ =1+apsin{mr)+ asNg +agNg +ajiN7,

where ag, ds, ag and a7 are the unknowns and the N;:s are the usual piecewise linear
shape functions. Write down the linear equation system for the unknowns.

4. Solve problem 7.3 with the aid of the Mathematica nolebook RITZ.ma.

5. Write down the typical difference equation comesponding to the variational finite
difference method and problem 7.3 with g = 0. Use a regular grid with 11 points.

Problem 7.1

A system consists of three particles 1,2,3 with masses m =2kg, my =3kg and
mg =4kg with the following position vectors, velocities and extemal forces
acting on them:

r =(2j+4k)m, v;=(li+1k)m/s, F) =2kN,
rp=(li+3j)m, vo=(1j—1k)m/s, Fy =1jN,
ry=(li+2k)m, v3=(2i-3jim/s, F3=4jN.

Determine (a) the position vector r, of the mass center of the system, (b) the
velocity v ¢ of the mass center, (c) the acceleration a . of the mass center, (d)
the rate of change of the momentum dp/ dt of the system, (e} the rate of change
of the moment of momentum dL / d¢ of the system with respect to the origin and
(f) the kinetic energy X of the system.

Solution
(a) The mass center is defined by ¥ mr. =3, myr;, where the sum extends over
the particles of the system. Thus

(2+3+4)r ¢ =2(2f+4k) + 3(li + 3]) +4(li + 2k) = (7i + 13j + 16Kk) =




rC=%(7i+13j+16k) [m].

(b} The formula for the velocity of the mass center is obtained by taking
derivatives on both sides of ¥, myr- =% mr; giving ¥ mv =3 mv;. Thus

2+3+4)w - =2(i+k)+3(j-k)+4Q2i-3j)=10i-9j-k <
| [ -1
vC=E(101—9_|—k) [ms™].

{c) Since for each particle mya; =F; +[;, the formula for the velocity of the
mass center i5 obtained by taking derivatives on both sides of
Xmve=Y mv; giving ¥ mac.=% ma; =3 F; (note that the internal
forces add to zero). Thus

(2+3+4)a. =2k +j+4j=5j+2k ac=~;-(5j+2k) [ms2].

{d) The momentum of the system is defined by p=3 m;v;. By taking
derivatives on beth sides of ¥ myv =% myv; wegelp=3 mv;=3 F;, (see
also (4.3.4)). So

p=2k+j+4j=5j+2k [N].

(e) The moment of momentum of the system is defined by L=3 mrx; X v;,
where r; is the position vector of the particle with respect to the origin. By
taking derivatives on both sides we get L=3F mr xa; =3 r; xF; (the
moments of the intemal forces add to zero, see also (4.4.4) ). So in this
particular case

L=3 r;xF; =(2j+4k) x 2k + (li + 3j) X 1j+ (li + 2k) X 4j =
=4i+k+4k - 8i=(~4i+5k) [Nm].

(f) The kinetic energy of the system is defined by K=J, mv;-v; /2. So in this
case

K=[2(0+D+3(1+1)+4(4+9]/2=31 [Nm].

Problem 7.2
Determine the displacements i (t) of the particles of the system of the figure.
The initially zero spring forces are proportional to the lengthening with the
spring constant k, u;{0)=0 and & (0) =g, and the particles are identical with
masses m.

% MWoWvo

E.kmkmk m k m

Solution
The kinematical constraint and free body diagrams of the typical particle and the
last particle give equations

mig =k —2u; +uw;_1) ie{l...n-1),
mil; = k(w1 1) i=n
or when written using the matrix notation

m{M][ii} +k[K]{u} =0, where




1 0 -+ 0 2 -1 0

0 . -1
[M]=E l 0 * [K]—
0 0 1 0 -1 1

The solution to the problem is of the form

(u} = {a}sin[A]¢ + (B} cos,[A] ¢ ,

where [A]=[M][K]. Since [A] is symmetric, it can be written in the form
[A]=[«[ALx]" where [2] is diagonal and [<[x]T =[1]. Here [K] is positive
definite and therefore the eigenvalues in [A] are positive and real. By taking into
account the first initial condition {u} = 0, the solution can be written as

{u} =[x] sin(ﬂr)[x]rr{a}.

The second initial condition {#} = £ gives

(i} =[xy )] (e} ={e} & {a}=[<IAT [ (e}

Then, the solution to the problem is

{u} =[x]sin¢/[A] O[] V2 [x] el .

Problem 7.3
The potential energy of a stretched string on an elastic foundation and subjected
to distributed force g is

1
V)= Jy 002 4200 - ol

The displacements at the end points are v(0)=v(1) =1 and the distributed force
is zero except in the neighborhood of the centerpoint where g =10 x € {04,0.6}.
The domain is divided into 10 elements of equal size and the global-local
approximation is

¥ =1+agpsin(nx) + asNs + agNg + a; N7,

where ag, as, ag and a; are the unknowns and the Nj:s are the usual piecewise
linear shape functions. Write down the linear equation sysiem for the unknowns
and solve it with the aid of Mathemarica.

Solution
Let us write the approximation in the form

¥=Yiei-1.m Gl

where the non-positive indices denote the global modes (N_j=1, b_j =1,
Np =sin(mx), by =ap) and the positive ones the usual piecewise polynomial
'local' modes. In this particular case we choose ; =0 i e {l.. 4,8...11). Note that
the boundary condition is accounted for correctly by this selection.
Minimization of the functional in the set spanned by the approximation gives
the linear equation system

Jo INi%+N; 7= N; qldx=0 e (0567) .

Since the other parameters are known, minimization should not be performed
with respect to them. Let us divide the approximation ¥ — ¥+ into parts of
which the first consists of the known modes and the second of the unknown
modes. Then the linear equation system can be writien as

Kfjb} — F; =0 ie {0.5,6,7] ,




where Kjj= [ [N;Nj+N; Njldx . F==[ [N{¥+N; 7~ N; qldx

Problem 7.4

Solve problem 7.3 with the aid of the Mathematica notebook RITZ.ma (you
can get the notebook from the homepage hitp://www.hut.fi/HUT/Dynamics/ of
the Laboratory of Compulational Dynamics) .

Solution
See the examples section of the Marhematica notebook RITZ.ma

Problem 7.5

Write down the typical difference equation corresponding to the variational
[inite difference method and problem 7.3 with g=0. Use a regular grid with 11
points.

Solution
The starting point is the minimizalion principle

1,1 .2 1 .2
V)=, [=(V) +=(v)")dx,
W=y GO+
which is approximated by replacing the integrand by simple difference formulas

and performing the integration after that. Thus assuming that the grid points are
uniformly spaced with the distance h (the number of points is n)

_ 1 Vini=Vja, 1 %t +vi,
V=Ljei.m G 0+ FC AL

Al the stationary point the partial derivatives with respect to the nodal values

vanish

aV 1 v, Vi 1 vi—v

bl By S OY S, TR £5 ks SR
(Vl +Vr 1)h+2 (v!+1+vl)h] 0

Thus the result is the difference equation

1 h
;(_Vi—l + 2V —viq1) +Z(v,'__| +2v; +v:1) =0,




Mat-5.160 Variational principles of mechanics, exercise 8

1. (a) Show that if the principle of balance of moment of momentum is valid with respect
to a fixed point (origin), it is valid with respect to the center of mass of a system,
(b) Derive formula (4.4.11) for the moment of momentum of a tigid body.

2. Derive the equations of (plane) motion of a particle in the polar coordinates 7.8 using

Lagrange's equations. m @

. k

3. Derive the equations of motion of the system of the figure ‘}‘WV
consisling of a particle, rigid bar {(assumed massless) and a linear

spring. Use Lagrange's equation of motion with the angle of the I i’__

rotation of the bar as the generalized coordinate. a

4. Derive the equations of motion for the system of the figure using v
Lagrange's equalions. The peneralized coordinales are the 2
horizontal and vertical displacements u,v of point 1. The bars |
are homogeneous with the total mass m, the cross sectional

b
area is constant A and the force displacement relationship for

a bar is assumed to be F = AE-Al/], where E is the Young's J’ ¢
modulus, [ is the original length of the bar and Al is the b P
elongation. The components P,Q of the force at point 1 are :

wy
constants. 3

X H

5. Derive the discrete equation of the motion for the vibration of a simply supported
uniform Bemoulli beam with the mass per length p and with the bending stiffness Ef
using the Lagrange's equations with

= PP 9 | 1
V=a;(t)-sin(jr-x/1) fe(l..n}. 7\

£ I
Consider the a;(t}:s as generalized coordinates. = x

The inertia forces associated with the rotation of i
beam cross sections are neglected. '

Problem 8.1

{a) Show that if the principle of balance of moment of momentum is valid with
respect to a fixed point (origin), it is valid with respecl to the center of mass of a
system.

(b) Derive fermula {(4.4.11) for the moment of momentum of a rigid body.

Solution
(a) Let us assume that the balance of moment of momentum is valid with respect
to origin, say. Then

L=M, where L= . mhiXmvi, M=% X (f; +F) .

iefl..n)

The position vector of the typical particle can be written as r; =, +r;; . When
substituted in the formula for the moment of momentum and in the formula for
the moment

L=Z,‘E[|__,,] (rC+ri/C)xmivf=rCXP+E;‘E{|___n} Gic Xy,
M=E;e[1__,,} (re + o) %+ K) =
=Zieit..n) XF+ Deq_ny tucxE

Since £, XP=f,xmi. =0, the balance of moment of momentum takes the
form

. d
rCXP*'E(E,’e[L_J,} I?ICX"‘I‘V;')="CXF+E,'E[|,_J,} Licx K.

Finally, using the balance law for the momentum P =F, one obtains

d .
E(ng{[,__n; riImeivr')=z,‘e[1_,,,} rycXF or Le=Mc.




(b) Equation (4.4.11) states that the moment of momentum with respect to the
origin (say) can be written in terms of the moment of momentum with respect to
the mass center, linear momentum and the mass center by

L=rxp+L,.
The definition when written in terms of r =r, + s gives

L=f, (re+syxpidV =rex [, pidV +{ sxpedV =r.xp+Lc.

Problem 8.2
Derive the equations of (plane) motion of a particle in the polar coordinates r,8
using Lagrange's equations.

Solution
The speed squared of a particle in polar coordinates is obtained from

rr =d%(rcosei + rsin@j) -%(rcosei +rsin@j)=

P+ [%(rsin )2 =2 + %%

d
=[— 8
[dr {rcos9)
The kinetic energy is then
K= %m(r‘z +r2%).

Since the generalized extemnal forces Fy and F, may nat be conservative, the
Lagrange function is chosen to coincide with the kinetic energy i.e.L =K and
the equations of motion are

2 d K. dK v
—(—=)———=mr9=Ff and —(—)——=mF—mr°8°=F.,
ir98 %8 A T ’
m O___
Problem 8.3 k
Derive the equations of motion of the system of the figure ‘.,JVW T
consisting of a particle, rigid bar (assumed massless) and ( i i ‘g
a linear spring. Use Lagrange's equation of motion with a
the angle of the rotation of the bar as the generalized J
coordinate. S U W
Solution
mQ I{1—cos8)
k i b+asing@
w— I
b | 8
a
a(l — cos@)
A

According to the figure the elongation of the spring is given by

As=\/(b+asin8)2 +(a—ac059)2 -b.

The potential energy consists of the potential energy of the spring and the
potential energy of force due to the gravity. Altogether

|4 =%km2 —mgl(1-cosB).




Only the point mass has to accounted for in the kinetic energy expression since
the bar (and also the spring} are assumed massless;

—lmlzéz.

daT-v)y HT-V)
;] 28

The Lagrange's equation of motion =0 gives

mi% + kAsaE%s—mglsina =0.

Problem 8.4

Derive the equations of motion for the system of the figure
using Lagrange's equations. The generalized coordinates .
are the horizontal and vertical displacements u,v of point
1. The bars are homogeneous with the total mass m, the
cross sectional area is constant A and the force
displacement relationship for a bar is assumed to be
F=AE -Al/l, where E is the Young's modulus, [ is the
original length of the bar and Al is the elongation. The

components P, of the force at point 1 are constants.

Solution
Let us first consider the horizontal bar of the figure alone. The potential and
kinetic energies are (we assume that u=x/1-w and v=x//-v )
- wolEA o l ' vy
=gV =37 L L S

!

— X

T=—;—jvp(u2 +¥2)dV =%§(¢12 +v%),

The displacements of the bars in the direction of the axes and in the direction
perpendicular 1o that are related to displacements by (see the original figure for
the angles)

M R P S

Thus for the whole structure the potential and kinetic energies are

—lﬁ(4 - ) +%%(2u —v)z—Pv—-Qu
lam 2 2. 1 bm . LI
6a+b(u +v)+ 6a+b( +v ) 6m(u +¥7)

or using the index notation
1 1 .
V=—K,-ju,-uj—F}u,-, T:—M,-ju,-uj.
2 2
where the definition of the stiffness and the mass matrices K,‘J- and M,-j can be

obtained by comparing the representations without and with the index notation.
The Lagrange's equation of motion gives finally (with L=T-V)

(M +Mﬂ)u + = (K--f-Kj,-)uj—F;:

Problem 8.5
Derive the discrete equation of the motion for the vibration of a simply
supported uniform Bemoulli beam with the

mass per length p and with the bending _é_ AN

|—=x

o




stiffness Ef using the Lagrange's equations with
V=a;@t)-sin(jn-x/1I) ke(l..n).

Consider the a;(t):s as generalized coordinates. The inertia forces associated
with the rotation of beam cross sections are neglected.

Solution

The kinematic assumption of the Bemnoulli beam is that the cross sectional
planes of the beam, originally perpendicular to the axis, remain perpendicular to
the axis despite the displacement. Thus one may write

u(x,y)=—v'(x)- y

if the origin of the y-axis is placed at the axis of the beam. The potential energy
of the internal forces (due to the strain field} can be obtained from the general
formula

1
V=], iV,

where now oy, = EE;, =—Ev”- y. Assuming that the Young's modulus £ and
the cross sectional area are constants, one oblains

_Elg 2 e L2
——2—f0 (v)*dx with I—_[A ¥ dA.

The expression for the kinetic energy is (assuming that the rotational part is
negligible)

1 o0 1, o
K=J, Zpvdv=_Apfy vix.

Then, the Lagrange's function is

_ 1 ! 2 Efq .2
L—K—V—EAPJO v dx——2-_[0 (v dx,

which simplifies into

1

_1 2 Mg 21
2

! 5 E
Le=K-V=oAps Sien m 4 ~5 Liep.n) )05

when the series representation is substituted there and the orthogonality
condition of the remark is accounted for. The Lagrange's equation

gives then Apd; + EI (%)441,' =0.

Remark, jé sin(in - x/1)-sin(jm- x/ Ddx = z%a,-j




Mat-5.160 Variational principles of mechanics, exercise 9

1. What is the maximum mass that can be attached at the top of the rigid bar (assumed
massless} supported by a frictionless hinge and a linear spring if the position of the
figure is to be stable (fig.1).

2. The homogeneous rigid body of the figure consists of a cylinder and of a halfball {fig.2).
Determine the value of the ratio r/h at which the upright position becomes unstable.

3. Determine the force P causing the system of figure 3 to buckle. The bars are assumed
totally rigid and massless and torsion springs linear i.e. M = kA@.

4. Write down the potential energy functional for the Bemoulli beam of figure 4. Also
determine an approximation for the buckling force by assuming that Lhe displacement is
of the form ¥ = v, sin(mx /I). Compare the result with the exact solution,

21 0
5. The smallest eigenvalue of matrix A=|1 4 1|is given by
o1 2

. *7 Ax
A= min -
xe R:’,xrxvto xx

(a) Use the formula above to find the smallest eigenvalue of A,
(b) Use the same idea to find an approximation for the buckling force of problem 9.4

when ¥ =Fep) 3y v sin(ime /1)

Fig.3 Fig.4

Problem 9.1 m o
What is the maximum mass that can be attached at the top of ,

the rigid bar of the figure (assumed massless) supported by a PW\’
frictionless hinge and a linear spring if the position of the | b ! ‘g
figure is 10 be stable. -

a
Solution J i
[ A W S
The potential energy has been discussed already in :
connection with problem 8.3. As the equilibrium position where the buckling
takes place is known to be 8 =0, the setting can be simplified by replacing all
the quantities involved by their Taylor series at 6=0. Then

(1—cosB = 1—1+s5in0+cos0-82 /2 )
V =Lk (a0)2 - mgr Le?
2 2

At the equilibrium, the derivative with respect to the generalized coordinate 0
vanishes, i.e

% = (ka2 —mgh)e=0

giving 8=0 or m= ka?/ gl. The latter gives the maximum mass for the upper
position to be the only solution, since if the multiptier of & becomes zero any @
will do.




Problem 9.2

The homogenecus rigid body of the figure consists of a
cylinder and of a hatf-ball. Determine the value of the
ratio r/h at which the upright position becomes

unstable,

Solution
The figure shows that the (posilive upward) displacement of the mass center of
the half-ball due to the change 8 in the angular coordinate is

Ah =§r(1 —cosB})

(the distance of the mass center is 3r /8 from the
center of a ball). For the cylinder the displacement
is

h
Ah=——(1-cos6).
2
Thus the potential energy of the system is given by (¢ 2 cylinder,b £ ball)
V= —mcgg(l —cos0) + mbggr(l —cos8),
At the equilibrium, the derivative of V with respect to the generalized

coordinate © vanishes. So

dv
E=—g(mcg—mb§r)sin0 =0,
which gives sin@=0 or mh/2-3mPr/8=0. As the masses are given by

m€ =7r2h and mb =2mr3 /3, the latter equation implies 7/ h=+/2.

Problem 9.3
Determine the force P causing the system of the figure to L @k
buckle. The bars are assumed totally rigid and massless and
torsion springs linear i.e. M = kAB.

1 @k
Solution e
The potential energies (see the figure) of the point force and the torsion springs
are given by

i
Vl=%£(2—cosa—cosl3). oy 2(2_‘:05““:05[3)

2 1 e 1 2
Voi=—ka® +=k(B-a)”,
2 > B-o)
respectively. At the equilibrium the derivatives of

V=v1+V2 with respect to the generalized
coordinates o and B vanish. So

al:ka—k(a—ﬁ)—ﬁsinOL:O,
do. 2

aV PL .
%— kB-o) —TSIDB—-O.

When the problem is linearized at the obvious equilibrium position =B =0,
the result is

Pz el
-k ik-pPLI2I|B|”




having other solutions than oo=B =0 only if the determinant of the matrix
vanishes. So we get (2k — PL/2)(k — PL/2)—k2 =0 giving

(PL)® -6kPL—8k>=0 or PL=(Gk£V36k>—4.8k2)/2=3k+4k.

Conclusion: the minimum force causing the system to loose its stability is
P=2k/L.

Problem 9.4
Write down the potential energy functional for the Benoulli beam L
of the figure. Also determine an approximation for the buckling
force by assuming that the displacement is of the form
¥ = vy sin(mx / [). Compare the result with the exact solution,

Solution
The potential energy of the beam has been discussed in connection with problem
4.4;

El 1
V0= o - Pl 201,

In this case the function set is restricted by the essential boundary conditions
v(0)y=v{l)=0. At the equilibrium the first variation of V vanishes

8V(¥) = || EIv"8v"dx~ P} v8v/ds =0.

Let us choose &v =v and solve the force P lo get

P=[lEI0 e [ vyPax.

The result is the so called Rayleigh quotient giving a good estimate for the
eigenvalue P if one is able to make a reasonable guess for the corresponding
eigenfunction. Here ¥ = vy sin{mx /[) and the force is then

,_ [§ Er(m 1 1)*sin? (e / ax

2
- = EI(n/ )%
Jo 7/ 12cos? (ux 1 1yax

which happens to be exact (the guess for the corresponding eigenfunction is
very good). The exact solution can be obtained by considering the underlying
boundary value problem

En' 1+ py® =0 xelo .

v(iO)=v(1)=0,

vy =v@ @ =0.

The solution to the field equation is of the form
v=a+bx+ csin(mx) +dcos(~'P/Elx)

and the boundary conditions give with c.= I~ P/ El

....... 1 a0 0 ]
...... Ledn b isine 5 cosa |IBY_
........ LA SR RS | SR S S | L

¢ | 0 -o’sinai-ofcosa|ld

For a non-trivial solution the determinant must vanish. The final result is the
same condition for the point force as given by the Rayleigh quotient.




Problem 9.5
210

The smallest eigenvalue of matrix A=|1 4 1|isgivenby
01 2

x| Ax
A= min 7
xe R xTx=0 x'x

(a) Use the formula above to find the smallest eigenvalue of A.
(b} Use the same idea to find an approximation for the buckling force of
problem 9.4 when ¥ = Yien_3 v sin(inx /D)

Solution

Mathematica program finds good use in connection with this problem.
(a) Let us write x = {a,b,c) L. Then

. xTAx 2% +4b% +2¢% +2ab + 2bc
A= min = min > ;

xe R* x7x20 xTx xe R x7x=0 a2+b2+c

The mathematica solution to this problem follows:

In=

Min[Eigenvalues[{{2,1,0},{1,4,1},{0,1,2})]1 //N]
FindMinimum[ {2*a+2+4*b*2+2%c*2+2%a*h+2*b*c) /
(a*2+b*2+c*2), {a,l},{b,0}, {c,0}]

Outs

1.26795
{1.26795, {a -> 1.01165, b -> -0.740581, ¢ -> 1.01165}}

(b) The starting point is the Rayleigh quotient taking the form

I m 2.4
JoE10"y dx 2 Zictl 3% !
Jo 0 ax Tyt

when the approximation ¥ =3;cq 3) v;sin(inx/l) is substituted there. The
mathematica solution for the minimum is given by

In=

v a {a,b,c};
fun=Sum[v[[1i])]*2%1i+4,{1,1,3}}1/8umlv[(1)]142*1+2,(4i,1,3}] ;
FipdMinimum(fun, {a, 1}, {b, 0}, {c, 03100111

Oute=
1.




Mat-5.160 Variational principles of mechanics, exercise 10

The virtual work of a bar of a truss is &'Wj™ = —N -85 Another expression is

it _
Fwt=—[,, S8E-a%.

where the integration is over the volume O of the bar in the reference state. Assume
that § and 8E are constants and show that the 1wo representations are equal,

Determine the vertical displacement v; of the elastic truss with the large deformation
theory directly using (6.4.1). a=1m, "4=001m2, C=100Nm= and F=05N
(fig.1).

Determine the displacement u), v) of the elastic truss with the large deformation theory
directly using (6.4.1). The values of the parameters are the same as in the previous
problem (fig. 2).

A cylinder is rolling freely on a horizontal plane. Determine the equation of (plane)
motion of the cylinder using Lagrange's equation. The radius of the cylinder is R and the

mass is m.

The particles of the figure are joined together by a massless inextensible string.
Assuming that friction is negligible, determine the value of angle 8 at which the system

is in equilibdum (Fig. 3).

Fig. 1 Fig. 2 Fig. 3

Problem 10.1
The virtual work of a bar of a truss is S'Vﬂ-}m =—X -8s. Another expression is

§W ==[o, SBE-d%,

where the integration is over the volume OV of the bar in the reference state.
Assume that § and SE are constants and show that the two representations are
equal.

Solution

In the virtual work expression 8'%}’“ ==N -85 the quantities ¥ and & denote
the force of the bar and virtual change of the length 8s. The strain and the
Kirchhoff stress are defined by

2_02
E=1S%  y_Sgy.
052 O¢
Thus
5 05
8E=~—8 and S=——N
05_2 Uqs
giving
0
§8E=—" 85— N=—L N5
0g 45 0504
and finally




5'14;}"‘ = _J],V SSE-d% =—ﬁN§sJ‘ov d% =—NGs.

Problem 10.2

Determine the vertical displacement v; of the elastic truss with Y
the large deformation theory directly using (6.4.1). a=1m,

% =00tm2, C=100Nm=2 and F = 05N.

.

The starting point is the virtual work expression —8 "W, — §W,, =0 where in

Solution
this case (v is directed upwards)
—& Wy = Fovy,

0 2
0

CAl 2 symtv Os, +v))8y; .
OS 2 032 N

_a’wmt =
Since the virtual work equation should be satisfied with any 8v|, we get

0 2
c%1_2syq+nr0

F+ sy +v)=0.
DS 2 052 Loy ])

After substituting the numerical values for the problem parameters

1 1 2
—+ =2y + V)1 +v)=0
S 2y +y )1+

the solution to which can be obtained with the aid of Mathematica =

v) =—03247179572447461.

Note that the solution to the linearized ‘small displacement version’ is v; = —035.

2 ? LI
Problem 10.3
Determine the displacement u), v of the elastic I)’_
truss with the large deformation theory directly . a
using (6.4.1). The values of the parameters are the F ;
same as in the previous problem. ‘ '

. &

|

Solution
The starting point is the virtual work expression —&'W,, —8W,,, =0 where in
this case

—&'Weyy = Flvy,

ch1 W +2% v+vf
0 2 USZ

—BJWEM B [uli‘iul +(0.S‘y +v )Svl] +

CU Ll v +20%, 1+l
— il B S Bl sz 174 {8y +(Osx+u1)8u1].
s 2 5

Since the virtual work equation should be satisfied with any dv; and &y, we get

Chl uf'+205xvl+v12rg ci v]2+20.vxu[+u12

LS +V)+__' V =0-
[ 02 y 1

F+
US 2 032

2 0 2
CUL M +2 sy m+v  CU1 v +2%, w+uf o

b . Se Fup)y=0.
02 02 1775 0,2 (S +u)




After substituting the numerical values for the problem parameters
1

5'+%-(u,2 +2v+vE)1+vy) +-2—-(v|2 +2u) +ul ) =0,

%-(u% +2v + vy +-;--(v12 +2u +1d)(1+14) =0

the solution to which can be obtained with the aid of Mathematica =

v =—0324532, u =—0.0383314.

Problem 10.4

A cylinder is rolling freely on a horizontal plane. Determine the equation of
(plane) motion of the cylinder using Lagrange's equation. The radius of the
cylinder is R and the mass is m.

Solution
From kinematics we know that the velocity of the contact point is zero. Thus by
using the notations of the figure v—@ R =0. The kinetic energy of the cylinder
is (for a cylinder 7 = mR212)

2

K=lmv -+-11'0)2 =lmv2 +llmR2(vl R)2 =§mv2.
2 2 2 22 4

Lagranges equation of the motion gives

d{dK df3
—|=—1=0 =2 —|=-mv|=0 = v=constant.
del ov de\ 2

Problem 10.5

The particles of the figure are joined together by a massless
inextensible string. Assuming that friction is negligible,
determine the value of angle 8 at which the system is in
equilibrium.

Solution
The potential energy of the syslem is

V =—m g R(1-cosB) + nm, gRO.
The system is in equilibrium when dV /d8 =0 giving

—mgRsinB+mgR=0 = O=arcsin{m/m) Bel0,n/2.




Mat-5.160 Variational principles of mechanics, exercise 11
(to be returned before Apnl 22 )

1. ‘The pendulum of the figure consist of a particle (mass m} and a
homogeneous bar (mass m, length L), Write out the Lagrangian
equation of motion of the system by using the angle of the bar ¢
as the generalized coordinate. What is the period of small
oscillations ?

2. The usual way to solve non-stationary problems makes use of finite differences with
respect lo the time coordinate, i.e, time- derivatives are replaced by backward-, central- or
forward differences.

(2) What is the expression of the arplification coefficient T of the difference equation
¢"+]=T¢"+a {(ne(0,...,N} denoites a discrete time instant " =nAs and 2 is a
constant), when the initial value problem

m%ﬂh{):o te)0.7), ¢=¢" ¢=0

is solved by using approximations d¢/ dr = (§"*' — ")/ Ar and ¢ =[8¢™* +(1-0)¢"].
(b) If the discrete solution is bounded no malter £,m>0 and Af, the numerical method

can be considered absolutely stable. Under what conditions on © is the method absolutely
stable ?

3. Letus consider the implicit Euler method in connection with the linear small displacement
version of problem 11.1. The first thing is to cast the problem into the form

[mu mll]{‘il}_‘_':kll klz:H‘?I}=0
may ma|Ga) kot koo flaz
where g =¢ and g5 = ¢. Is the method thus obtained absolutely stable ? In the implicit

Euler method, the approximations for the derivatives are §; =(q}'+l—q,f‘)l Ar and

+1
gi=q{".

4. ADAMS employs an approximation to the derivative which takes the form

k
+1 i =i+l -n+l
yn =Za1yn ] —Nﬂn)’"+
i=l

where yi:s are the values of y at discrete time instants ' and k is the order of the
approximation. Derive the values for coefficients a’ and Bp in cases k=1 and k=2.
Assume that step size Ar is constant and use equation (") = p(+"T1Y (pr) is the
interpolant to data (ri,y') ie{n—k+l.n+l}).

5. Write out the equation system governing the motion of the pendulum of problem 11.1 by
using the ADAMS notation explained in Section 15.8.

Problem 11.1

The pendulum of the figure consist of a particle (mass m) and
a homogeneous bar (mass m, length L). Write out the
Lagrangian equation of motion of the system by using the
angle of the bar ¢ as the generalized coordinate. What is the
period of small oscillations ?

Solution
The kinetic energy of the bar can be written as

B | e e N R S N
K—zm(Lfb) +2m(r¢) 2m(L +ro)°,

where r=+1/m and I=mI*/3 is the moment of inertia of the bar with
respect to the end point. The expression of the potential energy is given by

V = L(1-cosd)mg +%L(1 —cosdymg = % L(1—cos¢)mg.

The partial derivatives of the Lagrange equation of motion




4 K=V) K-V

dt 9 I

are now

HK~V) 2 o HK-V) _ 3
—a‘i’ =m(L"+r°)0 and ——a¢ = 2mgLsmcb_

Therefore the equation of motion is

m(I* +r%y% +%mgLsinq) =0.

When the angle is small i.e. sind = ¢, we get
m(L* + r2)i§+%mgL¢ =0

whose solutions are sinw: and cosor with
0= }gﬁ%

Thus the pericd of small oscillalion is given by T=2n/w.

Problem 11.2

The usual way to solve non-stationary problems makes use of finite differences
with respect to the time coordinate, i.e, time- derivatives are replaced by
backward-, centrai- or forward differences.

(a) What is the expression of the amplification coefficient T of the difference
equation $"*! = T9" +a (ne{0,....,N} denotes a discrete time instant 1" = n At
and & is a constant), when the initial value problem

m%+k¢=0 rel0.Tl, ¢=6° t=0

is solved by using approximations d¢/dr=(¢""!-¢")/Ar and
¢ =[86""" +(1-0)¢"].

{b) If the discrete solution is bounded no matter k,m > 0 and Ar, the numerical
method can be considered absolutely stable. Under what conditions on 0 is the
method absolutely stable ?

Solution
(a) When the difference approximations

n+1 n
%?z——‘b m_¢ and ¢ =86"" +(1-0)¢"

are substituted, the ordinary differential equation takes the form

n+1 n
m¢T‘¢+k[e¢"+‘ +(1-0)"1=0

or afler some arrangements

el _1-(1-0)k

- ¢" =To"
1+ 8% ¢ ¢

¢

where £ =kAt/m and T is the amplification coefficient whose expression is
evident from the equation.

(b)The solution to the difference equation (use the equation recursively n-times)

¢n = Tn¢0




is bounded only if -1£T<1 as otherwise the left hand side grows with
exponential rate in . The restriction T <1 is always satisfied as

1-(1-0)k

<1 & 1-(1-0)k<1+6k < 0<1.
1+6k

The remaining condition —=1< T yields

=10k

S e —1-0k<1-(1-0)k o -2<k(20-1).
1+ 6k

The condition is satisfied if 26—120, i.e 82 1/2, as then the right hand side is
positive no matter the (positive) value of k. The methods corresponding to
selections 8=1/2 and B=1 are called Crank-Nicholson and implicit Euler,
respectively.

Problem 11.3

Let us consider the implicit Euler method in connection with the linear small
displacement version of problem 11.1. The first thing is to cast the problem into
the form

{mu meél}_’_[kn klefh}=0
ma my g2 ka1 k2 ligz
where q; =4 and g; = ¢. Is the method thus obtained absolutely stable 7 In the

implicit Euler method, the approximations for the derivatives are
o 1 1
¢i=@" ~qf)/ A and g; = gt

Solution

By introducing notations g =¢;, ¢; =9 and w?=2/3 gL/ (r2 + Lz), the
linearized differential equation can be writien as

gy + 0% =0,
1—q2=0
or

{1 0Hé1}+ 0 w? fh}=0

0 1]lg2) [-1 o |l

When the approximations §; =(qf'—q}'*1)lm, g;=qf" corresponding to the
implicit Euler method are substituted there, the result is

-1 -1 -1
{fh }" |1 Atwy? {4'1 }" =T{41 }"
q2 At 0 q2 q2
For unconditional absolute stability, the magnitudes of the eigenvalues of the

amplification matrix T should not exceed one. As the amplification matrix is

given by

-1
r=| ! Mw? _ 1 1 -Arw?
-Atr 0O 1+ Ar%0? | At o |

the characteristic polynomial

2.2 2
Det 1-(1+Ar“o“)A —At(; e
At —(1+ Arfw*)A

gives A=1/(Arw £). Since the magnitudes of both eigenvalues are smaller
than one no matter @20 and Ar >0, the method is unconditionally absolutely
stable.




Problem 11.4
ADAMS employs an approximation to the derivative, which takes the form

ko,
yn-l-l - Zatyn—r-i—] _ Nﬁoj,n-i-]

i=1

where yi:s are the values of y at discrele time instants ' and & is the order of
the approximation. Derive the values for coefficients @' and Bg in cases k=1
and k=2. Assume that step size Ar is constant and use equation
(" = pe"*Y) (p(e) is the interpolant to data (¢',y') i€ {n—k+1.n+1)).

Solution
When k =1 the difference equation

yn-i-l =0‘.1y" _A‘BOJ-”H-I

should hold for polynomials of degree zero and one. The selections y” =1 and
¥y =nAt give

1=alt,

{(n+DAr= alnar - Arfgl,

respectively. Therefore the values of the coefficients are o! =1 and By=-1
When k =2 the difference equation

yn-i-l = alyn + 0,.2),1'1—1 —Nﬁo)‘!n“

should held for polynomials of degree zero, one and two. The selections y* =1,
¥" =nAt and y" = n%As? give

1=al1+ a21,
(n+1)Ar = a'nar+ ol (n - A - ABgl,
(n+1)2a? = aln?ar? + 0 (n-1)2 A2 - ABy2(n + 1)Ar,

respectively. Therefore the values of the coefficients are o' =4/3, o =—1/3
and Bg =—2/3 (calculated with Mathematica).

Problem 11.5
Write out the equation system governing the motion of the pendulum of problem
11.1 by using the ADAMS notation explained in Section 15.8.

Solution

Let us consider the bar and the particle as separate rigid
bodies with generalized coordinates x;, y) (particle) 1o, y4,0
(bar). The kinetic energy of the system is given by

1 ) , 1 . 5 1.
K=§m(x?+y%)+5m(x%+;v%)+51¢2

where ] =mI? /12 is the moment of inertia with respect to




the centerpoint of the bar. The potential energy of the external forces is
V =mgy| +mgy,.

The constraints of the motion are

@ =y — L{1-cos$) =0,

@z =x— Lsind =0,

P3=y3~L/2-(1-cosd)=0,

Qa=xp—~L/2-5in¢p=0.

With this data, the Lagrange equations of motion

d oL oL
L85y %L v
dt (aq,) dg; z g

99;
9g;

give for seleclions q) =x, g2 =y, g3=X3, g4 = yp and g5 =¢
mi| =Aq,

my —mg=M,

miy = A3,

myy —mg =hy,
Fp=-hiLsingp—AyLeosd—A3L/2-sind—AgL/ 2cosd,

respectively. The equation system of the ADAMS form consists of the

constraints

g2~ L(1~cosqs) = 0,

(7 d Lsinq5 =0,

g4 —L/2-(1-cosgs) =0,
gi—L/2-s5ings =0

the equations of motion

mi; —ho =0,

miy —mg —hy =0,

miy — A3 =0,

mity —mg —kq =0,

fus + A Lsings + Ay Lcosgs +A3L [ 2-sings + Ay L/ 2cosqgs =0,
and kinematic relationships

u -q1=0,

u—42 =0,

u3—q3=0,

tg = g4 =0,

us—g5=0.

These are subjected to initial conditions depending on the setting.




Mat-5.160 Variational principles of mechanics, exercise 12

1. Letus consider the truss of problem 10.2 ( Fig. 1} using the small displacement theory of
Section 6.5. Write down the element contributions for the two- and one-noded elements
of the problem. Assemble the system matrices and solve the vertical displacement.

2. Repeat problem | in connection with Fig, 2 (for the parameters see problem 10,2).

3. Determine the vertical displacement v; of the elastic truss of Fig. 1 with the large
deformation theory and the incremental approach of Section 6.4 (you may need
Mathematica). a =1m, %A =001m2, C=100Nm=2 and F =05N.

4, Determine the displacement uj, vy of the elastic tuss of Fig. 2 with the large
deformation theory and the incremental approach of Section 6.4. The values of the
paramelers are the same as in the previous problem.

) N7
[
a

X

3 1
F a F
-ﬂ_ﬁ_-l
Fig. 1 Fig. 2

Problem 12,1

Let us consider the truss of problem 10.2 (Figure 1) using the small
displacement theory of Section 6.5. Write down the element contributions for
the two- and one-noded elements of the problem. Assemble the system matrices
and solve the vertical displacement

Solution
The formulas of the small displacement theory element contributions for two
noded and one-noded elements are

Sy SxSy —s§ =Sy Sy
2 2
e 04 SeSy Sy =SS, =S Pl Fy
[Kl==—"—| 7 : SNCE g
ST sy sy Sy Sy Sy ¥

—SxSy -sgz SySy 53

In this case the number of two noded elements is one and the number of one
noded element is also one, since the upper node 2 is fixed. The problem
parameters are C=100 Nm‘z, 04 =001m2, F=05 N, a=1m and the
‘length’ parameters of the matrix above are s=1m, s, =0 m, sy =1m. So (we
apply the [m, N] system)

3

where the numbering denotes elements. Only one degree of freedom (the

vertical displacement of node 1) is active. The connectivity tables for the
element contributions are then




iw'=m 110 0, (L*=10 1.

This information is enough for building of the system equations [K]{g) = {#) of
one unknown. The first element gives a contribution to the system matrix

[¢ 110 Q]

= [K]=[1

o O l= O

and the second element gives a contribution Lo the system vector

wr=| o [}] = wr=ton

The final equation is then

[1{v}=(-05) < v, =-0.5[m].

Problem 12.2
Repeat problem 1 in connection with Figure 2 (for the problem parameters see

also problem 10.2).

Solution
The formulas of the small displacement theory element contributions for two-
noded and one-noded elements are

2
Sr SxSy =Sy —SpSy

2 2

SeSy Sy =SSy =Sy (b= l:Fx:'
-s% —SxSy Sy SeSy F,

2 2

—seSy =Sy &Sy 5

cl%1
5 5

[K]=

In this case the number of two noded elemenis is two and the number of one
noded element is one, since nodes 2 and 3 are fixed. The problem parameters are
C=100Nm=2, %4=0.01m?, F=0.5N,a=1m.

Element 1
The geometric parameters for the horizontal bar ‘element 1° are s=1m,

se=1m, sy=0m,so

1 0 -10
0 0 0
1 1
= L)'= :
(K=l | o | ol 1= 0f1 2]
00 00

The connectivity table can be obtained by numbering the active degrees of
freedoms in the order of the global node numbering, giving the fixed ones the
value zero and then picking up the numbers in the order of the local numbering
of the nodes.

Element 2
The geometric parameters for the horizontal bar ‘element 1° are s=1m,
sy =1m, sy =0m, So

0

0 0
0 1

(K1 = G . L= 210 o).

0

0
0
0
0




where numbering denotes elements.

Element 3
Only the vertical component of the external force is non-zero. So

3 [0
[] ‘[-0.5

] [LF =i 2.

Assembly

The element information is enough for building of the system equations
[Kl{g}=(&) of two unknowns. The first element gives a contribution to the
system matrix

[0 01 2]
1 0 -1 0] o
1 [0 0 0 0] 0 :>[K]_l:l 0}
M=o 1 0| |3 Lo o)
0 0 0 of [2

Also the second element gives a contribution to the system matrix

1 2)10 0

(=R I R

The third element gives a contribution to the system vector

o= ol] = e-{0)

The final system of equations is then

[1 0]{“]}_{ 0} - o s
0 1])lv) |05 #=0[m], v; =-0.5[m].

Problem 12.3

Determine the vertical displacement v of the elastic truss of Figure 1 with the
large deformation theory and the incremental approach of Section 6.4 (you may
need Mathematica). a=1m, %4 =0.0lm2, C=100Nm~% and F=0.5N,

e

Figure 1

Solution
See the examples seclion of the Mathematica notebook INCREMENTAL.

Problem 12.4

Determine the displacement ), v) of the elastic truss of Figure 2 with the large
deformation theory and the incremental approach of Section 6.4. The values of
the parameters are the same as in the previous problem.




2 H
i
a
X
3 1
It a F
—— |

Figure 2

Solution
See the examples section of the Marhematica notebook INCREMENTAL.




Mat-5.160 Variational principles of mechanics, exercise 13

1. Derive the Euler-Lagrange equations and the natural boundary conditions for an elastic
Bemoulli beam by using the principle of stationary potential energy. The kinematical
assumptions are u==yv’(x), v=v(x) and w=0 (figure). The siress-strain relations
are 0, = Eey and Ty, =Gy

Tt
Sy

El{x) );‘

h Vl
2. Repeat problem 13.1 with the Timoshenko beam kinematical assumptions u = —y0(x),
v=v{x) and w=0.

3. Let us consider the beam model of problem 13.2. In a finite efement method the two
unknown functions v(x) and y(x) (here &(x}=v'(x)-y(x)) are approaimated in a
typical element by

_ , vi "
"(x)=Efe[1,2)[NfaN;'}{ef;7}, =7 = constant,

where the shape Functions (Hermite polynomials) are defined N =1-38%+283,
N§ =362 2287, M€= R(E-262 +£%) and N§¢ =h(-E2 +E7) (E=x/h, the origin is
located at node 1 and / is the element size). Derive the contribution of the typical
element and eliminate (this is called static condensation) the internal parameter ¥ to get
a more convenient starling point for the assembly phase. Assume thal the cross-section
of the beam is a rectangle with (a constant) area A and that the distributed external force
is also constant g.

4. Repeat problem 13.3 by using piecewise linear approximations to v(x) and 8(x). Use
reduced integration ({midpoint rule) and modification GA— GAo  with
o= 12E1 / (12ET + GAh®) in the shear energy term.

g=0.1N/mm

P e oo s e (ETHTITHRIRETITITN
&

element contributions of problem 13.3.
A=100mm?,E =10-1°N/mm®, G=E/3, O ,
1=10*mm*. Use two elements of equal size, — Im | e

g

Problem 13.1

Derive the Euler-Lagrange equations and the natural boundary conditions for an
elastic Bernoulli beam by using the principle of stationary potential energy. The
kinematical assumptions are w=—yv'(x), v=v(x) and w=0 (figure). The
stress-strain relations are 6, = Ee, and T,, = GY -

)

i
:6) Elx} )T,u

yv
Solution

The potential energy can be written in the form

1
V=], 5 0yEdY - f, quav.

The displacement field & =—yv"(x), v=v(x) and w=0 gives the strain and the
stress components

Ex ==y, Yy =—w+w=0

and the stress-strain relation is ¢, = Ee,. Substituling the expressions in the
potential energy expression gives

1
VO)=, SBR[ quv= [, DO - quli,

where D= _[ A Eysz. The first variation gives




&V = J' ; (Dv7Ov” —gdv)dx =

=[, UDVY - qidwdx+Y, [, Dv"8' -~ nDv"Byv=0.
Thus the field equation and the natural boundary conditions are
(DV”)”—(]=0 xEL.

Dv"=0 xeodlL,

v =0 xedl.

Problem 13.2
Repeat problem 13.1 with the Timoshenko beam kinematical assumptions
u=-yB(x), v=v(x) and w=0.

Solution
The potential energy is also now

1
v=}f, Ecr,-ja,-jdV—J'L gvdx.

The displacement field u=-yB(x), v=v(x) and w=0 gives the strain
components

€r ==Y0', Yoy =-0+V".

The stress-strain relations are o, = Fe, and Try =CYyy. In this case the
potential energy functional simplifies into

1
V(n0)=], [%Eyz(e')2 +EG(V'—9)2]dV ~J, qudx=

=Jz [%;_)(e')2 + %GA(v’ -6y — gv)dx,

where D= | L Ey?dA. The first variation gives

V(.0 =] 1, [DB'80" + GA(v' - B)(8v" - 86) — gBv]dx =
=[, [-(DO'Y — GA(’ - 8)56dx + Y, n DE'S0+

+[, [~{GA( - @)Y — gldvdx + Y, n,GA(Y —9)8v=0.

Thus the field equation and the natural boundary conditions are
~(DO'Y ~GA(W' ~-8)=0 xel,

[GA(V' -0))'+¢g=0 xel.

D8'=0 xedL,

GA(v'-08)=0 xedL.

Problem 13.3

Let us consider the beam model of problem 13.2. In the finite element method
the two unknown functions w(x) and y(x) (here 8(x)=v'(x)-vy(x) ) are
approximated in a typical element by

e
i

, ¥=7¥=constant,
of + 7}

V(1) = Xieqr,2) (N7 Nr"e}{

where the shape functions (Hermile polynomials) are defined
Nf =1-3E2 +.2£3, N5 =3E2 - 283, N{® =h(E—2E2 +ED) and
N3® = h(-E2 + E3) (E = x/ h, the origin is located at node 1 and 4 is the element
size). Derive the contribulion of the typical element and eliminate (this is called
stalic condensation) the internal parameter ¥ to get a more convenient starting
point for the assembly phase. Assume that the cross-section of the beam is a
rectangle with (a constant) area A and that the distributed external force is also
constant g.




Solution

The polential energy of problem 13.2 is
1 2 s ]
Vo8)=[ D0 -1 +EGA(7)2 - gv)dx,

where we have applied 0(x)=v'(x)—7y{x) lo eliminate 8. The next step is to
substitute the approximations. Since onty an element contribution is wanted, the
domain is also chosen to be ]0,A[ . With the summation convention the result is

e
Vi
€

h 1
V=) I DUNE NPY
02 lef 4y

2 1 =2 € e L'e
+—GA -q[N;,N; . dx
}) 2 (” Q[ TR }{ = }] )

i
which can also be represented as

T I Y QT S S T (h ot
V=lya [ DT'N'N"T+_GASdx-a-a [y 4T™Ndx,

by using the shorthand notations (things become simpler with the matrix
notation)

o , 00000
vooocldl Jm eves
T-a= wr N=1M1 =10 0 0 0 0
0.0 1000, N2 00000
0002 N 00001

Minimization of the function with respect 1o a gives
. it TagsragsT h ft T
R ={D[) (T"N"N""T)dx + GA Sdx)-a-q[; T'Ndx,

for the element contribution if D, G, A and ¢ are constants. The integrals can
be evaluated for example by using Mathematica

00000
00000
[¢sdx=H0 0 0 0 0
00000
0000 1
hi2
n2 712
J T™Nax={ #/2
-2 112
0

12/8  6/R% 12183 6/KE 12143
6/h> 4k —6/K: 2tk 6/h
g NN Tydx=|12/8 _6/K2 1208 61K -12/82
6/h*  2/h  —6/h* 4th  6/h
12/ 6/h —12/h%  6/h 121k

The condensed contributions can be obtained by noting that the last equation
associated with ¥ is already in the final form and can then be used to eliminate
¥ from the remaining equations. The following result for the matrx is
(calculated with Mathematica, D — d)

([(12%A*d*G)/(12%d*h + A*G*hA3), (6*A*d*G)(12%d + A*G*h"2),
(-12*A*d*G)/(12%d*h + A*G*hr3), (6*A*d*G)(12*d + A*G*h~2)),
[(6*A*d*G)(12%d + A*G*h~2), (4*d)/h - (36*dA2)/(12%d*h + AMG*hA3),
(-6*A*d*G)(12%d + ANG*h*2), (2*d)/h - (36*dA2)/(12%d*h + A*G*hA3)),
{(-12*A*d¥G)/(12%d*h + A*G*h*3), (-6*A*d*G)(12*d + A*G*h*2),

(12* A*d*G)(12%d*h + A*G*hA3), (-6*A*d*GY(12%d + A*G*h~2)),

{(6*A*d*G)/(12*d + A*G*h"2), (2*d)/h - (36%d 2)/(12%d*h + A*G*hA3),
(-6*A*d*G)/(12%d + A*G*h"2), (4*d¥h - (36%d 2){(12%d*h + A*G*h3)}] .

The corresponding vector is




q*{h/2, h*2/12, h/2, -h 212} .

Problem 13.4

Repeat problem 13.3 by using piecewise linear approximations to v(x) and
8(x). Use reduced integration (midpoint rule} and modification GA — GAq with
0. =12E7 / (12EI + GAh®) in the shear energy term.

Solution
After the modifications, the potential energy of the Timoshenko beam

V(v,0)=], [%EI(B’)z +%GA(V' -0)% - gv]dx,
written for a typical element takes the form
k1 , 1 /
V8= [ EIO )* —gv]de + [ 9GAW ~ ) Y

When the restrictions of the approximations to an element
|

{f»‘}z N0 Nf 08 ={N}a
8] (o N o0 NE||wm] M

)

are substituted, the potential energy gives (assuming that GA, EI and g are
constants)

V(a) =—21-E1£|T_[$l M TM’dx a— anJg NTdx + L

and therefore

EaGAaT[(N’T ~MDYN —M))zopss 2.

av

S El_[o M ™™‘dx a - q_[o NTdx + aGAIN'T -MTYN =M)],_ps2 2

giving

K® = B[ MTM'dx + 0GAINT - MT)YN' = M)y =

0 0 0 0 itk 112 -=1/h 1/2
EHO 1 0 -1 1/2 k!4 ~1/2 hil4
= + GAQ,

RO 0O 0 O -1/h -1/2 1/h =1/2

0 -1 0 1 1/2  hid -1/2 hi4
and

1
h T gh |0
F€=— N = I
alg N'de=-01)
0

Problem 13.5
Solve the problem of the figure usi g=01N/mm

element contributions of problem 133 HH“HHHH”“”H

A=100mm?,E =10-10°N/mm?, G=E/3, f— é

I =10*mm®. Use two clements of equal size. |- Im

Solution
After substituting the values of the problem parameters in the expressions of
problem 13.3 we get the element contributions

({9.59998617601991, 2399.9965440(4977, -9.55998617601991, 2399.996544004977},
{2399.996544004977, 799999.1360012442, -2399.996544004977, 399999.1360012441},
{-9.59998617601591, -2399.996544004977, 9.59998617601991, -2399.995544004977},




(2399.996544004977, 359999.1360012441, -2399.996544004977, 799599.1360012442) ]

{25., 2083.333333333333, 25., -2083.333333333333}

for the matrix and the vector, respectively. The maps telling how to assemble the
contributions of the two elements are
1_ 2
L' ={0,123}, L“={23,04] .
The assembled system matrix and the vector are

{{799999.1360012442, -2399.996544004977, 399999.1360012441, 0},
(-2399.996544004977, 15.19997235203982, 0., 2399.996544004977},
{399999.1360012441, 0., 1.599998272002488* 106, 399999,1360012441),
{0, 2399.996544004977, 399999.1360012441, 799999.1360012442) )

{2083.333333333333, 50, 0., -2083.333333333333}

The solution to the problem is
[0.04166666666666665, 13.02083708333332, 0., -0.04 1 66666666666665 )

So the deflection at the centerpoint is about 13 mm,
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Mat-5.160 Variational principles of mechanics, exercise 4

1.

Derive the weak formulation for the diffusion-convection-reaction equation

Ihﬁwﬁv+=.ﬁ~|ﬂ+nﬂlhn 0 xe]0,L],

dx  dx dx
where the diffusion coefficient &, velocity u and the sink factor ¢ are independent of the
unknown function T and the boundary condition is T~T =0 x €{0,L} (T is the given

value on the boundary).

Let us consider the displacement field u of an elastic body Q in the case where the
displacement is known on the boundary T, T, ul, =T, I,"T, =@. The potential

energy functional is
V(u)= L & dQ
(u)= m.ﬁb ikt i, jik 1952 5

in which the quantities Cyy, are independent of u. Write down the boundary value
problem whose solution makes the functional stationary.,

Write down the functional for the problem of finding the domain Qc R? with
minimum boundary length when the area is given. Also, derive the corresponding
boundary value problem and verify that a circular boundary curve is the solution.

The potential energy for an axially inextensible column subjected to a « P

compressing force P is

1
vor=[y (EL 2P} S0

Find the minimum value for P causing the column to buckle.

What is the underlying boundary value problem of the weak formulation:
find 6 — ¢ €V, such that ¥

ow 9J¢ :
fo Dopg-sT—wf)aQ+ [ whdr=0 Vwey,

B dxg, 0xg

where V ={v:ve CO(Q),vIIp=0] and T=Tp Uy, IpNIy =37

=
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