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1 INTRODUCTION
1.1 BASICS OF THE FINITE ELEMENT METHOD

The finite elenment method (elementtimenetelmi) is a general and powerful
numerical method to solve field problems (mainly ordinary and partial
ditferential equations). It has become possible in practice with the advent of the
digital computer. An essential feature of the method is its systematic way to
approximate functions by a discrete model (diskreetti malli). The model is
generated by dividing the domain of the function under consideration in sub-
domains or finite elements (elementti) (total number n,). On the boundaries of
the elements and often also inside them certain points, nodal points or shortly
nodes (solmupiste, solmu) (total number n, ), are further selected. The resulting
configuration is called the element mesh (elementtiverkko). The function is
approximated in each element with simple functions — usually polynomials —
by which it is interpolated inside the element employing its values at the nodes,
the nodal values (solmuarvo).

Element

Figure 1.1 Division of a two-dimensional domain into triangular elements

(n, =14, n, =13).
¢]; :l:¢m

¢ p m
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Figure 1.2 Linear approximation of ¢(x, ) in an element having nodes &, 1, m.
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This procedure is illuminated in Figures 1.1, 1.2 and 1.3 for a function ¢(x, y)

of two independent variables x and y. The elements, shown here, are called
three-noded triangular elements or linear triangular elements.
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Figure 1.3 (a) Approximation ¢ of ¢. (b) Three global shape functions.

We realize with the help of Figure 1.3 that it is possible to define interpolation
functions or in the finite element terminology shape functions (muotofunktio)
Ni(x,y), i=1,2,--.,n, so that the approximation in the whole domain can be

expressed in the linear form (with respect to the nodal values)
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My

$(xy)= X N (2 )8 |=N (2, ¥)9 + Ny (x,y)2 4+ (1)
i=1

A shape function obtains the value one at the node corresponding to its index
and the value zero at all other nodes and differs from zero at most in the
elements connected to the node in question.

According to (1), after a certain element mesh with its corresponding shape
functions has been selected, the approximation is wholly determined by fixing
the discrete nodal values ;.

The way of presentation (1) is suitable for theoretical considerations but in
practical calculations these so-called global shape functions (gobaali
muotofunktio) N; are not used. Namely, in the domain of a cerfain element e,

approximation (1) can be clearly given simply as

ne

¢ (x,y)=f‘,N,F (x, )0 |=Nf (x, 9)0f + N5 (x,y)95 +-- @)

i=l

where the quantities N{ are so-called local or element shape functions

(lokaalinen muotofunktio, paikallinen muotofunktio, elementtimuotofunktio)
which have been defined only in the domain of element ¢. (They coincide with
the global shape functions in the element domain because the global shape

functions are obtained in a piecewise manner from the local ones.) nj; is the

total number of nodes of element e. The values 1,2,---,n; of index i refer to the

local node numbers or local indices or node identifiers (sisdinen, paikallinen,
lokaali solmunumero). At a local node r

¢ =9¢; 3

where i is the global node number (ulkoinen, globaali solmunumerc)
corresponding to the local node number r. In (3), we can similarly also speak
about local and global nodal values. The global and local numbering of the
nodes and also the numbering of the elements is performed normally starting
from number 1 without "gaps". Figure 1.4 describes the local shape functions in
our example case in a generic element e.

Remark 1,1. The presenation above has been for continuous Ffunctions. Naturally,
discontinuous functions can also be described by finile elements, The simplest case would
consist of constant function values in the elements. [
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Fipure 1.4 (a) Approximation of ¢ in element e, (b) Element shape functions.

Let us consider as a specific example the element 5 of Figure 1.1. Let the local
node numbering for it be that shown in Figure 1.5. Thus according to (2),

40 W
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Figure 1.5 Element 5.
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¢° (x.y) =N (x,9)87 + N3 (x,y)93 + N3 (x,7)¢3 @)

and as additional information there exists the correspondence given in the
following table:

Local number r Global number i
1 & 7
5
. A 4 (5)
3 = 6

This type of data for each element is enough to describe the connection between
the global and local shape functions and between the global and local nodal
values. For instance, we now know based on the table and equation (3) that

=¢;, =0, ¢=0 6)

Remark 1.2. The shape functions of he finite element method can be considered as special
cases of the so-called trial functions (yritefunktio) or co-ordinate functions used classicaily
for example in the Ritz {1909) method. Classical trial functions are usually (smooth and) non-
zero nearly everywhere in the whole domain of the problem. The global shape functions, on
the other hand, are usually (non-smoolh and) non-zerc in a rather small part of the whole
domain; cf. Figure 1.3 changed to have a more realistic dense mesh. 0

In the finite element method definite integrals over the domain under
consideration and over its boundary are constantly needed. For instance in the
case of Figure 1.1 the area integral of a function ¢(x, y)

IA¢dA=nz'L,¢dA=nZ'J'A,¢‘dA %)
e=1 e=1

According to (2) and (7) the integration over the domain of an element can be
performed totally independent of the other elements and the final integral is
obtained as a sum from the individual element contributions. These two items
may be considered as basic properties of the finite element method whose
importance becomes apparent later.

The first approximation in (7) is geometrical in nature and due to the fact that
the curved boundary s of the domain in Figure 1.1 is replaced by a polygon. (To
be more precise, function ¢(x, y) is not defined outside the domain A. Thus if
some of the elements are partly outside the domain as in the figure, equation (7)
is not meaningful unless @(x,y) is thought to be somehow extrapolated
outside.) It is intuitively obvious that the geometric error decreases when the
number of elements is increased and also if more refined elements with curved
sides are used. The second approximation comes from using the representation
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(2) instead of the exact one. Again it seems obvious that the errors must
decrease when the number of elements is increased.

This far the finite element method has been described mainly from the point of
view of an interpolation method for a function thought to be given. The finite
element approximation can be used and is used in this sense in many
applications, say (o evaluate complicated integrals, to represent complicated
surfaces and volumes, to smoothen results from experimental data, etc. The
finite element method proper is arrived at, however, when it is used to
determine the vnknown function in a problem where the information on the
function is based only on the govemning differential equation and boundary
conditions. The task is to select the approximation so that it is in some sense
near the exact solution. This can happen in principle by two different ways. The
variational formulation (variaatioformulaatio), They are described later. The
finite element method transforms a differential equation problem to a system of
n, algebraic equations from which the unknown nodat values are determined.
If the differential equation is linear, so is the algebraic systern. This operation
producing the transformation is called discretization (diskretointi). The
discretization transforms the study of a continuous function (which is unknown
at an infinite number of points} to the study of n, values at separate or discrete
points.

Some features of the finite element method have been described above in a very
elementary form. Generalizations are given in the following chapters. Let us
however shortly mention that in this text the two basic forms emerging through
the discretization are the linear system of algebraic equations

[KKa}={2} (8)

and to lesser extent the Iinear system of first order differential equations

[M{a}+ [K}{a}={5} ©)

The meaning of the notations can be found from the NOMENCLATURE
section. Quantity {a} consists of the unknown nodal values. In practical

problems the number of unknowns can easily be of the order of thousands, even
of millions. Efficient algorithms taking into account the specific features of the
finite element method have been developed to solve systems like (8) and (9).

To assimilate the finite element method may be said to consist of roughly three
levels. The first level consists of those general mathematical principles on
which the discretization is based. The second level consists of that detailed
bookkeeping by which the information is transferred to the computer. The third
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level consists of the algorithms to solve discrete equation systems like (8) and
{9). In this text the emphasis is on the first and second level.

Remark 1.3, Let us comment the following with respect to notation. The finite element
approximation of a quantily is denoted in Lhis texi usually by a tilde over the symbol of the
quantity; say ¢ = ¢ . To simplify the formulas this rule is, however, not followed consistently
if the meaning is quite obvious from the context. Thus the finile element approximation in an
element ¢ is denoted as in (2) without the tilde and similarly a nodal value with ¢; even if
they are in general approximate. Often also the shape functions of a separate element are
wrilten without the element number superscript. Rather common alternative notations for the
approximalion in the literature are $ and ¢" or ¢ . In the latter two, the superscripts are to
remind that the approximation depends on the density of the clement mesh as k is the
conventional symbol for a typical element size and N on the other hand lells that the
approximation depends on the number of nodal values used. O

1.2 HISTORICAL BACKGROUND

The finite element method originated in the area of structural mechanics in the
aerospace industry. This is explainable perhaps by: great demand for accurate
stress analysis of complicated structures, early availability of digital computers.

The article by Tumner, Clough, Martin and Topp (1956) is generally considered
as the birth paper of the finite element method in engineering. The three-noded
triangular element was presented and applied to plane stress analysis. The
mathematician Courant (1943), however, had already given a formulation in
connection of warping function determination in torsion problems containing
ali the main ingredients of the finite element method.

Hrennikoff (1941) introduced his framework method in which continuum
structures are discretized by replacing them with bar frameworks where the
elastic properties of the bars are selected so that the resulting structure in some
sense simulates the behavior of the original one. Elements generated from bars
are still in use in some practical structural applications. One phase in the
development of the finite element method may be considered as an attempt to
mathematize the physical approach of Hrennikoff.

The term "finite element” was coined by Clough (1960).

Gradually it was realized that the finite element method for structures was just a
special case of the much older Ritz method, Ritz (1909) — also called the
Rayleigh-Ritz method, Strutt (1870} — applied to the principle of minimum
potential energy. This discovery gave mathematical credibility to the method
and generated the idea to try to apply it to other problems of physics where a
variational principle was known to exist.

After that the progress of the method has been fast and the application areas
have become vast in various physical problems. The first basic version, residual
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formulation (historically following the variational formulation in the field of
finite elements), mentioned in Section 1.1, has further essentially increased the
applicability of the method. Only this version, in fact, has made possible
successful solution of general fluid mechanics problems by the finite element
method. The finite element method as such is, however, not in any way tied just
to physics. A more general point of view is to consider it as a very general
computational method of applied mathematics.

Let us add the following quotation from Cook (1981): "As late as 1967,
engineers and mathematicians worked with finite elements in apparent
ignorance of each other. (Today the two camps are aware of one another, but
mathematicians are rarely interested in engineering problems, and engineers are
rarely able to understand mathematicians.)" Also, Cook, Malkus and Plesha
(1989): "Ten papers about finite elements were published in 1961, 134 in 1968,
and 844 in 1971. By 1976, two decades after engineering applications began,
the cumulative total of publications about finite elements exceeded 7000. By
1986, the total was about 20,000." Finally, Liu, Belytschko, Oden (Comput.
Methods Appl. Mech. Engrg., 139, 1996, 1-2); "There is no dispute that the
single most important advance in numerical methods in the twentieth century is
the invention of the finite element method.”
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2 DIFFUSION
2.1 DISCRETIZATION PRINCIPLES

The basic ideas for achieving the discretization are explained first in a simple
setting using classical trial functions (see Remark 1.2). The introduction of the
finite element approximation thercafter onty means an additional bookkeeping
effort but no new principles.

2.1.1 Heat conduction model example

Let us consider Lhe simple heat conduction problem (limmonjohtumis-
probleema) described by the differential equation

R(T)= d( k£]

™ e 0 in Q=]a,b|[ (1)

and the boundary conditions
Rp(T)= on I'p ={a} @)

Ry(T)= —k%—am on Iy ={b} 3)

Figure 2.1 One-dimensional heat conduction through a wall.

T(x) is the unknown temperature (limpétila) to be determined as a function of
the independent variable x in the closed interval £ =[a,b] of the x-axis
(Figure 2.1). The thermal conductivity (lammonjohtavuus) k(x), and the heat
source rate per volume (limpdlihteen antoisuus) s{x) are given quantities. The
boundary conditions mean that on the left-hand boundary x =a the value of the

temperature is given =T and that on the right-hand boundary x=>5 the value
of the heat flow rate density (lamp&virran tiheys) — considered positive when
the flow is out of the body — is given =g . These equations are a simple
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special case — steady pure diffusion problem — of the general diffusion-
convection-reaction problem described in detail in Appendix A (¢ 27, D2k,

s2f, 27",

Remark 2.1. Equations (1), (2), {3) are writlen here and similarly often in the following in a
standard form — looking perhaps somewhal awkward — but proving (rom the point of view
of describing the ideas behind the residual formulation convenient:

I Something on the left - hand side = 0 ] 4)

‘This form makes the initial derivalions to proceed syslematically, However, later we usually
give up this practice with respect 10 the boundary conditions, O

Remark 2.2. Most of the notation is explained in the NOMENCLATURE section. The

general symbol for an open domain will be £2, for its boundary I and the closure of £ is

denoted £ . These notations have been employed already here (o get the reader accustomed Lo
them. The symbol {-} is used in addition lor sets also for column matrices. Here we can for

instance write
R=)a,b[={x:xe R, a<x<b}
r=rpuly={a.p}, TI'pnNry=© (5)
Q=Qur=[abl={x:xe R, agx<b}
The standard three boundary conditions, frequently occurring, concem (he value of a function,
roughly the normal derivative of a function and the lincar combination of them. They are
called the Dirichlet condition, the Neumann condition and the Robin condition, respectively.

They are referred to here with the subscripts D, N, R. Similarly we will speak about the
Dirichlet, Neumann and Robin boundary. O

2.1.2 Residual formulation

Starting point. We now proceed to derive a residual formulation
corresponding to our model problem described by equations (1), (2), (3). We
select an arbitrary (smooth enough) function w(x) and two arbitrary constants

wp and wy. We multiply (1), (2), (3) by them, respectively, further integrate

the first equation generated over the domain and finally add the resulting
equations together o still obtain an equation
dr
+ ~k—-q
x=a WN( dx q)

Pl [ (k—]—s]dx-&-wD(T T)

Employing the R-shorthand notations in (1), {2), (3) and some of the general
domain notations we get more concisely

=0(6)

x=b

F

[, wRQ +wpRp +wyRy =0 ©)
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This equation followed by manipulating the governing equations (1), (2), (3).
Thus,

If equations (1), (2) and (3) are satisfied, equation (7) ®)
is also satisfied for arbitrary w, wp and wy .

More importantly, we can state conversely:
If equation (7) is satisfied for arbitrary w, wp and wy, ©)
equations (1}, (2) and (3) are also satisfied.

The truth of (9} is based crucially on the arbitrariness of the quantities w, wy,
and wy . For instance, one can first, say, select w(x)=0 and wy =0. Equation
(7) gives wpRp =0 and as wp is arbitrary there follows

Ry =0 (10)

Thereafter, say, the selection w(x)=0 and wp =0 gives wyRy =0 and there
follows

Ry =0 (11)
Finally taking wp =0, wyy =0 gives

L, wRdQ =0 (12)

for an arbitrary w(x). Using the way of thinking explained in Appendix D (the
fundamental lemma of variational calculus with the role of 8¢ replaced here by
w) there follows also the field equation

R=0 in 2 (13)

An equation like (7) is called in the literature the weak form or weak statement
(heikko muoto) corresponding to a differential equation formulation such as (1),
(2), (3) which is, as an opposite, called in this connection as the strong form
(vahva muoto).

Remark 2.3. In the mathematical literalure insicad of the term weak form quite often the
name variational form or variational statemenr (variaatiomuoto) is used. In this text,
however, we reserve the word "variational” in the normal custom of engineering only to those
cases where a variational principle is used, i.e., stalionarity of a functional is involved (sec
Appendix D and Chapter 5).0

-4 2.l DRDUKELALIUN PRINCIFLED

The quantities w used to multiply field equations and boundary conditions to
obtain the weak form are called weighting functions or test functions
(painofunktio; oikeastaan paremmin painotusfunktio, testifunktio). The latter
name is especially appropriate; we test the satisfaction of field equations and
boundary conditions with respect to the test functions: is the weak form
satisfied? The word "weak" (does not mean here the opinion of your colleague
about the standard of your work) refers to the fact that the solution in the
formulation, cast into an integral form, needs often less (weaker) smoothness
than the solution of the differential equation formulation. (Mathematicians
represent these facts by carefully defining those function spaces where the
solution and the test functions must be.) This is especially the case when the
weak form has been further transformed by integrations by parts.

We now present the idea behind the approximate solution of the model preblem
of Section 2.1.1 based on the use of the weak form. The starting point is to
assume an approximation of the type

T(x)= i’a,-(pi (x) |= @y (x) + a0, (x)+ -+ ayey (x) (14)

This in principle of the same type as (1.1.1). The wuial functions ¢;(x),
equivalents of the global shape functions N;(x,y), are given and the
multipliers a;, often called undetermined parameters (miardamiitdn parametri),
equivalents to the nodal values ¢, are the unknowns. (For rcasons of

convention, we have reversed the order of the terms in the representation.)
Approximation (14) is mathematically a linear combination (lineaari-
kombinaatio) of the trial functions. To use more precise terminology, we could
call T(x) the trial solution (yriteratkaisu tai lyhyesti yrite) which is spanned
(virittiid) by the trial basis functions (yritekantafunktiot) @,(x). This type of
representation abounds in mathematics. For instance, Fourier series is one
important example, the basis functions consisting of sines and cosines {cf. also
end of Remark 2.15). After agreeing on a suitable form of (14), the only task
left is to select "good" values for the unknown parameters a;.

Substituting (14) in (1), (2), (3) gives as the left-hand sides
ﬁ({a};x) = R('I-")
Rp ({a})=Rp (’f (a)) {15)
Ry {{al)= Ry (7(6))
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(The notation [a} refers here to a N x1 column matrix consisting of the matrix
elements a,,a,,---,ay and just means that the quantities (15) depend on them.)
The quantities (15) do not in general vanish with any selection of {@] — as we
would like to — but obtain non-zero values, errors or so called residuals

(jiinnsés). In connection of (15), we may speak quite obviously about the field
equation residual and about the boundary equation residuals.

Similarly, after substituting the approximation into the weak form, its left-hand
side cannot vanish in general any more for any, however good, choice of the
unknown parameters with respect to arbitrary weighting functions. We can,
however, write the expression

F;= .[g w; RAS2 + wiy Rpy + wy Ry (16)

and demand

i=1,2,- N (17)

In each case i we select a "suitable” combination of w;, wp;, wy;. We realize
that after the integration has been performed with respect to x,

F,=F({a)) (18)

i.e., the dependence on x disappears, and equations (17} form an algebraic set
from which the undetermined parameters can be hopefully determined. The idea
behind the residual method or the weighed residual method or the residual
formulation  (ji#nndsmenetelms, painotettujen jidnndsten menetelmd,
jidnndsformulaatio) is contained in equations (16) and (17). The discrete
equations (17) are called here the system equations (systeemiyhtilst).

Recapitulating and generalizing:

After substituting the approximation, the field equations
and boundary conditions of a problem cannot in general
be satisfied exactly for any selection of the undetermined
parameters. The parameters can be selected, however, so (19
that the equations are satisfied in some average, integral
sense through satisfying the weak form with respect to
some suitable weighting functions.
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The idea behind the residual formulation is thus seen to be very simple and very
general. It is also quite apparent that the approximations and in the weightings
must be based on some reasonable logic to obtain accurate and converging
results.

Expression (16) could be called, say, the weighted total residual expression
Different versions of the residual formulation are obtained according to type of
weighting functions used. The most common versions are the Galerkin method
(Galerkinin keino), the subdomain method or subdomain collocation (osa-
aluekeino), collocation or point collocation (kollokaatio) and the least squares
method (pienimmiin nelitn keino). These are explained in an admirably way in
Crandall (1956).

In the Galerkin method the weighting functions are taken from the set of trial
basis functions. What is meant by this in a general case of several unknown
functions with different type of approximations is not necessarily quite obvious.
The Galerkin method has been the most useful version in connection with finite
elements. We describe in this section only the Galerkin method and the least
squares method.

Example 2,1. We consider the model problem of Section 2.1.1 with the dala a=0,
b =L, kand s constants, The problem is

1

RE—k%—s:O O<x<L (a)
Rp=T-T=0 x=0 (b)
dr
Ry=—k—-g=0 =L c
N T x {c)

The exact lemperalure distribution is found Lo be
2 = 2 2
T(x)=T 4|22 ZLx sLfx o)
k k L 2k|L
and the corresponding Aeat flux (ldmpvuo)
dT™  _ x
‘h(-’*’)E_kE=q_(l_z]-"L (e)

Guided by the exact solution, we toke in lhis demonsiration example the simple
polynomial approximation of the type (14}

_ 3
T(x)= Eai(u,- (x) = m@y (X} + az; () + oyp; (x) =@ -1+ ay - x+ay . x? H

i=l



2.1 DISCRETIZATION PRINCIPLES

— A1 [

L x I,.._ * L x
Figure (a)
The trial basis functions are shown in Figure (a).
From (f),
Vg

E=a2-l+a3-2;c=az+2a3x
and
d’7

Ex—2=a3-2=2a3

The residuals (15) are thus

- a7

R=—kF—s=—k(2a3)—s=—2ka3 -

Ro=f|_ ~T=g-T

= d7’ - _ _

RN:“kE —q=-—k(az+2a3L)—q=—ka2—2kLa3—q
x=L

In this simple case the field equation residual happens not to depend on x.

The system equations from (16) and (17) are
F aj‘:‘w,. (~2ka; - s)de+ wp; (@ = T) + wy; (—kap —2kLay -F7) =0
with i =1,2,3. We Lake the following selections:
L.equation: w; =0, wp =@ =1, wy=0, =
] El-(cq—'f):al—]'_":O
2. equalion: wy =@, =x, wpy=0, wy;=0, =

2 2
Fy =[x (-2kay - 5)dv = (~2ka, ~s) = -kt _s_1£_=0

3. equation: wy =0, wp, =0, WN3=¢3|:L=L2’ =

Fys I (~kay -2kLay )= -kl?ay -2k ay-gl2 =0

2-7

(g)

M

M

()]

(k)

o

(m)
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As is seen, we have been using some kind of Galerkin method since the weighting is
taken from the irjal basis.

We have obtained thus the algebraic system equations
a —~ T=0
B .!‘L2
— ki a; - —2- =0 (n)
—klfay -2k ay -gIt =0

which are moreover linear and can be represented in matrix notation as

Rl [t o 0 Jfq -T 0
Bi={0 0 —k? [{ay}+{-st?/2}=10 (©)
KRl jo -u? -2 ||a -gr? 0

This is in the spirit "something on the left hand side equals zero". A more natural form at
the end is of course

10 0 a il
0 0 ~kF [{ayt={sl?i2 (»
0 -k} -l ||a g
This is seen Lo be of the type (1.1.8). The solution is
= sL g 5
= T’ =———, = —
a Q=TT M=oy {0)

and substilution into representation (f) gives here the exact result (d) as was lo be
expected.

Integration by parts. The starting point weak form described above for
demonstration purposes is hardly ever used in practice. For prablems including
second order derivatives in the field equations, normally manipulaton with
integration by parts is first performed.

Let us recall the weak form (6):

[Pw] L kL |5 ax+wp (T-T)] _ +wy| -kZ-7)| =0 o)
a | dx dx r=a dx =b
Employing formula (B.1.1) with
dr
2w, he-k— 21
g§=w - 3y
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gives

b b
jwi_kd_T_dx jd_“’kii _
a dx dx o dx dx

& dT
dx

[T e kd—T o well @
@ dy dx dx x=b dx I=a
When this is substituted in (20) we obtain
Ibd—wkgdx—jbwsdx
a
= dT dr dr

+ T-T)+wk— +Howy(-k—-q)—-wk— =0 23
[wD( ) dx]m [N( =D deb (23)

One may well ask: why to perform the integration by parts? First, for smooth
enough trial and weighting functions the same system equations are finally
arrived at from either of the weak forms. Second, however, it turns out that for

the conventional C° continuous trial functions {meaning here that the function
is continuous but the first derivative is not; cf. Remark B.1) used in the finite
element method, weak form (23) works well but form (6) is useless (cf. Remark
2.17). This is based on the fact that form (6) contains the second derivative of T
but form (23) only the first. Third, employing the boundary terms produced by
integration by parts, important simplifications are achieved with respect to the
Neumann boundary condition as is soon seen. Thus in practice, integration by
parts is an essential mathematical tool in the finite element method.

We now continue as follows. The weak form (23) is written first as

J' d—wkg—zdﬂ —Lz wsd2

+[WN(—kd—T—q] wkET—iI
ro dx dx

so that looks a little bit more general. Especially in the finite element method it
is usnally very easy to satisfy the Dirichlet boundary conditions in advance by
the trial solution; at least in a pointwise (nodalwise} way, If we thus restrict
function T in (24) to satisfy in advance the Dirichlet condition

+[wD (T-T)+ wk%}

=0 (24)
'n

T| . =T (25)
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the corresponding term in (24) disappears and Lhere is no more need to worry
about suitable values for the weighting constant wp. We further make the

clever (conventional) selections

=0 (26)

W
and
wy =-w| ry (27)

Selection (26) can be justified roughly as follows. The outward heat flow rate
density g=kdT/dx at the left-hand boundary is unknown and to approximate
it we would need the value of the derivative d7/dx. This is somewhat awkward
at least in a C? continuous finite element representation as nodal values from
nodes other than those on the boundary would be needed (cf. Figure 2.10). (In

fact, trying to make use of the derivative dT /dx in this way is found to produce
an inconsistent discrete equation.) This problem can be avoided altogether by
the selection (26). Now the boundary term at I'p has disappeared from (24).

Finally, selection (27) is seen to cancel the term £dT /dx at I'yy and we have
arrived at a very simple form

dw , dT

F J‘ﬂ—k—dg-jg wsdQ +wg |, =0 (28)

with
T=T, w=0 on I'p (29}

We call this the standard weak form for heat conduction problems or for one-
dimensional steady pure diffusion problems in general with new appropriate
interpretations for the quantities appearing. Its generalization to two or three
dimensions is going to look essentially the same. To be exact, we should
remember the constraints (29) when applying the weak form although they will
not always be explicitly stated.

The standard weak form has only one weighting function and no more any
weighting constants. This makes life easier for the applier as fewer decisions
have to be made. The crucial practical advantage of a weak form like (28) is,
however, that the satisfaction of the Neumann condition is so to say implicitly
buried in it. The case is opposite say when applying the standard finite
difference method where the Neumann condition must be simulated directly
which is often very inconvenient.
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Remark 2.4. We have arrived at the standard weak form slarting from the equation set (1),
{2), (3). The signs of these equalions can be of course changed in any combination. That
would not change the content of the resulting weak form (20) as the weighting quantities can
be taken with arbitrary signs. This also means that starling with different signs and in striving
to the standard form, the right hand side of (27) might need the plus sign. O

Remark 2.5, The standard weak form (28) can be derived allematively — and this is the way
it is usually presented in textbooks and how we are poing to proceed later — than we have
done above by siarting from the sole field equation weak form

df ,dr
ja w[a(—k E}' s]d.Q =0 (30)

and inlegrating by pars (see (22)) to obtain first

jn%’k%dg —_[de.q—w‘kﬂ N smpdl. L =0 (31)
Information about the boundary conditions

T=T on 'y (32)
and

4%: 7 on Iy 33)

must be included in the formulation. This is achieved by first demanding T in (31) to satisfy
(32) in advance. (It is ofien said that this boundary condition is now satisfied in a strong form
{vahva muoto).) Information about the Neumann boundary condition comes by substitution of
expression (33) into (31). Taking finally the selection (26) produces the standard weak form.
(28). This manipulation is clearly more straightforward and easier to follow than the one,
which was used earlier to arrive at (28).0

The systemn equations are obtained by assuming approximation (14), by
defining

¢ dw; dT -
=g dx’ ka-d.Q—J’g wisd42 +wig ,T'N (34)

and by demanding

i=1,2,-- N (35)

for suitable w; similarly as with the original weak form (see (16) and (17)).

In the Galerkin method we take here simply
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w=0, (36)

so the system equations are

¢ deg;  dT — o
F}=Ing'kadﬁ—fﬂrp,-sd9+(p,-q|rn-0 i=1,2,,N (37)

They can be developed further into a more detailed form but this is postponed
to be done later in connection with the finite element approximation.

Example 2.2. We repeat Example 2.1 using now the standard weak form. The problem

was
2
—ij—z‘—.s':O O<x<lL (a)
T=T x=0 {b)
_.kgd_::q_ x=L (c)

The approximation used in Example 2.1 was
T(x)=a@ (x) +ayp, () + 2303 (x) =0 -1+ 2 - x + 2y - 52 (d)

The Dirichlet condition is clearly satisfied in advance by taking 4, =T as @, and @,
vanish at x =0, There are now only (wo undetermined paramelers: @, and ay.

The system equations (37) are

Ldy, dT

Fi=k
0 dx dx

L
dx~s[ ‘gidx+ @], =0, i=2,3 (€}

We have from (d)

df

—=aq -l a;-2x=a, +2ax

i 3 7+ 2a3 (H
and

dg; dey

2oy, Aoy

dx dx ®

Thus, the firsi systemn equation is

£y = k[ 1-(ay + 2ayx)de -] xdr+ L7

L 2 Ly 32 _
=k| (a X4 X )—sl ~x“+glL
o 2 3 02 q
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2 2
=kL-a2 + kI ) "'T“Fq’L:O (h)
and the second
{5
By = k[ 2x (@ + 20y)dx s P dx+ 227
—kl az.r + = 03).’3) | ix +q'L2
AR £
=kLz-a2+—L— a,—i:rqf}:o )
3 3
Togelher, using matrix nolation:
[Fz}n kL kI [a2}+ ~st?/2+7L _{o} 6
Bl k2 akln|lm]) |-s2r3sg2] 10
The solution is

q s
L S K
Q@ T T T @

and the exact result is again achieved.

Least squares method. We consider still the model problem (1), (2}, (3) and
write down the expression

sl T

+iap (r-TY

> (3%)

or shortly

mry== jﬂ QR0 +-;-aDR% +%aNR;ﬂ (39)

This is called the least squares expression (pienimmin nelidn lauseke)
corresponding to the differential equation formulation. The factors a(x), ap,

oy are given positive quantities which can be called, say, weight factors

(painotekiji} to distinguish them from the weighting functions or constants
considered earlier.
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The exact solution T(x) with R=0, Rp=0, Ry=0 gives clearly the
minimum value zero to the least squares expression. An approximate
T =T({a};x) with errors R, Rp, Ry gives a positive value

17 ({a})= j adex+2aDRD+%aNRN (40)

(It is realized again that after the integration with respect to x has been thought
to be performed, x disappears from the expression.) To determine the
parameters a;, it is natural to demand that the weighted "error expression” (40)
obtains a minimum value. The necessary conditions (stationarity conditions) for
this to happen are

F=2"=0| i=1,2,N @1
de;

These are the system equations produced by the least squares method.

As the parameters a; do not depend on x, we can bring the differentiations

inside the integral sign to obtain in more detail (employing chain
differentiation)

a1 ~ R - R - dRy
F;-E-a:IaaRa—ai‘dQ‘}‘aDRDa—a?ﬁ'aNRNa——O (42)

for i=1,2,--,N. Comparison with (16) shows now that the least squares

method can indeed be considered as a weighted residual formulation where the
weighting functions are "selected” as

w; = ccﬁ =0p aRD
T da,

Wi =y — (43)
The least squares method can be applied in principle for any differential
equation system. At first look, it seems very promising as the weighting
functions are provided for the applier so to say automatically. There are,
however, two rather serious drawbacks. First, to obtain good results the weight
factors must have some cortect proportions. So the problem of selecting good
weighting functions is transferred in fact to the problem of selecting good
weight factors. This is normally based on numerical experiments and can be
awkward when there are many unknown functions (and corresponding
differential equations). Second, if second order derivatives appear in the
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differential equations, the conventional and convenient ¢° continuous finite

element approximation does not work and complicated C! continuous finite
elements have to be used. Altemnatively, this difficulty can be evaded by
introducing new unknown functions. In heat conduction we can for instance
replace  equation d(-kdT/dx}/dx-s=0 with dg./dx—s=0 and
g, =—kdT /dx, but the new variables and equations bring now forth the first
drawback mentioned and in addition increase the number of discrete variables.

Remark 2.6. The multipliers 1/2 in the least squares expressions above have no final effect
and have been included jusi for aesthetic reasons so that the system equations do not contain
the muliipliers 2. In facl, it is the ratios between the weight factors which only matters and
which puts emphasis on the different terms in the expression. It should be noled that each of
the weight faclors must have such a dimension that all the terms in the least squares
expression have the same dimension, in other words, the least squares expression must be
dimensionally homogeneous (dimensiohomogeeninen) 1o make sense. If the governing
equations are first made dimensionless, which is as such a good practice, the weight factors
can all be pure numbers. Then oflen the weight factors are missing (they are taken Lo have the
value onc) and consequently some wrilters then claim that the least squares method does not
need any tuning parameters to work. This is however not true because the weight factors are
then buried implicitly in the formulation with the selection of the characteristic measures used
in making the equalions dimensionless. Finally, the weight factors can of course all be
negalive. Then we are just trying to maximize the corresponding expression, O

Remark 2.7. The least squares expression is sometimes called the least squares functional
(pienimumin nelidn funktionaali) as by putling any (smooth enough) T(x) in il, it produces a
real number [T (equipped maybe with some dimension) as the output (see Appendix D).
However, the Euler equations corresponding to this functicnal are unforiunately not directly
the original differential equations of the problem at hand.

Example 2.3. Apgain the problem treated in Examples 2.1 and 2.2 is considered now
using the least squares method. The approximation is also the same as before:

T (x)= @ (x) + ayp (x) + 303 (x) = - 1+a; - x+ ay - x* (a)
We take the system equations directly from (42):

L-0R - dR - dR
Fea| R drvapRy =L +auky—2=0, i=1,2,3 b
[ -[u o D% G, FANEN T, i (b)

where we have pul & as a constant. The residuals have been evaluated already in
Example 2.1 from where we get (Formulas (i})

R=-2kay-s
ED =ﬂl—f (C)
Ry =-kay-2kLay -7

The partial derivatives needed are thus
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dR aR IR

—={, D - I, il =0

da, da da,

IR JR IR

—==0, D =0, N ¢ d
da, day day &)
Y ok, ok,

X 2, =0, OO o 2kL

day da, 00,

The system equations (b} are
Fe=ap(a-T) l=ap(q-T)=0
F=ay (-kag -2kLay -—E)(—k) = —ayk (-—ka2 -2kLay- E) =0
Fy = (~2kay - 5)(=2k)dv-+ oy (—kay - 2kLay - 7) (- 24L)
=~20tkL(-2kay — 5) - 20\kL(—kay —2kLay -7} =0

Without developing them further, it is seen quite readily that the system equations reduce
1o an equivalent form

aq-T=0
~kay -2kLay—g =0 3
~2kay—5=0

This actually means that we just pul here the constant residuals (c) equal to zero to
oblain again
= sL 7 K]

ﬂl=T. a; =T—;‘u ay ='—i (g)

So in this extremely simple case the weight factor selection problem did not emerge.

2.2 ONE-DIMENSIONAL ELEMENTS

We describe here only the two most usual finite elements in one dimension: the
linear and the quadratic element. The presentation will be very short. More
details on the theory are given in Chapter 3.

2.2.1 Two-noded element

Figure 2.2 shows a rwo-noded or linear (one-dimensional) element (kaksi-
solmuinen tai lineaarinen elementti; tarkemmin janaelementti) in the so-called
reference space. Section 2.2.3 explains how the corresponding element in the
actual space (in the so-called giobal space} where the problem at hand is
originally described can be generated. The element considered here is thus
called the reference element.
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1 2 M
(a) 0 L ¢ . >
;
-% __—
(b) ©

Figure 2.2 (a) Linear reference clement. (b) Approximation. (¢) Shape
functions.

The shape function expressions are

N =1-E

i
Ny=¢& $

and the approximation or interpolation in the element for a function ¢ is (see
(1.1.2) with nj; =2)

2
¢=2Ni¢f=N1¢1+N2¢2=(1"§)¢1+5¢2 (2)

i=
where ¢ and ¢, are the nodal values of ¢.

It is customary and useful to employ so-called natural or intrinsic or non-
dimensional coordinates (luonnollinen koordinaatti) within an element. They
are selected according to the nature of the basic shape of the element and their
range is taken usually to be [-1,1] or [0,1]. Here the natural coordinate is
denoted & and its range has been selected to be [0,1]. Nodes 1 and 2 have the
coordinate values £ =0 and £ =1, respectively.

An alternative natural coordinate systemn representation is based on the concept
of length coordinates Ly and L, (pituuskoordinaatti) defined as (Figure 2.3)

I 1
L =—1-' L =2 3
157 257 3)

I l:’- ll 1 =ll=xR“x=

o @l L=y=="71 ¢

L X AR L _x—x

i L =_£= L —
27 l ¢
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Figure 2.3 Some notations for an element in the global space,

It is seen that L; =1-& and L, =& . This formulation has some aesthetic appeal

as the formulas become symmetric; for instance the shape function expressions
arc

A slight drawback is that the coordinates are not independent as they must
clearly satisfy the constraint equation

L+ =1 (3

For triangles and tetrahedrons the equivalents of length coordinates are area
coordinates L, L,, Ly and volume coordinates L;, L;, Ly, Ly.

2.2.2 Three-noded element

Figure 2.4 shows a three-noded or quadratic (one-dimensional) element (kolmi-
solmuinen tai kvadraattinen elementti; tarkemmin janaelementti} in the
reference space.

1 2 3
1]\
0 172 1 ¢

(a)

¢1 ¢2 ¢3 N3 i 1

(b) (©)

Figure 2.4 {(a) Quadratic reference element. (b) Approximation. (¢) Shape
functions.

The shape function expressions are

Ny=(1-¢)(1-28)=1-3¢ +2£°
Ny=4£(1-§)=4£-4¢? 6
Ny=§(26-1)=-§+28"

and the approximation is
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3
¢ =D, N = Nig + Ny + N3gy

i=l

= (1-38 +282 )9, + (46 462 ), +(-& + 282 )9y O

where ¢, ¢, and ¢4 are the nodal values of ¢. The natural coordinate £ has as
for the linear element the range {0,1]. The coordinate values for nodes 1, 2, and
Jare £=0, £=1/2 and £ =1, respectively.

As mentioned in Section 1.1, the shape functions have the value one at the node
corresponding to its index and the value zero at the other nodes. This is seen to
be true from Figures 2.2 and 2.4 and also by direct calculation from expressions
{1) and (6). The shape functions described above are in fact special cases of the
classical Lagrange interpolation polynomials familiar from textbooks on
numerical analysis and closed form expressions for any degree polynomials are
available; see for instance Conte and de Boor (1972).

2.2.3 Mapping

Let us consider as a demonstration case Figure 2.5 (a) showing schematically a
finite element mesh of two-noded elements for the x-axis interval [a,b].

4

. lm @ (2)|[
a XL / P "
(a) xt=x (&)
v | 2
(b) | é

Figure 2.5 (a) Element mesh. (b) Reference element.

It proves very useful to consider each element of a certain element type as
generated from cne and only typical element of that type "living" in its natural
coordinate space as in Figure 2.5 (b) by a suitable mapping. We might call the
elemnent in its natural &-coordinate system as the reference or natural or parent
element and we may speak correspondingly about the reference or natural
space. This kind of concepts have already been touched upon shortly in the
previous sections. We equip the quantities associated with the reference
element temporarily with dashes. A mapping from the reference space to the
global or physical space, which maps a generic point P’ to a generic point P
{and the reference element to a global or physical element) would be in
principle a relationship
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x=x(&) ®

In the finite element method a very beautiful and important innovation has been
to use for this purpose the mapping (we now include the element number e
superscript temporarily for definiteness)

ng
x =) Nixf 9

i=1

where x{ are the coordinates of the nodes of the mapped element in the global

space. In other words, the same type of expression is used for the geometry
description as for the functions

6° =3\ Negr (10)

i=l

to be approximated. Elements generated this way are called for obvious reason
isoparametric elements (isoparametrinen elementti). In the one-dimensional
case considered this far the advantages of the isoparametric formulation are not
evident but they will become clear later.

In connection with Figure 2.5 we have for the generic element ¢ with its left
node and right node global coordinate values x; and xp, the simple

isoparametric mapping
x= fof+N§x§ = foL +N£.IR =(1_§)x]_ +§XR

=xp +E(ap —xp)=x +EI° (11
where !° is the length of the element:
I =Xp —XL (12)

We obtain from (11) we easily the inverse mapping £ =£(x):

g=1"1 ;x'- (13)

We have presented the shape functions in Section 1.1 as functions of the global
coordinates. However, in practice the shape functions are nearly always
expressed as functions of the natural coordinates as we have done above in
connection with the linear and quadratic element. But the existence of the
inverse mappings such as (13) means that the shape functions can be finally
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thought to be functions of the global coordinates. We will later see that explicit
inverse mappings are fortunately not in fact needed in practical calculations.

Figure 2.6 repeats the presentation of Figure 2.5 now for three-noded elements.
The isoparametric mapping for a generic element ¢ with the notations of the
figure is
x=N{x{ + N§x§ + N5x§ = Nfx, + Ny + Nixg
=(1—3§+2§2)x1. +(4€—4§2)1M +("§+2§2)1R (14)
le

b ©o ol
] ' 1] !
a XL M / P xp

o
=

®) S 4
Figure 2.6 (a) Element mesh. (b) Reference element.

The inverse mapping & =£&(x) becomes involved in the general case as a

second degree equation should be solved. If the middle node is put at the exact
midpoint of the element, that is,

=XL+XR

15
2 (15)
as is usual, there is obtained simply
x=xL+(xR—xL)§=xL+§lc (16)

The inverse mapping is then again (13).

One-dimensional elements can exist also in two- and three-dimensional spaces.
For instance, the isoparametric mapping

x=(1—3§ +2§2)xL +(4§ —4{2)xM +(—§+2§2)xk an
y=(1-38 +282) y. +(4€ ~48 )y +(-£ +28% )3

produces a curved three-noded etement in the x,y-plane (Figure 2.7). In

addition to being useful in the finite element method, this element is also very
popular in the applications of the boundary element method (reunaelementti-
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menetelmi); see for instance Becker (1992), Beer and Watson (1992), where
the accurate representation of the domain boundary is of importance. The
boundary element method is not considered in this text. Approximation (7) is
still valid and can be used for representing say the temperature and heat flow
rate density at the boundary.

x* =x(§)
¥ =y
v ool
P’ &

Figure 2.7 Curved three-noded isoparametric one-dimensional element.

Remark 2.8. For boundary condition implementation, in addition to the definile order
numbering of the nodes of a reference element, the separate boundary paris or "element sides”
of the element must be numbered in an agreed way. For the one-dimensional element the
sides are jusl the two end poinls and they are numbered here 1 and 2 with £ =0 and & =1,

respectively. O
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2.3 FINITE ELEMENT SOLUTION
2.3.1 Discretization

We consider the model problem given by equations (2.1.1), (2.1.2) and (2.1.3)
with the simplifications stated in Example 2.1. Thus repeating, the problem is

i(—kfll]—s:() in 2=]0,L
dx dx
T=T on I'p={0} (1)
dT
—k—=q on I'y=1L
= =7 n Iy={L}
with k and s constants.
E0 aL X
m @ o O on @ o
(a) 1 2 3 4
Ny © = Element number
\ (= Local node number

N

/\
" T~
/

NE N2 N N N N

(b

(c)

Figure 2.8 (a) Domain and the element mesh; n, = 3,n,=4.(b) Global shape
functions. (c) Local shape functions.
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We employ a uniform example mesh of three two-noded elements and four
global nodes shown in Figure 2.8 (a). The numbering of the elements has been
done on purpose in a slightly odd manner for demonstration purposes for the
assembly process. The figure also shows the symbols to be used in this text for
element and local node numbering.

We employ the Galerkin method. The general system equations based on the
standard weak form (2.1.28) have been derived in Section 2.1.2. They are (see
(2.1.37)

F=[, ka2 [ eisa@+og|, =0 @

We remember that the quantities @ are the trial basis functions, that is, the
approximation is of the form

_ N
T(x)=Y,¢;(Na; 3
j=1

(For later purposes, we have changed the summation index from i to j.) In our
present case with finite elements, the equivalent of (3} is

F= S N7 @

j=1

The trial basis functions N; are the global shape functions. They are shown in

our example case in Figure 2.8 (b). The undetermined parameters are the nodal
values, nodal temperatures Tj, to be determined. Taking these notations into

account in (2) gives the finite element system equations

dN; , dT = :
F}Ejﬂg’kgdﬂ-J‘QN,-sdQ-}-N,-qer=0 i=1,2,0,m, )

We now develop these equations further, From (4),
n

T dN;
ar _ y —LT; )

and
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dn. Tn dNJ =
F = ga—k[;?n]dg—j‘znfmgmqq |rN 0]

Still further development is possible. From the properties of the definite integral
we have, say, for two functions f(x) and f,(x) and for two constants ¢ and

Ca4

[LLAG)a +h(x)e )@ =[ f, A2 o HlghtaR)e  ®

or more generally

Ig[zfj (x)cjjld‘z:Z[J._Qﬁ (x)ae ] ©)

This means just that summation inside an integral can be taken outside the
integral and that constants can also be taken outside the integral. Taking this
into account in the first integral of (7) gives

dn; [ <& v v 4V, dN;
a?"[%ﬁ]mﬂn X )
= i
Ry . dN.
=X|] Wiy Ziaq |1 (10)
gl ax ax

The final form of the system equations is thus

i a dN.; dNJ —
F;- =_21 {J.Q'—d?}kjd;—dg Tj—J‘_Q N,-sd.Q +Nl'q rN =0 (11)
i=

for i=1,2,---,n,. This is a linear system of equations with respect to the
unknowns 7, which can be expressed also as

nﬂ
Y KyT;—b;=0, i=L2n, (12)
j=1

or by employing matrix notation as
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[x] {a}-{b} ={0} (13)

ApXny, npxl  nex1 npxt

or in a cleaner way

[k {a}={} (14)

We call [K] and {b) system matrices (systcemimatriisi). The matrix elements
are

. dN;
K;= W g, i=1,2,-,m,, j=L2,.n,
2 de  dx (15)

b =Lz NisdQ-Ng|p , =12,

As seen, we have denoted the column matrix consisting of the nodal
temperatures with the general symbol {a}. Changing the indices i and j in (15)

gives the result K ; =K, that is, the system coefficient matrix is symmetric
which is advantageous from the computational point of view.

With our example mesh we obtain in principle the system equations

Ky K Kz Ky |G b
Ky Kn Kpn Ky ||T|_|b
Ky Ky Kz Ky ||| |bs
Ky Ko Kiz Kul|\Th) b

(16)

and we have detailed recipes (15) for evaluating the matrix clements. After this
has been done, we can solve the set for the nodal temperatures.

Remark 2.9. We have cheated a little bil in the derivations above. In fact when employing
the basic formula (11) we shouid have the approximation for the temperature to satisfy in
advance the Dirichlet boundary condition and the weighting functions should be zero at the
Dirichlet boundary (see formulas (2,1.29)). Bul we can correct for this at this phasc jusl by
discanding the first equation, which is the only one (see Figure 2.3 (b)) produced by a
weighting (shape function N,) differing from zero at the Dirichlel boundary x=0. Further,

putting 7} = T in (4) makes the approximation satisfy the boundary condition. Thus, taking
the above into account in (16} gives a new syslem

T
Ky Ky K»z Ku by

T
Ky Ky Ky Ky Tz =il (in
Kn Koo Ko Ku TJ by

4
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or with rearmangement

Ky K Kyl by = Ky T
Ky Ky Ky |1Bp=15-KyT (18)
Ko K Ku]lTa) (ba-Kal

which can be solved for the remaining nodal lemperatures, Actually, the first equation
discarded here contains important information, which can made use of in post-processing (sce
Section 2.4.2).0

2.3.2 Assembly process

The previous section gave the formulas to build the system equations from the
global shape functions. (In fact, the formulas are still in a form which could be
used in connection with classical trial basis functions with approriate
interpretations for the variables.) As was mentioned in Section 1.1, the global
shape functions are not employed in actual calculations and we now make use
of the local shape functions. The starting point is simple. First,

When xe Q°, T(x)=T°(x) (19)

that is, when we consider a certain element e, the global approximation T is
obtained from the local one T°.

Second, weak forms contain definite integrals over £2. Due to the properties of
the definite integral,

[,()ae =3‘,I ()a@ (20)

2=

This simple fact is fundamental in the finite element method: the integral over

Q can be evaluated by evaluating separate integrals over the subdomains Qf
of §2 and by summing the contributions. (A similar statement can be given with
respect to I".)

Of course the subdomains must cover the whole domain without gaps and
overlaps. Mathematically this is indicated with

ﬁ:gﬁ‘, QQ‘=® (21)

where the meaning of the set notations are explained in the NOMENCLATURE
section. In the finite element method the subdomains are called finite elements.
To be more exact, when we speak about an element, we sometimes consider it
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depending on the context as a general concept having for instance an element
number and sometimes as a domain (set of points) as in formula (20). It should
be mentioned that with complicated geometries the boundary of the domain
cannot usually be quite exactly followed by finite elements and the first of (21)
is then not necessarily strictly valid.

Remark 2.10. Considering notations {21} in delail, we realize that we have defined Lhe
elemenl domaine in this connection Lo consist of open domains; the element boundaries (here
the endpaints of the elements) are not included. This means in fact, that in evaluating the
right-hand side of (20), the integrals over the element boundaries (or so-called element
interfaces inside the mesh) are neglected. However, as the “measurcs” of the clement
boundaries are zero compared to the domains, the left- and right-hand sides in (20) are still
equal, Similarly, we do not need the value of quantity (*) on the clement boundaries in (20}
This fact is reflected also in (19), where the element boundaries arc missing. Further, with
possible jumps in the value of () over interfaces, we have no need to worry aboul the value
of () on element interfaces; it is enough to deal with the limiling values from both sides. £l

The best starting point is eguation (5), which is repeated here:

_( o, df = =
F'- =J.Q“;k-d7dg—’[gNiSdQ+Niq IFN =0 (22)

According to (19) and (20) we can now write

My
F=YF 23)
e=1
where
dn,  dT*
g _ e M ro et L ] "-
Ff = [ k9 f e Nisd@+ NG| (24)

This means that the left-hand side F; of a system equation is obtained by

summation from the element contributions (elementtiosuus) F{° over the
number of elements.

The notation I'fj refers to the Neumann boundary part of element e. In our
example case this exists only for element 3 and on its right-hand end.

In a generic element e the equivalents of (4) and (6) are
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ny
T (x)= Y, Ni ()T} (25)
j=
and
e AN
I _ySig (26)
de ) dx

Substitution of the last expression in the integral in (24) gives

j e | modne
J' ,EN—‘—kid,Q= eﬁd,fv_k S —L1f |aQ2=
Q° de  dx 2% dx dx

=

% ( aN, | dN§ = . AN}
I Y ;‘&k_»’_']}? 2=y J'Qcﬂk_l_dg Tf 27
Sl dx o = dr  dx

Similar manipulative steps as in obtaining result (10) have been used. The
element contribution is thus

€
nﬂ

. aN?
FF=Y J',%Nx*—k—i-dg Tf - [ Nisd@+Ng

i ax (28)

r!
= )

This formula could be used for evaluating the contributions. However, a look at
the global and local shape functions in Figure 2.8 shows that this is not
practical. As an example, let us consider the generation of the third system
equation Fy =0. It is obtained by taking N3 as the weighting function. This is
non-zero only in elements 1 and 3 so non-zero contributions Fj and F_«,?‘ come
only from elements 1 and 3 and they are in fact obtained by the local weightings
Ni and le , respectively. It is realized immediately that however dense the

mesh, only few of the elements (for two-noded elements only two at the inner
nodes and one at the boundary nodes in one dimension) in the sum over the
elements can give non-zero contributions.

Repeating the considerations discussed above with a slightly different wording
we can say the following. Each N; used as the weighting function to generate

the i:th system equation is in a generic element e either zero (if node i is "far
from element ") or consists of one of the element shape functions — here Ny
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or N§ — (if element e is connected to node i). Thus all possible non-zero
contributions from a generic element e are

2 e 4
e __ dNI dN_,l £ e = Y
F _,-2=:1 Jar g g0 |TS ~[qe NisdQeNfg|  , i=1.2 @9)

(We have written this for the example case; in the general case put 2 np.)
When i=1, F gives contributions to a certain system equation and similarly
when i=2, F; gives contributions to another system equation; to which
equations is to be described in detail shortly. It is important to realize, that the

Ff -quantity defined above differs from the one defined by formula (24}, as

here the element contributions appear in a condensed form and they cannot be
directly summed into the system equations but must be placed in right places in
them. We do not want, however, to introduce new notation as the difference can
be understood from the context.

The system equation assembly (systeemiyhtdldiden kokoaminen) can now be
described as follows. If the system equations are written as

=121, (30)

the left-hand sides are obtained by the summation formula

F=YFf 31)

where element e gives a contribution (or can give at most d non-zero
contribution) to the quantity F; if the element has the global node 1. Then the

local node number r must be given the value corresponding to i. The element

contribution becomes Ff.

Let us consider the example case shown in Figure 2.8 to illustrate the formula.
The correspondence between the global and local node numbers as found from
the figure is shown in Table 2.1.
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Table 2.1 Element nodal data

Element number Local node number | Global node number
e r i
@ (1 @) 2 3
@ (1) 2 1 2
® (1) ) 3 4

The same data can be given in a more concise form using Table 2.2. The
meaning of the contents should be self-explanatory. This latier type of
presentation will be employed later in this text.

Table 2.2 Element nodal data
1 @
@®| 2 3

@1 2
@ 3 4

By giving the consecutive values i =1,2,3,4 and by going for each i through the
elements in Table 2.1, we obtain the system equations

F=F*=0

Fz -_—-'I“ll +F22 =0 (32)
F=F+F=0

Fy=F=0

The assembly rule (31) and its application (32) should now be quite obvious on
the basis of how a typical system equation is obtained: through weighting by a
specific global shape function which is composed in each element of a specific
local shape function (or more often in general vanishes). Finally also the local
nodal values must be expressed in the global nodal values. This knowledge is
also contained in Table 2.1 or 2.2 and we immediately obtain

=% =N
=T, T=0 (33)
=T, T=T

This completes the idea of the assembly.
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As the original problem is here linear (and in nonlinear cases the solution
proceeds any way in practice iteratively with linear subproblems) in the
unknown function T, the system equations and the element contributions are
similarly also linear in the nodal values. This means that we arrive at still more
detailed prescriptions for the assembly. The system equations (30} are here (see

(12))

Iy
=Y KT, —-b;=0, i=12,-n, (34)
o

or if matrix notation is used

{F}= (k] {a}-{p}={0}. (35)

nxl  myxn, A%l n.xl o n,xl

The element contributions {29) are similarly of the form

"
Ff =Y KiTi-bf, i=12,-.n (36)
j=l

or using matrix notation

{FY = [£]"{a} - {B} D)

nfxl  mfxnt nfxl  agxl

We call [K]® and [b)° as the element matrices (elementtimatriisi). The matrix
elements are

e dNS
Ki= edN’ k—Lda, i=1,2,,nt j=1,2,--.n5
2% dx  dx (38)

bf = Q,N;sdQ—N,-‘E ry’ i=1,2,,05

Remark 2.11. It is seen that the expressions for the element matrices (38) can in fact be
written down directly from the corresponding expressions (15) for the syslem matrices by just
adding the superscript & for the shape functions and by changing the ranges of / and j. This is
& general result which is made use of later Lo shorien the derivations. One way to justify and
remember this is just 1o consider for a while the whole domain to be onc element and to apply
expressions (15). 0 i

Some further consideration on the formulas given above shows that the final
detailed assembly process can be given now as
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.
Ky=Y Kb, b= (39)

e=l e=1

The formulas describe how the matrix elements of the system matrices are
obtained by summation from the matrix elements of the element matrices.
Element e gives a contribution to term Kj; at most, if the element has global
nodes i and j. The local node numbers r and s must then be given the values
corresponding to i and j. Term b; obtains a contribution at most, if the element

has global node i. The local node number r must then be given the value
corresponding to i.

The finite element programs operate usually so that the program proceeds in the
assembly in an element by element fashion. When a certain clement e is

reached, the program first adds the term K7 on the right place, then term K

and so on until the last term b5 has been added and then proceeds to the next

element. This procedure differs in fact in spirit from formulas (39), because in
them i and j are considered first as fixed, as e goes through the values
1,2,---,n,. The final outcome does of course not depend on the order of

performing the assembly as the operation is simply that of addition. Formulas
(39) can be applied directly, for instance, when we want produce one typical
system equation for closer examination. In the assembly in the element by

element fashion the formulas are applied so that we always have a certain K7,
or bf and we search for global node numbers i and j corresponding to the local

numbers r and 5, which then determine the positions of the terms in the system
matrices.

Figure 2.9 indicates visually as an example the allocation of the terms K%l and

bll of element 1 in the system matrices. The element mesh is the same as in

Figure 2.8. The crosses indicate that the corresponding terms are {usually) non-
Zero.
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m @ @amn O @ow @ @

i 2 3 4
1 2 3 4
x x 0 0 |1
x x 012 2
il ® 3 i * 3
0/0 x x4 » |4
m O @
2 3
1 2 1
1|\ x| 1 b
w2l et
r=2%i=3 r=1=i=2
s=i1=j=2

Figure 2.9 Some example details of the assembly process.

We continue by first deriving the detailed element matrices for our example
problem. The expressions for two-noded elements are (see (38))

e dNS
K;j=_[g,dN‘ k—Lde, =12 j=12
dx dx (40)

bt =[ . Nfsdx-Nfg gt 712

The element shape functions are given in the natural coordinate £:
N =1-&, N;=¢ 41)

Even the given functions such as k(x) or s(x} are usually expressed for

convenience by a finite element approximation so that finally we have the
representations k(£) and s(£). It is thus quite natural to try to evaluate the

element contributions in the reference element space. The transformation
formulas needed in this connection are explained in detail in Appendix E. We
have for a generic function f here

Je P42 = [ £ G508 [y 350 @)

and
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dN; _dv; 46
de  dE dx

For the two-noded element (see (2.2.11) and (2.2.13))

X=X
g=2

X=Il_+§[¢, Iz

S0

Thus
[ faQ=1f, o
and

de ° d€

dNf _ 1 dNf

where

dvf _ | dN3
dé " dé

Thus first (k is assumed constant)

=1

¢ dN¢ e 1 dNS
sy S e L
£ d& ¢ d
1£70 d¢ d¢

and further

2-35

(43)

(44)

(45)

(46)

@7

(48)

(49)
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K= [y (-D(1)ag= 2

k k
Klez =F'|‘0(_1)'1d§ =-[—e

kol (50)
K21=F 01'(_1)d§=—F
ket k
e T —
Kn —l_‘_-l.ﬂl‘ dé = 7
Similarly (s is assumed constant)
c — 1 _
bf =s[  NfdQ-N{g " =si* [ Nf dE =680 51

The term from the Neumann boundary appears only in the third element and

due to the second shape function N% as the weighting (Ng (1) =1). This is taken
here into account in ad hoc manner using the Kronecker deltas. Thus the
contributions from the heat source without the boundary term are

(bf )I =sl'I;Nf dé =sl‘f;(l—§)d§ =i

(e-1er)=
slt
9

(52)
(8). =sl'I;N§ d& =sz‘j’;§ dE=si®

1
1p2 _
055 -

These expressions could have been deduced directly without actual calculations
by looking at the shape function graphs. The element matrices are thus

G

53
-5l 7
%1 21 §5e3552
In the example case M=12=P=L/3 and
1 2 3 3|1 -1
K| = = ==
SRS N
(54)

or-or-#f), w4
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Using the assembly rules (39) gives the system matrices

! H 3 4
Kh Kb 0 0 |,
[K]-= K3 KL+KLh Kb 0 |-
4xd 0 K%.l Kéz + K]_s_l K132 3
Y 0 K3 ki
5|
{b} _ bll + b; 2
4x1 bé + bla E
bf ‘ (55)
and collecting the terms from (54) produces the preliminary system equations
1 -1 0 0||f 1 0
-1 2 -1 O[T 2 0
* 2 SL oL (56)
L0 -1 2 -1||| 6|2 0
0 0 -1 1]|T, 1] 1q

At this phase we continue according to Remark 2.9 and put 7} =T to obtain the
final system equations (after division by 3k/L)

2 -1 0l[R) [T] (2] _. [0

sL qL
-1 2SI\ =0y 2= (57)
0 -1 1]|1) |0 1

The right-hand side consists of three separate type forcing terms generating the
temperature field.

The solution is

T N L) L[

Tyr=T{1t+2{gt-9=4> (58)
18k 3k

T, 1 9 3

The nodal temperatures obtained happen to be here exact. This is shown in
Figure 2.10 for the case T=0, g=0.

2-38 2.3 PFINITE BLEMENL SULUTTON

Ti(sL21k)
0.5+
Exact
—— Finite element
0 g
0 1 x/L

Figure 2.10 Temperature distribution in the wall (5>0).

Remark 2.12. It is customary and natural to generate the syslem equations in such an order
that the first equation corresponds to the first nodal variable {meaning that the weighting can
be associated to that variable as has been the case here) and so on. Therefore the way the
global nodes are numbered in a mesh affects the structure of the system coefficient matrix.
For instance, if the nodes are numbered similarly as in the example case of Figure 2.8
continuously from left to right (or from right 1o left) the coefficient matrix keeps the so-called
tri-diagonal form, an example of which can be seen in (55). A mare immegular ordering of the
nodes distributes the non-zero terms all around the matrix although the number of non-zero
lerms remains the same. This obviously is apt to make the solution more expensive as less
regularily is available to be made use of. There exist algorithms to oplimize the node
numbering order for finite element meshes. 0

Remark 2.13. An alternative way from the one described in Remark 2.9 lo treal given nodal
values due to the Dirichlet boundary which keeps the preliminary system size unallered is
quite often used. We explain it in connection with the set (16). Instead of the form (17) we
can wrile

o o 013 o7

Kn Ky K ||B|_ by - KT
Kyy K3z Ky ||Ta by - KT
Ko Ky Ky ||\T) |ba-kKaT

(59)

[=T = =

That is, the first equation is replaced by the identity T; =T and the terms K3, T, ... in the rest

of the equations are transferred on the right-hand side. This kind of manipulation keeps the
matrix again symmetric if it is originally symmetric. 0

Remark 2.14. If the boundary conditions consist of Neumann conditions only, or in cther
words, there is no Dirichet boundary in the problem, the analylical temperature distribution
solution is not unique. If one solution is T(x), the function T(x)+ ¢ where c is a constant, is
also a solution. This can be seen by substitution in the goveming equations. Physically the
rcason is that in this case only the gradient of the lemperature, not the temperature jtself
controls (he lemperature distribution, This fact is reflected in the discrete model. The
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corresponding system matrix [K] proves to be singular. One — and only cne — nodal value
can be arbitrarily given to change the matrix non-singular and to fix the solution. O

Remark 2,15, The Dirichlet boundary condition can be taken care of in an alternative fashion
by representing the solution in the form

T(x)=T{x) + AT(x) (60)
where T(x) isa given funclion in £, an "extension” of the boundary data into the domain,
salisfying flr =T (the same symbol is used here for the function in 7(x) in & and for T

2]

on Ip bul this should not cause much confusion as (he meaning can be inferred from the
context) and AT (x)} a new unknown function Lo be determined. Now function AT(x) has o
satisfy only (see (60))

AT=0 on I'p (61)
Introducing (60) in the standard weak form (2.1.28) gives an alternative weak form

dw dT

dw dAT
IQ ——da «i-_[ dxd.Q I wsdQ +wg |r (62)
with
AT=0, w=0 on [ (63)

This formulalion has firstly the theorelical advantage that the function set for the trial
funclions AT and Lhe test functions w is the same and is in fact a linear space (see Appendix
C). Secondly, in the finite element approximation

AT(x) =Y N;(x)AT; (64)
j

the siep described in Remark 2.9 or in Remark 2.13 to modify the preliminary equations is not
needed at all as the given nodal values AT; of AT(x) at the Dirichlet boundary are zero and

thus no contributions are generated from them. Thirdly, in non-linear problems (to be
considered in Chapter 11} T(x) may represent conveniently the initial solution guess or the

current updated solution in an iterative procedure, which is continued until the norm of
AT (x) falls below a given limit.

r T(x)
2

X

Figure 2.11 Possible extensions of the Dirichlet data corresponding Lo problem (1).
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The given T(x) can be here in principle any €% continuous function salisfying the Dirichlet
boundary condition (see Figure 2.11). When using the finite element method it is natural to
represent also T(x) by finite elements (function 2 in Figure 2.11):

T =2 N T (65)
i

with 7; =T or in practice here in the simplest form (function 3 in Figure 2.11)
T(x)= N(0)T (66)

It should be noted that T(x) in formulas (65) and (66) needs no approximation symbol as we
can just take the given T(x) to have the forms indicaled. The final nodal values T; = T; + AT
are not effected by the selection of the specific finile element form for T(x).

The system equations based on the weak form (62) are (the column matrix consisling of the
nodal values of AT (x) is denoted {Aa})

[x){aa}= (8} “n
with
@,
Kj= —' ds2
a dy = de (68)
dv, , dT _
b=—f, Tk a0 +[ Nisd2-Ng I

Comparison with (15) shows Lhat only lhe latter expression is alfected.

We will call in what fellows formulations like (60) and (62) as the deltaform (deltamuoto) to
express the difference from the — what we call — standard form taking the non-zero
Dirichlet boundary dala into account the way described in Remarks 2.9 and 2.13. We are
going to favour mostly the standard form in theorelical presentations but the reader should
always be prepared to make the minor alterations needed to use the advantageous deltaform in
actual practical calculations.

We finally nole that often also in classical type of approximations such as (2.1.14), an
additional given term, say P(x), is present having a similar role as T(x) has here. 0

Remark 2.16. We introduce still some more lerminology. The given nodal values, usually
due to the Dirichlet boundary, are often called fixed nodal values (kiinnitetty solmuarvo) and
the rest free or aciive nodal values (vapaa tai akiiivinen solmuarvo). Similarly, the system
equations corresponding to free or aclive nodal values are called free or active equations
(vapaa tai aktiivinen yhtil8). The superfluous system equations corresponding to fixed nodal
values — which are in fact not strictly correct {see Remark 2.9) formed or not depending on
the program formulation — are called here as the non-active equarions {eplaktiivinen yhiald).
The concept of nodal value is extended in Remark 3.9 to the more general concepl of nodal
parameter. [
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Example 2.4, The demonstration problem (1} with the mesh of Figure 2.8 leading to
active system equations (57) and to solution (58) is treated again here now with the
deltaform.

Instead of the element contributions (38) of the standard form:

e d'NJ
Ki=[,e N s
de  dx (2

B =_[Q,Nfs¢a-

we have now from (68) and making use of Remark 2.11 the terms

L4
Kf= fk—LdN dn
Yolat dy T ody

(®
Iﬂ,——k—dﬂ+] NfsdQ-Nf7 -

Function T(x) is taken here according to the choice 3 in Figure 2.11. Thus it is non-zero
only in element 2 where it has the form

Tx) = N (0T (©
and ils derivative
2 2
o’ _ant ©
dx dx

Thus the only change for the element contrbutions comes from element 2 for which we
obtain the additional terms

dNE  dT? —r dNi dn? kT 3%T
2y o_ & 4@ =- b LYo L L2
COME f —Lk e =T, d$2 I )
(e
2 dN’z dT? dNE A} KT _%T
=— k—d.Q ==kT| —2 L4 =
®2), I dx 4° dx dx @ L

Formulas (F.1.1) have been made use of. The element column matrices are thus (see
formulas (54))

A D B S

Assembly of the syslem column matrix gives (see formula (55))
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b 1 1] (o
1,2 =
+ L 2] 3T |1 0
pp={ el _sL 2l T 11 ®
bé N !"’13 6 |2 L 0 0
bg 1 0 q
The sysiem coefliclent matrix does not change. The preliminary syslem equations (67)
are thus
1 -t 0 07[a7 -1
-1 2 =1 0[||AT, 7|1 2
3 2| AT sLizl_ (h)

Lo -1 2 <1{lan{ L |of 6]z
0 0 -1 1[|AT, 0

w o o o

The first equalion is non-active with the fixed nodal value AT} =0. The remaining
active equations are (after division by 3k / L)

2 -1 0||an T . (2] _ [0
sL gL .
-1 2 ~1|{ATG;={0;+—42:~"—10 (i)
18% 3k
0 -1 1 ||AT 0 1 1

The set is identical wilh (57) except for the unknowns. However, as here

Tlx)=T(3)=T(x)=0 )
there follows
Lh=Ah, Th=ATy, T =AT, (k)

and we have obtained in fact again the solution (58).

Remark 2.17. This remark concemns the important point of smoothness of the functions
when performing integrations by parts. In the manipulations to obtain the standard weak form
(2.1.28), inlegration by parts gave
dar
= wk——
I=ad

f w180 = [ 94T 4o o f e 9T (69)
a  dx dx dx
According Lo Section B.! the functions involved (w and -k d7 /dx here) must be smooth

dx a dx

x=b

enough — at least C? functions — for the above to be valid. This condition is fulfilled for the
exact solulion as the flux —& dT /dx is indeed continuous for energy balance reasons even for
a discontinuous k. But finally we are applying the weak form for the finite element
approximation T whose derivative dT /dx has jumps also at those points where k is
continuous. The approximate flux is thus no more continuous at the element interfaces. To be
honest, we should still be able to perform the integration by parts alsa in this case and 1o be
on the safe side we may start by performing the manipulations in an clement by element
fashicn and obtain first
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la w-—( k—]d.Q:g:J' ) :x( kﬂ]m

dw  dT dT dT dr
= el +| we s = -k wk =
§J’ ‘ dx ( dx],wa El:w{|[ d"]ll ( d't],wb

The summalion over I means sumn over the element interfaces (here the nodes inside the
domain, for instance, in the mesh of Figure 2.8 nodes 2 and 3). The meaning of the jump
bracket nolation is the following:

A=r-5 @

where the minus and plus values refer (o the lefi- and right-handed limit values of function f at
an element interface point. For the exact solution with continuous flux the jump terms in (70)

(70)

are seen Lo vanish. Result (70) is correct for a ¢ continuous approximation for T, for which
kdf7dx is a ™! function, but if applied with finite elements it is found to produce

completely useless resulis. We can find a remedy, however. Instead of the field equation
representation (2.1.1), we start with, see e.g. Salonen (1991),

"( kiT-]-s_o in QF, e=12,- a2
il ar
and
H~k£ﬂ=0 for I=1,2,-- 3)
&

This means that we have anlicipated that the solulion may nol be smooth particularly on the
element interfaces and we thus replace the field equation at these finite points with the
continuity condition for the heat flux. The corresponding starting formulation for the weak
form is thus

ELzr [d( kg]_s]m«rzv,ﬂ k%ﬂ[ﬂ) (74)

Comparison with expression (70) shows that if we select we weighting constants v; by
vy =wix )=w (75)

the jump terms cancel after integration by parts has been applied on (74) and we end up with
the standard weak form (2.1.28) written here just as a summation over the elements:

dw , dT —
g‘,jﬂ, Ekadsz-g'[ﬂ, wsdQ2 + T we =0 (76)

The above lines of thought can be applied similarly also in two and three dimensions.
Reference Belytschko et.al. (2000) contains detailed considerations on this theme in
connection with the principle of virtual work (sez Remark 3.1). In what follows we do not

care to go through these extra details, in facl needed 1o proceed quite correctly, but perform
the integrations by parls manipulations directly over the whole domain assuming the functions
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o be smooth enough and "forget™ on purpose the violations brought in via the
approximations. 0

2.4 PRE- AND POST-PROCESSING

The solution of a problem by the finite element method can be divided roughly
into three separate phases: (1) pre-prosessing, (2) generation and solution of the
discrete equations, (3) post-processing.

2.4.1 Pre-processing

Pre-processing (esikisittely) means the preparation of the data needed by the
program to produce the discrete equations. This includes the generation of the
finite element mesh, information about the terms in the weak form and about
the Dirichlet boundary conditions. It is clear that in practice with thousands of
elements this phase must be effected mostly automatically. Thus, a more or less
automatic mesh pgeneration algorithm must be available in any useful
commercial finite element package, Here, in the Mathematica based, Wolfram
(1999), demonstration program MATHFEM used in this text (Appendix G) the
degree of automatization in pre-processing is rather mild and will be explained
later.

Adaptive procedures (adapliivinen menettely) in connection with the finite
element method are becoming more and more important. It must be
remembered that the finite element method is an approximate procedure to
solve a problem. The early applications of the finite element method were based
mainly — and still often are — on the practical intuitive knowiedge of the
applier on the accuracy achievable with a given type of mesh in a given type of
problem. However, to proceed logically, some systematic criteria to study the
quality of a finite element solution must preferably be available. Different error
estimators (virhe-estimaattori) have been developed in the literature for this
purpose. A recent reference is Ainsworth and Oden (2000). If the errors
associated with a tentative finite element solution are found to be too large, the
problem must be solved again with a new mesh. How the initial mesh should be
locally refined (tihentid) or perhaps de-refined or coarsened {harventaa) for
best economy is based on error indicators (virheindikaattori). Several
consecutive meshes may have to be used in a problem to achieve the accuracy
needed. Further, it is obvious that if an iterative method is employed to solve
the discrete equations, the previous solutions with earlier meshes can be made
use of to produce an initial guess for the new solution. This means that the pre-
processing phases and the equation generation and solution phases get mixed.

2.4.2 Post-processing
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Post-processing  (jilkik#sittely) in general means that supplementary
information needed by the applier are extracted from the "raw material" of the
finite element solution consisting of the nodal values of the approximation. This
information should be presented preferably mostly in graphical form. Similarly
as with pre-processing, more or less automatic post-processing algorithms are
in practice necessary to cope with the huge amount of data produced by the
solution. The options available in MATHFEM will be described later,

T i(sL2 1 k)
0.5+ — Exact
——— Finite element
q./(sL)
1
0- 0-
0 11 x/L x/L
— I —
(a) (b)

Figure 2,12 (a) Temperature, (b) Heat flux (s> 0).

Figure 2.12 (a) shows again the exact and the finite element temperature
distribution obtained in the example problem with three linear elements in the

wall in the case 7 =0, 7=0 considered in the previous section. Figure (b)
shows the corresponding heat flux

dTr
qxz—ka N

The heat flux concept is discussed in more detail in Section 3.1.1. In practical
problems the heat flux and especially the heat flow rate (3.1.4):

0 =] qdr @

through certain surfaces are of interest in addition to the temperature. The
situation is similar, say, in applications of structural mechanics. The basic
unknown is usually the displacement field and the corresponding nodal
variables are thus the displacement components. Often, however, also the
stresses induced are of basic importance. Stresses correspond to the heat flux as

Lo e B WA iy VR T R e N AV Y LT FTR LW

they are obtained through differentiation from the displacement field
(muitiplication by some material property data similarly as in (1) is also
needed).

In the example problem the finite element solution for the heat flux is
unrealistically discontinuous. The jumps in the values are clearly some
measures of the errors in the solution. A simple and common practice to refine
the heat flux solution is to take as the nodal value the average of the values at
both sides of a node and then use again the finite element approximation now
for the flux. This would give here the exact flux in the middle element but it
cannot improve the result at the domain boundary where only “one-sided”
information is available. [t is just there where accurate results would be
valuable. Here the heat flow rate density out of the body has the expressions
(see Section 3.1.1)

q=—qx=k£ at x=0
3
q=qx=—kd—x— at x=1L

At the right-hand Neumann boundary x= L the heat flow rate density is given,
g =0, and we in fact need no approximation. The value obtained directly from

the finite element solution (see (2.3.58))

df ar® d& ar®
aJ =g ({lLl=—k—{(L=-k L =Hk___
R T
1 3 512 1
=—k——(~Ty+T, )=~k == (-8+9)=——sL=~0.167sL (4
L30Tk gy (B9)= g S

can be considered as a measure of the error in the solution. At the left-hand
Dirichlet boundary x=0 the heat flow rate density evaluated directly from the
finite element solution is similarly not very accurate:

dT dar® dg ar'®
0=k T (0) ==k T

él =o=_‘}x(0)=k =k
x dx dx de d |,
1 352 5
=k (T, +T, )=k == (~0+5)==sL=0.833sL 5
Tt At R)=k g (-0ta)=Ce gy ©)

as the exact value is 1-sL. This result can be made here rather easily more
accurate by post-processing as follows.
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The basic energy equation weak form (3.1.19) presented in Section 3.1.1 is here
in one dimension

Ig(;:qxdﬂ [wsd@+[ wgdl =0 6)

The standard weak form (2.1.28) is armrived at by introducing the constitutive
relation (1) and by restricting the weighting function w to disappear on the
Dirichlet boundary. The boundary consist here of the points x=0 and x=L
and (6) is in more detail

d
Jﬂd:flxdg I wsd@Q+wq| _ +wg| _, )

when the Neumann boundary condition (2.3.1) expressed in the form g{L)=g

is made use of. It is of interest to note that the selection w=1 in (7) gives the
exact heat flow rate density at the left-hand boundary:

0=Iﬂsd9—§ . (8)

This result, extracted from the weak form, has an obvious physical content: the
heat flow rate out of the body through the left hand boundary equals the heat
rate generated inside the body minus the heat flow rate out of the body through
the right-hand boundary. Taking the example case, s is constant and ¢ =0,

which gives the exact value q]xr_o =sL.

For instance in the case, where the boundary conditions are of the Dirichlet type
at the both ends, the selection w=1 gives correctly the total heat outflow rate
but we cannot any more find the separate portions at the ends and some
alternative procedure is to be used. The obvious choice is to select the
weighting to disappear on those boundary parts over which the heat fiow rate is
not to be evaluated and to have a constant value (say 1) on those parts over
which the heat flow rate is wanted to be known. This selection transforms (7)
into the form

d
F=-] d::q,[dQ [, wsd@+wal g ©)

where now w(0) =1. This could be used again to evaluate q|x=0 if the exact g,

would be known which is however not the case in general. We can try to
simulate (9) in the finite dimensional case by replacing the exact g, with the

finite element approximation §, =—kd7 /dx and by selecting the weighting to
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be the global weighting function N, which clearly satisfies the conditions
w(0)=1 and w{L}=0. The analogue of {9) is thus

- lededQ—jQ NisdQ+Ni|_, =0 (10)

F=
We have denoted the heat flow rate density in (10) at x=0 as § to emphasize
the possible difference with the exact quantity g and with the direct
approximation §=-gq, =kdT /dx. Comparison, say, with equation (2.3.22)
with i =1 shows that we have produced the result (N (0)=1)

F=FR+4{_,=0 (11)
which is almost the first system equation or in more detail
K+ KT+ KB+ KT - +4_ =0 (12}

If the terms K); and & for the first preliminary discrete equation have been
assembled and stored we can now evaluate § from (12):

2
8|, ==L Ky;T; +b1—-§-’-‘-%c(1 0-1-5+0-8+0- 9)+?

= L sh=sL (13
6 6

Formulas (2.3.56) and (2.3.58) have been applied. The exact result happened to
be recovered by this procedure and thus the generation of the first equation
which was later discarded was not in vain as the terms generated could be made
use of in accurate evaluation of the heat flow rate. This kind of procedure is to
be preferred over the direct calculation from the approximation if accurate
results are needed. An intuitive explanation for the increased accuracy of (13)
over (5) is in the fact that expression (13) contains information in addition to
the nodal values also about the source term. In two and three dimensional cases
analogical procedures to calculate heat flow rates through Dirichlet boundaries
can be devised, e.g. Gresho et al, (1987). Reference Zienkiewicz and Taylor
(2000) explains also useful practical recovery processes.

Remark 2.18. On Neumann boundaries the heat flux rate densily is given and the
tempermature is unknown. On Dirichlet boundaries the temperature is given and the heat flux
rate density is unknown. Starting from the basic form {6) we can wrile instead of (2.3.5) the
typical discrete equalion always first as

dN,  df
F = ﬂ?k;dﬂ IﬂN,sdQ-l-N;q[r:O (14)
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If node i is on the Neumann boundary, we can replace g with the given value and are back al
formula {2.3.5). If node { is on the Dirichlet boundary, the correct discrete equation should
include the term

Nl (15)

arising from the unknown heat flow rate density. This means that the discrele equations
produced by the standard weak form where the contributions from the Dirichlet boundary are
missing are in fact incorrect as mentioned earlier. This is quile obvious because the condition
of the weighting function to disappear on the Dirichlet boundary used to obtain the weak form
is later violaied in generating the discrete equation. As these wrong equations — if generated
— are later discarded no harm is done. Term (15} is sometimes called the rhermal reaction
(terminen reaktio), Akin (1994). Equation (10) is an example of a formulation where the
thermal reaction is included for posi-processing purposes.

The name "reaction” comes from the terminology of structural mechanics. There roughly, on
Neumann boundaries the traction (stress vector) is given and the displacements are unknown.
On Dirichlet boundaries the displacements are given and the traction (reaction forces per unit
area from the surroundings) is unknown. In the so-called displacement formulation where the
basic unknowns are the displacemenits, correct discrele equations cormesponding to nodes on
the Dirichlet boundary contain teaction force terms, which can be evalvaled by post-
processing.

We can proceed in theory aliemnatively by producing all the system equations right from the
beginning using instead of the standard the basic energy equation weak form, that is,
employing here formulas (14} wrilten in more detail as {(cf. (7))

dv; , dT

Fis[ k-0 ~[ NisdR+Nag| +Ng |, =0 (16)

We show this in connection with the demonstration problem described in Figure 2.8. Looking
al equalions (2.3.56), we see that only the first equation changes and obtains the form

o L
D)+ MOl =5 a7

The unknown approximative heat flow rate density at x =0 has been denoted similarly as in
(10). Taking further into account that T, =T we obtain instead of (2.3.56) the sysiem
equations

Li3ky =1 0 07(4]=0 T 1
ki 0 2 -1 0 T, T 2
— 2 =.:E +£ — (13)
L o -1 2 -1|| K Llo| 6|2

0 1

0o o -1 1]| T

L O o O

Now the unknowns consist of three nodal temperatures and of one nodal flux. This is a kind
of “mixed formulation”. The solulion for the temperatures is the same as before and the nodal
flux is also given by (13). The system matrix in (I8) is no more symmetric. This is certainly
one of the reasons why this kind of formulalion is not used in practice, 0
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3 MORE DIFFUSION
3.1 HEAT CONDUCTION

In this chapter we expand on the presentation of Chapter 2 still without dealing
with convection and only slightly with reaction terms. The weak form
introduced in Section 2.1.2 in one dimension is treated here from a more
general and physical point of view.

3.1.1 Energy equation weak form

By applying the principle of balance of energy (= the first law of
thermodynamics) (energian taseen periaaie, termodynamiikan ensimmiinen
piédsddnto) to a differential continuum volume element, it is found that a
quantity, calied the heat flux vector (limpdvuovektori)

q=gq,itq,j+qk (D

([q]= Wlmz) can be defined, which has the following property. Consider a
differential material surface element dS in the continuum or on its surface
(Figure 3.1 (a)) with the unit normal vector

n=ni+nj+nk ()

The differential heat which flows through the surface element (positive towards
the side given by n) during a time differential dr is qdSdr ([gdSdr]=1) where

q is called the heat flow rate density (limpovirran tiheys) ([q]= Wlmz). This
and the heat flux vector are connected by

=nqu +nyqy, t g, 3)

This relationship is similar to the connection between the stress vector and
stress tensor at & point but simpler as here q is a scalar and q is a vector. It
should be noted that the terminology used in connection with g seems to vary
much in the literature.

The heat flow rate (lampdvirta, ldmp&teho) o ((Q=W) through a finite
surface (Figure 3.1 (b)) is thus given by

0= qds = [ n-qds “)

where the meaning of the notations is rather obvious. (As heat is not a
thermodynamic state function, the differential heat dQ crossing the surface

3-1
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during the time increment df is not a total differential and thus we use for the

ratio dQ/d¢ instead of the more familiar symbol Q the symbol é )
q
n
QJ;“ /
Ay

(a) (b)

Figure 3.1 (a) Heat flow through a differential surface element. (b) Heat flow
through a finite surface.

Figure 3.2 shows a three-dimensional body and some notations. The boundary
I'=5 of the domain £2=V is assumed to consist here in general of three
different types depending on the boundary conditions. These are the Dirichlet,
the Neumann and the Robin boundaries. Applications of the two first have
appeared already in Chapter 2,

X

Figure 3.2 Three-dimensional domain £2 =V and its boundary I" = S.
On the Dirichlet boundary I't, = Sp the temperature is given:
T=T (5)
This is called the Dirichlet boundary condition.
On the Neumann boundary I'y = Sy the heat flow rate density is given:
g=n.q=7, g=n«(-kVT)=7 ©)
This is called the Neumann boundary condition.

On the Robin boundary I'y = Sz convective heat transfer is taking place:
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g=n.q=h(T-1.), g=n«(-kVT)=h(T-T,) '€
This is called the Robin boundary condition.

In the above, T, n, g, k, h, T, are given quantities, the four first having
appeared earlier. The quantity / is called convection heat transfer coefficient
(konvektion limménsiirtymiskerroin) ([h]=W/(m2K)). T. is a reference
temperature, say, the temperature of a fluid moving past the body at some
distance from the body surface, the so-called free stream temperature, The
relationship (7) is ,often also called Newton's law of cooling (Newtonin
jiiihtymislaki). The value of h depends strongly on the specific application,
especially on the flow speed of the surrounding fluid. It should be noted that
even when the term "convective heat transfer” is used here, it does not mean
that convection, which is due to bulk movement of the body itself and which
will be considered later.

For some purposes it is convenient to use the more specific alternatives V and §
instead of the general symbols £2 and I meant to be valid in any dimension.
The forms (6b} and (7b) containing the temperature are obtained assuming as
the constitutive relation the Fourier law (here for isolropic material} (Fourierin
limménjohtumislaki)

0T, oT , oaT
=—kVT |=—k| —i+—j+—
[a s a + az k] (8)

or equivalently

aT aT T
=—kZl, g, =kl g, =—kZl 9
T LA S ©)

to be valid.

An alternative expression for the term n« (—kVT') is

oT aT aT ar
f—kVT)==kn VT ==k| n,— — -k— 10
n-( ) " [n" ox Ty ay+”z az] on (10)

where 9T /dn is the normal derivative (normaaliderivaatta) of 7. On the

boundary of a body, n is always taken to be the outward directed unit normal
vector so that in what follows, g =n.q is the heat flow rate densily positive out

of the body under consideration.

The boundary dornains cover the whole boundary without gaps and overlaps:
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r=Fulyulk, Hnknk=2 (11)

and similarly
Jp0ar=[_ ()ar+[_ ()ar+[. ()ar (12)

The governing field equation — obtainable again from the first law of
thermodynamics — is in the steady case in a continuum at rest

03

or

d
99y %%y .99 _, (14)
ox dy 0z

Substitution of the Fourier law gives the conventional heat conduction equation
(limmé&njohtumisyhtils)

|V (-kVT)-s5=0] (15)

d aT) o aT ) 9 aT
PO VLA LIS PR EPLLEY IR 16
ax{ Bx] 8y[ ay}+az[ az} : S

We derived in Section 2.1 the weak form starting from the one-dimensional
counterpart (2.1.1) of field equation (16). However, to obtain the weak form in
its "purest shape" we can start directly from (13) or (14) and take the Fourier
law into account later. Starting from (14), the obvious steps are (cf. Remark 2.5)

or

dq, , 34y 0g,
O = 5 |d@2= 17
Jﬂ w(x,y z){ o ay P 0 (7
dw dw
J [ qy % qz]dﬂ J wsdQ
f qxn‘\.-%q.),riy-I—qz Z)d.r' 0 (18)
—'|:(2Vv.uqd.(2—_[Q wsdQ+JqudF=0 (19)
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The three-dimensional integration by parts manipulations employed in the step
between (17) and (18) are based on equation (B.3.1). The step between (18) and
(19) is based simply on the definition of the dot product and on formula (3).
Equation (19) is called here the basic energy equation weak form
(energiayhtildn heikko perusmuoto).

Remark 3.1. The weak form (19) does not conlain any information on the material properties
of the body (conlinuum) under consideration. Thus i is valid irrespective of the material type
of the body. For readers familiar with strength of malerials or structural mechanics the
situation is analogous to the use of a weak form called the principle of virmal work
(virtuaalisen tytn periaaie) called also the principle of virtual displacements (virluaalisten
siiflymien periaate). The ancient principle of virtual work — having history long before finite
elements were conceived — is extremely useful in applications; for instance, il is an
immediate starting point for discretization with finite elements, Weak form (19) can be
considered 10 have a similar status in the field of hear conducrion. Unfortunately there seems
10 exist no settled terminclogy for this weak form or for the terms in it. In lack of anything
better we shall call equation (19) as the energy equation weak form (energiayhi8lén heikko
muolo) or in more detail we include the altribute “basic” as above. Al the final stage, the
material properties must be introduced — here in the form of the Fourier law q=—kVT —
to have a solvable problem. The situation is again similar to that exisling in the principle of
virtual work. Information about the material under consideration must naturally be finally
given, If elaslic material, for instance, is assumed, the material properties are given in the
form of Hooke's law. Another possible name for the weak form (19) could be the principle of
virtual temperatures (virluaalisten lmpdtilojen perinate). This name might be justified as
follows. In the principle of virual work or virtual displacements the weighting funclions used
are classically called virtual displacements, that is, they arc interpreted physically to be
arbitarary infinitesimal displacements or mathematically variations §u of the displacements u
in a body under loading. This physical interpretation for the weighting has made the principle
of virlual work more concrete for appliers. The considerations in Section D.3 and especially
equalion (D.3.30) indicate that we could interprete here without any harm the weighting
function w in (19) to be a varialion 67 or “virtual lemperature” of the temperatue field T in
the body. O

When the identity {12), the Neumann condition (6), the Robin condition (7) and
equation (3) are used, the basic weak form (19) can be written in a somewhat
more detailed style:

_Lz Viw.qdf2 -In wsdg2
+er wgdl" +er wgdI" + Irg wh(T -T,))dI" =0 (20)

Remark 3.2, It is not necessary to restrict the weighting function to be zero on the Dirichlet
boundary -— as was done for instance in connection with the derivation of the standard weak
form (2.1.28) in one dimension — il depends on the application purposes if this restriction is
useful or not. This theme has been discussed already in Section 2.4.2 and especially in
Remark 2.18. There is an analogous silualion in the principle of virtual work; the virtual
displacements can be of two types depending on the application: virtual displacements
satisfying the constraints (kinemaattisesti Juvallinen virluaalinen siirtym#) and virtual
displacements violating the constrainis (kinemaattisesti luvaton virtuaalinen siirtym#). The
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standard practice with the energy equation weak form when generating the sysiem equations
is, however, to demand the weighting function to disappear on Lhe Dirichlet boundary (and at
the same time demand the temperature to saiisfy the Dirichlet condition). This gives the
standard energy equation weak form (energiayhtilon heikko standardimuolo)

-jﬂvW.qu—J'Q wsd9+jr wc?dl"+_[r wh(T —T,)dl" =0 @
N R

For post-processing purposes, for example 10 evaluate the heat flow through the Dirichlet
boundary in an accurate way it is essential not to restrict the weighting function to vanish
there. Then the basic form (20) is the one to be used. Ofllen, when we speak about the

standard form, we further assume the constitutive relation such as (8) aiready substituted into
it.0

3.1.2 Specific cases of the weak form

Plane case. For specialization to two- and one-dimensional cases we write the
three-dimensional basic energy equation weak form (19) with the altemnative
domain and boundary symbels V and § to retain £ and I" for use in the
specialized meanings later:

-[,vw-qav -] wsav+[ wgas=0 (22)

Remark 3.3. It should be emphasized that the integrands in (22) can be shown to be so-
called invariani scalars (skalaari-invariantti), that is, their values do nol depend on ihe
coordinate system used. This is another extremely beautiful and useful property of the wenk
form, as we can apply (22) directly by just substituting well-known expressions for the
vectors q and n and for the gradient vector Yw in Lhe coordinate system at hand as given by
mathematics to obtain the specific weak form. Thus we do not even need to see (he specific
forms of the poverning differential equation as the numerical solution is generated directly
from the weak form. (If the dilferential equation is desired, il can, however, be derived
analylically from the weak form; cf. Example 3.1.) We shall present the weak form versions
here [ree of material properties as long as appropriale (o have short and clean looking
formulas. O

Iy=sp Iy =sy

/

¥y
Y =3 A
x * I'p =g

(@ *? (b)

Figure 3.3 Two-dimensional plane case. (a) Three-dimensional body. (b)
Section z =constant.

Figure 3.3 describes the steps leading to the two-dimensional plane case. The
three-dimensional cylindrical body of length ¢ in the z-direction depicted in
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Figure (a) is employed as the starting point. No dependence on any variable on
coordinate z is assumed. The volume and surface element expressions are
dV =dydydz = dzdA and dS = dsdz = dzds and thus

[,()av =] azf, (Yaa=c],()da
JS(-)dS=LdzL(-)ds=cL(')ds

The meaning of the notations should be clear from the figure. The surface
integrals on the two surfaces z=constant of the three-dimensional body do not
give any contributions. This follows from g being zero there because of the
assumption of no dependence on z. Introduction of the results (23) into (22) and
division by the common multiplier ¢ gives the weak form

(23)

_J'AVw.qu—JA wsdA+quds=0 (24)
or
~[ Uweqd@-[, wsdQ2+[ wgdl'=0 (25)

valid in the two-dimensional plane case. When heat flow rate through a certain
surface is needed, multiplication of the corresponding boundary line integral by
¢ must of course be performed.

If rectangular Cartesian coordinates are employed,

. . . . ow. dw,
q=q,it+gyj, n=ni+n}j, Vw=a|+$‘| (26}
and the weak form looks in detail as
dw ow
_J.A[E;qx +a—yqy)dA—J‘A wsdA+quds=0 (27
or
ow ow
._L aqrx+?y~(]y}:Lf’a—'l.ﬂ‘ wydA
+LD wqu+LN wads+LR wh(T -T.)ds =0 (28)

Finally the relationships
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oT oT
=—k—, =k 29
e b 3 (29)

can be substituted.

These versions are of course easily seen directly from the three-dimensional
forms but we wanted to describe the steps in a similar way as in the
axisymmetric case to follow, where the details are somewhat more involved.

Axisymmetric case. Figure 3.4 describes the steps leading to the axisymmetric
case.

(a) * (b)

Figure 3.4 Axisymmetric case. (a) Three-dimensional body. (b) Section
8 =constant.

The three-dimensional axisymmetric body depicted in Figure (a) is employed as
the starting point. No dependence of any variable on the polar angle coordinate
@ is assumed. The volume and surface eclement expressions are
dV = rd@drdz = dOrdA and dS = rdf@ds = dOrds and thus

J‘V (yav =j"9 dGL (-)rdA =27rL ()rda

IS (-)ds =j8 e L(')”“ = L (rds (30)

The meaning of the notations should be obvious from the figure. Introduction of
the results (30) into (22) and division by the common multiplier 27 gives the
weak form

—J‘AVw-qrdA—J'AwsrdA-!-qurds=0 3D

or
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—Ig Vweqrd - _[ﬂ wsrd{2 + .[r wgrdl =0 32)

valid in the axisymmetric case. The only change compared to the plane case is
seen to be the appearance of the factor r in the integrals. When heat flow rate
through a certain surface is needed, multiplication of the corresponding
boundary line integral by 27 must be performed.

In cylindrical coordinates

ow ow
q=g,e, +q.e,, n=ne +ne, Vw=—e +—e, (33)
ar oz
and the weak form looks in detail as
-f SrpaE rdA—[ wsrdA+[ wqrds=0
Al el L wsrdAt | wards= (34)
or
dw dw
=113 E‘h"'ﬁ;qz]’d“;ujﬂ wsrdA
+LD wq1f'd.5‘+'[TN wqrds+Lll wh(T—Tm)rds=0 (33)
Finally the relationships
oT oT
g, =~k—, q=—k— (36)

can be substituted.

Fin. Next a plate- or finlike geometry is considered (Figure 3.5).

FD N =5
A A
L il A-A
z
? & } txy) +
A a—
{a) al {b)

Figure 3.5 (a} Plate geometry. (b) Seclion A-A.
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It is first assumed that the middle surface of the plate coincides with the
xy-plane. The thickness r of the plate can depend on x and y:

t=1t(x,y) 37

We shall use the shorthand notation

[[()az=]""" (Yaz (38)

Thus

fy v =[, [ ()dzan
.[s (}ds = J.A ()'da +IA(‘)-d-A +L _L(-)dzds

The plus- and minus- superscripts refer to the values of the integrand in
question at the arbitrary selected plus- and minus-sides of the plate (Figure (b)).
As the integration is over the middle plane and not over the curved surfaces, an
approximation, which is however acceptable for mild thickness variations and
considering the other assumptions to be made later, is included in the latter
formula.

(39)

It is assumed here that the temperature distribution does not depend on z:
T(xy.2)=T(xy) (40)

This common assumption cannot of course be in general strictly true, because
some gradient must be available in the z-direction for heat transfer to be
possible through the plate plus- and minus-surfaces. The quantity on the right-
hand side in (40) is to be considered to represent some average temperature
value through the thickness. The next sharpened assumnption would consist of
having the second term taken into account in the Taylor expansion of T with
respect to z:

T(x, y,z)=T(x,y,0)+%—:(x. %0)z=T(x,y)+U(xy)z 41)

Then we would have to determine two unknown functions: 7 and U.
Assumptions (40) and (41) lead to formulations, whose analogs in structural
mechanics wouid be plate stretching and plate bending, respectively. However,
here we shall use the simpler expression {40). Corresponding to the aim to
obtain a two-dimensional theory, the weighting function w is similarly chosen
to depend only on x and y. The energy equation weak form (22) is now first
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_LL(%:_(IX +g—;’q),]dsz—IAL wsdzdA

+IA wgtdA +_[A wq dA+ L L wqdzds=0 (42)
d d

(Sl 0o S e ] s

+_[Aw(q+ +q')dA+Lqudzds=0 (43)

The second form is arrived at by taking into account that the weighting function
and its derivatives do not depend on z. We next define the quantities

Qx=Lflxdz, Qy=qudz, Q=quz, S=Lsdz (44)

Q.+ Oy and Q are the heat flow rates per unit lengths along the y-, ¥- or 5-

directions {[Q]1= W/ m). These quantities are the analogs of, say, the stress
resultants per unit length much used in structural mechanics. S is the heat
source per unit area along the plate middle surface {[S]= W/ m?), Using these
notations the weak form gets the outlook

12020, Y wsarsfwla o Joref w0

which does not differ too much in structure from the two-dimensional form
(27). The third integral is a new type of term. If convective heat transfer, for
instance, is assumed to take place on the plus- and minus-sides, we have

g* =k*(T-12)

g =k (1-T3) (46)
where the meaning of the notations should be obvious. Thus the integral

L w(q+ - q‘)dA =f, [w(h* +h” )T - w(h*T:; + h‘T;)]dA (47)

By deriving similarly as in Example 3.1 the field equation corresponding to
weak form (45) with (47) it is easily seen that now for the first time a reaction

type term (Kt + BT (cf. Section A.1) emerges. How to treat reaction terms
accurately in the finite element method is dealt with in Chapter 7.
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Often
K =h"=h
TH=T.=T. (“8)

and the expressions simplify. The last integral in (45) can be put similarly as
before into the form

Ldes:LD des+LN wéds+LR wH (T -T..)ds (49)

Here the notation is understandable from the definition of Q in (44) and from
the Neumann and Robin boundary conditions (6) and (7). H is the integral of £
over the thickness or if h is constant we have simply A = ht.

Anisotropy. Let us consider in this connection the possibility of an anisetropic

(anisotrooppinen) heat conducting material. The so-called generalized Fourier
law is then instead of (5)

)

where k is the heat conduction tensor which is symmetric. Employing index
notation and summation convention, we have the Cartesian form

Qaz—kaﬁ'ég (51)

or using matrices:

Gy == |k  Kyy ky, oT/dy (52)
q, ky ky o kg aT {0z

In the isotropic case

q_,] k 0 0){oT/ox
qy r=— 0 k 0Q|<dT/ay (53)

we are back at the conventional Fourier law.

Retuming to the present problem and substituting the expressions
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or oT aT

LA Ly Ll
= Tox Yoy Toz

9T 9T, aT (54)
2y ="K ox “Ew ay_ ¥ 9z

into the first two equations (44) gives (here 7, 0T /0x and 0T/dy do not
depend on z)

aT ., oT
=K, ——K _ —
O Hax v dy
0=k 3T _g 9T )
Y oax 7oy
where
Ke=[ katz, Ky =] kyde, Ko=Ky= [ kode (56)

Relationships (55) are the constitutive equations to be employed finally in (45).
For composite plates the conductivities depend strongly on z. In the isotropic
and homogeneous case

Ke=ki=K, K,=kt=K, Kg5=K,=0 7

The formulation which has been presented above in connection with the
geometry of Figure 3.5 can obviously be employed with reasonable accuracy
also in such cases where the fin middle surface is not strictly a plane, that is, for
so-called shallow geornetries. The domain A of the problem is then the
projection of the fin middle surface on a suitable selected plane.

2 =]a:b[ F={0-b}

. p i) N

. L\Q J | T
~— x

[ -1 x
@ b) r=a r=»b

Figure 3.6 (a) Axisymmetric plate geometry. (b) Section @ =constant.

Figure 3.6 describes the axisymmetric special case obtained from the platelike
geometry of Figure 3.5. Thus again, no dependence on any variable on
coordinate 6 is assumed. The problem becomes mathematically one-
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dimensional, the coordinate r being the independent variable. The analogs of
equations (37) and (40) are simply

r=1(r) (58)
and
T(xy.2)=T(r) (59)

and the weighting function w is similarly chosen to depend only on r. It is
easiest to make the changes needed in the already processed weak form (48)
rather than to start from the two-dimensional axisymmetric form (37) or (38).
The middle surface area element and boundary curve element (Figure (a))
expressions are dA = rdfdr and ds =adé or ds = £d8 and thus

J‘A(‘)dA=IﬂdBL(-)rdr:ML(.)rd,
.L()ds = .[ade r(-)|r=a +J.9d9 r(')|r=b = Zﬁ[r(-)lr=a + r(')lr=b]

Introduction of these results into (45) and division by the common multiplier
27 gives the weak form

(60)

—J'r%:—grrdr_frwsrdr+-“rw(q+ —q')rdr+wrQ 'r-:a W W'I‘er=b =0(61)

valid in the axisymmetric fin case. The first integral may need an explanation.
The invariant integrand in the first integral of (45) can be evaluated here by
letting, say, the x-direction coincide locally with the r-direction. Then
@, = Qg =0 due to the axisymmetry. Further,

Q= L q,dz (62)
and the Fourier law obtains the form

0, =K, 5 ©3)
where

K, = krdz (64)
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Finally, the comments above concerning the formulation when the fin middle
surface is not strictly a plane apply also here. Further, the true heat flow rate
evaluations again need multiplication by the factor 27,

Example 3.1. We derive the goveming field equation and boundary conditions in the
axisymmetric case from the commesponding weak form (35):

[, 422
N T

+LD wq rds + LN w rds + J’:R wh(T =T }rds=0 (a)

qz]rdA—L wsrdA

Again, all is based on the fact that the weighting function is arbitrary. However, as both
w and its derivatives appear simultaneously in (2) we cannot draw yet directly sny
conclusions. The strategy is to go in the opposile direction than in the generation of (he
weak form and perform first suilable integralion by parts to get rid of the derivatives on
w in the area integral. Thus, employing formula (B.2.1a), we get

J(f;;"q, 22, ]rd»«=—fﬂ[%—‘:wr+%—2’m=]“
-I[ (rar )+ (ra, )] [ (wra,n, +wra,n, )ds
R A AR T e ®

In this application of formula {(B.2.1a), x and y have here the roles r and z, respectively,
and the situation is still described in rectangular coordinales as seen from Figure 3.4 (b).
Further, we have used according o (33) the relation

gEnsq=n.4q, +n,4q, (©)
Equation (a) becomes thus (cf. formula (11a}}

Lw[%(rq,)-&-a%(rqz)—sr)dfi
+an(c'j-—q)rds+_[ln w[h(T-T.)-gq]rds=0 (d)

Using now a similar logic as in connection with the derivation of statement (2.1.9), the
following resulls are oblained:

d d .
é:(rqr)+a—z{rq:)—sr—0 inA

=9 on sy (e)
‘I=}‘(T'T..) on sg

As r does not depend on z, the term d(rg_)/ 0z can also put into the form rdg, /dz. 1t is
to be noted — as discussed earlier — that the possible Dirichlet boundary cendition does
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nol follow from the weak form; in fact, the temperature does not appear al all in the
domain A in equation (a). Finally, constitutive relations (36) can be introduced.

3.1.3 Generalization

We have considered above the steady stale heat conduction problem. It is a
special case of the steady pure diffusion problem discussed in Appendix A and
given there with the field equation

.d
Ya_fog ing (65)

Oxy
and wilh the boundary conditions
o=¢ on I'p
d - 79 on Iy (66)
jf=ap+b on Iy

The diffusion flux density

’ g ] 0
Fengid,  Pe-raDyt (67)
axﬁ
A common constitutive law for the diffusion flux vector jg is
d ¢
i (68)
Ja op 8xp
which has been employed already in (67b).
The basic weak form corresponding to equations (65) and (67) is
ow d o =
Iﬂa ddq - _[n wfdQ +j'r wildr=0 (69)

1t is the analog of (19). The standard weak form corresponding to (21) with the
constitutive relation included is

0 J
Jaze ey

5 "5y a2 -[ wfaQ+[, wﬂdmj _w(ag+b)dr =0 (70)

with
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¢=¢, w=0 onIp (71

The derivation of these forms can be performed similarly as with (21). A large
number of physical phenomena are covered by this formulation with different
interpretations for ¢, some of which having been explained in Appendix A.
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3.2 TWO-DIMENSIONAL ELEMENTS

The most conventional two-dimensional elemenls are described. In ali cases
isoparametric mapping is employed to map the reference element to the global
space.

3.2.1 Triangular elements

Three-noded clement. Figure 3.7 shows a three-noded or linear triangular
element (kolmisolmuinen tai lineaarinen kolmioelementti).

n 3
"N )
& 2
0’0 52| Il £ |_
(a) (b) *

Figure 3.7 (a) Linear reference element. (b) Linear element in global space.

Figure 3.7 (a) fixes the node and side numbering order (symbol 1 ) selected.
The numbering order is taken here to grow in the counterclockwise direction.
The independent natural coordinates are £€[0,1], n€[0,1]. The shape
function expressions are

Ny=L=1-(-7

Ny=1,=¢ 1
N,=L,=n

The formulas include the altemative forms in aree coordinates (pinta-
alakoordinaatti)

A @
A A’ A

which were referred to in Section 2.2.1. The meaning of the notations should be
clear from Figure 3.8. The area coordinates I, €[0,1] must satisfy the
constraint equation

L+l +1;=1 3
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3 L=0 _3
L=1/4
2 L=12 2
L,=3/4
L=1 _ <
(a) : (b) b

Figure 3.8 (a) Notations for area coordinates. (b) Some coordinate lines L =
constant.

Typical shape functions are sketched in Figure 1.4 (b).

The approximation is

3
¢=3 N, =(1-& —n)y +E¢, + 116 )

i=l

The isoparametric mapping

3
x=ZN,-x[- =(1_§ —n)xl +§.1'2 +n13
3 (5)
y= 3Ny =(1-E-my+Ey+ny,
i=1

gives arbitrarily shaped straight sided elements in the xy-plane (Figure 3.7 (b))
The nodes 1, 2, 3 must follow in the counterclockwise order determined in
Figure 3.7 (a) but the nodal numbering may start from any vertex. It is not
considered necessary here to equip the reference element quantities with dashes
and similarly the element superscript e can be dropped without confusion.

In what follows we do not any more give the element approximation
expressions and the isoparametric mappings as these features should be now
quite obvious.

Six-noded element. Figure 3.9 shows a sixv-noded or gquadratic triangular
element {kunsisolmuinen tai kvadraattinen kolmioelementti). The midside nodes
in the reference element are at the midpoints of the sides. The independent
natural coordinates £ and 7 have the same ranges and the side numbering is
also the same as for the linear element.
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(b)

Figure 3.9 (a) Quadratic reference element. (b) Quadratic element in global
space.

The shape function expressions are

Ny =(20 1)L =1~3E -3n+2E2 +4én+2n°
N =4LL, =4£ —4£2 -4k

Ny =(2L, -1)L, =—& +2£?

Ny=4aLyLy =487 (6)
Ns=(2L;-1) I3 =-n+2n°
Ne=(2L 1)L =4n—4n" —4&n

The forms employing area coordinates asscciate the variables L;, L,, I, with
the vertex numbers 1, 3, 5, respectively. These formulas are rather easy to write
down after some practice directly by inspection without any serious
calculations. The main idea is to make wse of the following obvious fact: an
expression containing two or more product factors is zero at all those points
where the factors are separately zero. In addition, the level lines of constant
area coordinates values such as shown in Figure 3.8 (b) are of help. For
instance, the factor L, is zero at the nodes 3, 4, 5 and the factor L, —1/2 is zero

at the nodes 2 and 6. Thus the product L, (L, —1/2) is zero at all nodes except at

node 1. By now multiplying this product by a suitable scalar factor so that it gets
the value 1 at node 1 we have obtained the first shape function (6).
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Figure 3.10 (a) Shape function for a comer node. (b) Shape function for a
midside node.

The isoparametric mapping can produce elements in the global space having
curved sides (Figure 3.9 (b)). Two typical shape functions are sketched in
Figure 3,10.

Remark 3.4. Triangular elements and corresponding closed form shape functions can be
generated in principle for any complete polynomial degree in £ and 1. The next third degree
or cubic element following the quadratic one has ten nodes one of them situaling already
inside the element at the point L, =1/3, L, =1/3, Ly =1/3. There is, however, usually in
practice no need to go for these high degree elements. This is the case especially if the
solulion has boundary or internal layer type behavior. At these non-smooth solution areas it is
roughly saying belter to have many crude small elements than few large refined elements. O

3.2.2 Quadrilateral elements

Four-noded element. Figure 3.11 shows a four-noded or bilinear quadrilateral
element (nefisolmuinen tai bilineaarinen nelikulmioelementti).

2
i
4 @ 3 3
o Bl y < !
i 2
0_6 L e I— 4
(a) (b) *

Figure 3.11 (a) Bilinear reference element. (b) Bilinear element in global
space.

Figure 3.11 (a) fixes the node and side numbering order selected. The
independent natural coordinates are again £€[0,1], n€[0,1]. The shape
function expressions are

Ny=(1-8)(1-n)
Ny =&(1-1n)

Ny=En ™
Ny=(1-8)n
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They are obtained by multiplying topether one-dimensional linear shape
Functions treated in Section 2.2.1, These product shape functions are sometimes
called tensor product shape functions. The name bilincar comes from the
property that the functions are linear in & or in 9] at the lines 1 =constant or
& =constant, respectively. This terminology has nothing to do with the concept
bilinear form introduced in Appendix C.

The isoparametric mapping gives arbitrary shaped straight-sided quadrilaterals
in the global space (Figure 3.11 {b)). One typical shape function is sketched in
Figure 3.12.

N
N 4 1
y
x

Figure 3.12 Bilinear shape function.

Nine-noded element. Figure 3.13 shows a nine-noded or biguadratic quadri-
lateral element (yhdeksiinsolmuinen tai bikvadraattinen nelikulmioelementti).

n

, 1 @6 5
N

1/2-18---49--~14
LI

1 12 3
AU

(@ (b)

Figure 3.13 (a) Biquadratic reference element. (b) Biguadratic element in
global space.

Figure 3.13 (a) fixes the node and side numbering order selected. The midside
nodes and the middle node in the reference element are at the midpoints of the
sides and at the midpoint of the element, respectively. The independent natural
coordinates £ and 71 have the same ranges and the side numbering is also the
same as for the bilinear element. The shape function expressions are
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Ne=(4~4%)(-n+2n’)
Ny =(1-38 +282)(-n +20%) ®)
Ny =(1-3¢ +2£7 ) (4 —4n*)

Ny = (4& — 4E2)4n - 4n%)

They are obtained by multiplying together one-dimensional quadratic shape
functions given in Section 2.2.2. The terminology is explained by analogy to the
bilinear case.

The isoparametric mapping can produce curved-sided quadrilaterals in the
global space (Figure 3.13 (b)). Three typical shape functions are sketched in
Figure 3.14,

N Ng Ny
1
1
(a) (b) {c)

Figure 3.14 (a) Shape function for a comer node. (b) Shape function for a
midside node. {¢) Shape function for the middle node.

Remark 3.5. The ninth node (Figure 3.13) is missing in the rather popular eight-noded
Serendipity quadrilateral element; see e.g. Zienkiewicz and Taylor (2000). We do not
comsider it here. (Serendipity means roughly the faculty of making important discoverics by
chance.) The bilinear and biquadratic quadrilateral elements are called sometimes as
Lagrangian elements Lo discern them from the Serendipity elements. a

3.2.3 Element properties

3-24 3.2 TWO-DIMENSIONAL ELEMENTS

All the elements described above are of the simple conventional C® continuous

type (shortly, c° elements), that is, the finite element approximation in a mesh
of these elements is continuous but the derivatives with respect to the global

coordinates are no more continuous at the element boundaries. Refined c!
(meaning that also the first dervatives are continuous) elements in two
dimensions have been developed with considerable pain. They have been used
mainly in structural mechanics in the analysis of bending of plates and will not

be considered in this text. In Section 5.2.3 we will deal shortly with a c!
element in one dimension.

The ¢° continuity of the elements described here is based simply on the fact
that the approximation in a natural coordinate is a first or second degree
polynomial along an element side in a linear or quadratic element, respectively.
Two or three nodes, respectively, on a side with identical nodal values from the
neighboring elements fix the neighboring polynomials to be identical so there
are no jumps in the approximation along the element interfaces.

Linear triangular elements and bilinear quadrilateral elements can be mixed in a
mesh and similarly with the quadratic triangles and biquadratic quadrilaterals.
So-called transition elements, missing some of the midside nodes, can be rather
easily devised. With them linear and quadratic elements can be mixed in a mesh.

The element shape functions have some interesting properties in addition to
their 1- or O- value behavior at the nodes discussed earlier. Some convergence
criteria demand — and common sense would consider it favorable — that an
element approximation should be able to represent a constant function and also
a linear function in the global coordinates exactly (at least in the limit when the
element size gets smaller and smaller).

Let us consider the consequences of the above criteria. We assume a given
linear polynomial

dx.y)=a+Px+yy 9)

where the coefficients &, 3, ¥ can be arbitrary. This function gives the nodal
values (x;,¥;) are the global coordinates of element node 1)

& =0 (x,y)=a+Px+yy (10)
From these nodal values follows the element approximation

¢(I-Y)=2Nf¢i =2Ni(a+ﬁxf+YYE)
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= ENia+2Niﬂxi+EN£7yi

i i i
=‘12Ni+ﬁ2Nixi+YENi)’i (11}
i i i
For this to represent expression (9) exactly, the conditions

2 N,‘ =1
Z Nixi=x (12)

!

EN.')’: =y
i

must be satisfied. The first condition (12) can be seen to be valid for the
elements described in this text by direct summation from the given expressions.
But the two latter conditions are just the formulas used in the isoparametric
mapping and they are thus also satisfied. This is one further indication of the
advantageous properties of isoparametric elements.

3.2.4 Global derivatives

Derivatives of shape functions with respect to the global coordinates x and y
appear in the element contribution expressions. The shape functions are,
however, represented in the natural coordinates & and n: N; =N;(¢.1). The

isoparametric mapping is of the form x= x(&,n), y=y¢&,n). The inverse
mapping & = £(x,y), n=1(x,y) is needed in principle but to find that in closed
form with general geometries would lead to extremely complicated expressions.
The way to proceed in practice is the following. Chain differentiation gives

an, _oN, 2z an; Dy
9 oxodf 0y o
aN; 3N, dx  3N; 3y )
on dxdnp Jdy dn

or in matrix notation

aN;) [9x ay][om; AN,
2| |ag ¥ ax UT x
aN | lox dy||av| aN, 6
) |an oan]lay ay



326 3.2 TWO-DIMENSIONAL ELEMENTS

It is easy to differentiate the shape functions with respect to the natural
coordinates and similarly the elements 8x/9& ... of the Jacobian matrix
(Jacobin matriisi) [J] can be easily evaluated from the isoparametric mappings.
The global unknown derivatives can now be solved from the system (14):

) [
ox 4
o [T aw, 3
gy an

The complete form of the Jacobian matrix is

9 Bx| [N, ol

[J]E M = aé aﬂ = aé I an l (16)
sEm| 2y w|gam, gan
3 PRSI

Given a point P*: (&, ), the corresponding global derivatives can be evaluated
from (15). This can be done for any point, which is enough when numerical
integration is used.

Remark 3.6. The Jacobian matrix is defined often as the transpose of the one given here in
which case the superscript T does not appear in (14) and (15). This does not affect the value
of the determinant det[J] often called just the Jacobian. The definition in the beginning of

(16) seems to be the normal one in mathemalics texts. As ([J ! =([J]")T, we have
employed for this matrix for simplicity the notation appearing in (15). 0

Remark 3.7. Making the notational changes x—x, y— X, £ =X, n—xy and
employing the summation convention gives a compact form of (14):

L= Jyp it an

where the elements of the Jacobian matrix are

ox,
Jog=—02 18
af axﬂ‘ ( )
The inverse form of (17} corresponding o (15) is
anN; anN;
—L=Jg ! 1
9%, Aa dxg: (12

where
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axﬁ'

Jpu = (20)

0x,
As indicated above, the elements Jgs, can, however, be evaluated in general only in a
poiniwise manner.

These forms are valid also in lhree dimensions just by letting the range of o and f exlend
from1and2103.0

Example 3.2, We consider the four-noded isoparametric quadrilateral element in Figure

(a).

3
4
n
y

2 4 3

1
1 i 2

e ¢
Figure (a) Figure (b)
The nodal coordinates are
x=1-a, x=2-a, x3=24-a, xy=14-a

@
n=05-a, y,=07a, yy=21-a, vy =19-a

where a is a measure having the dimension of Iength. We evaluate the global derivatives
of the element shape functions.

The shape functions (7) are

N =(1-8)(i-n)=1-E-n+&n
Ny =E(1-n)=£-&n

Ny=&7

Ny=(1-&m=n-&n

The isoparamelric mapping from the reference element in Figure (b) gives the
expressions

®

x=(1-E-n+Emx +(§-&n)x +Enx +(n-En)x,
=(1-E-n+€n)a+(E -€n)2a+En24a+(n-En)lda
=a(1+£ +0.47)

(c}
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=(1=E-n+Em)n +(E-Em)yz +Enyy + (1 -EM) s
=(1-&-7 +&n)0.5a+ (& —§n)0.7a+§1}2.1a+(11 -énjl9a
=a(0.5+0.25 +1.47n)
The nodal coordinates have been selected so that the element is a parallelogram. This

simplifies the expressions so that the term £ in (c) is missing and the elements of the
Jacobian matrix become constants. We oblain

& =a, 05 =04a
35 an
£y (d}
=0.2a, =14
ag ooy
The inverse of the Jacobian matrix
e 0da 1 04
Jl= =
7] [0.2«1 l.4a] [0.2 1.4]“ &
is {found easily e.g. using Cramer’s formula}
= 1 | 14 -04
N
1 l.32a{—0.2 1 ] ®
Formula (15) gives thus here
an; an,
ax | _ 1 [14 -02]] 3¢ ®
av, [ 132a-04 1 [|aN, &
dy on

or in more detail

aw,_ (4%_0,23_!:';]

dx 132a d& d
{h)
aN 1 042&4.1%
2y “132a| o0& 2
Far instance,
oN,

e 132a|:14( 1+9)~02(-1+£)]

0]
hY
% 132a|:—04 ~1+n)+1( 1+§)]

and the rest of the derivalives are obtained similarly. For a more general geomelry the
step between () and () would become analytically cumbersome.

3.3 FINITE ELEMENT SOLUTION
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3.3.1 Discretization

3-29

A two-dimensional basic energy equation weak form was given in Section 3.1

as (3.1.28):

dw aw
_J'A(aqx ay }dA I wsdA

+J'JD wqu-l-LN wEdS+LR wh(T -T, }ds =0

The constitutive law for a thermally isotropic material is (3.1.29):

_ka_T == aT
e ox L ay

Figure 3.15 shows some of the relevant notations.

&

Tp=sp N =N
D:T=T
N:g=¢q
y R:g=h(T—Ts)
i I'=s
X FR=SR

Figure 3.15 Two-dimensional plane case.

(1

@

Combining (1) and (2), taking the conventional restrictions on the Dirichlet
boundary and using the general domain and boundary symbols gives the

standard weak form

3x ox dy Oy
—_[ wsd52+j' wadr—j whT dI" =0
Q I I

j [a“’ or awkaT]dQ+Ir whT dl"
R

with

T=T, w=0 on I},

€)

Q)



3-30 3.3 FINITE ELEMENT SOLUTION

This may be compared with the corresponding one-dimensional form (2.1.28).
Now partial derivatives appear, the boundary terms are integrals and the
treatment has been expanded by the Robin boundary. The first line in (3)
contains the unknown function T(x,y) to be determined and the second line
consists of given quantities.

Application of the finite element Galerkin method proceeds quite the same way
as in one dimension. The finite element approximation is

¥)= 2N (x0T )

jal

and the system equations are

F= J‘ aN aT BN aT
En ax ay 3y

- [, Misd@ +er Ng dF—L_R NAT Al =0, i=1,2,,n, (6)

Jd.Q +j NhTdI

Substitution of (5) and similar manipulations as in one dimension gives the
final detailed system eguations

F= 2[] [BN ah; aaN = ]d9+j NhNdF}T

dy

M
—jﬂ N;sdQ +er N;gdr —er N;hT.dl =0

This is of course still a linear system of equations:

[k){a}=1{5} (8)

and the matrix elements are now

aN;  ON; ON; aN
K. = lk— ds2
. I(ax oy ay] +j NihN;dT

£))
b=[, NisdQ—[, Ngdr+[ NHAT.dr

The coefficient matrix is again symmetric. The Robin condition is seen to give
terms also to the coefficient matrix. The preliminary system equations must
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finally be processed with respect to the given nodal temperatures from the
Dirichlet boundary; see Remarks 2.9 and 2.13.

Remark 3.8, If the Dirichlet boundary condition is laken inlo account according to the
alternative procedure described in Remark 2.15, the deltaform, we write first

T{x,y)=T{x,y)+AT(x,¥) (10)

where T| . =T and substitute this into the weak form (3) to give the altemative form
I'p

j(a‘” AT a“'ka”]da+]‘ WHAT dI"
T

ox dy
gw, oT ow, arT
— |d£2 AT dr
+I (axkax aykay] +Faw
—ja wsdQ-i-L_N wqu-IrR whT. .4l =0 (1)
with
AT =0, w=0 on I'p (12)

The approximation for the new unknown lunction AT (x,y) is

2 (x.y)AT; (13)

The matrix elements of Lthe resulting system equations
[kx){aa}={b} (14)

are easily found as a modification of the second formula (9). The first formula (9) remains
unchanged. O

3.3.2 Assembly process

The element contributions can be written down immediately (see Remark 2.11)
from (9):

N’ OV
ki=] . NG 201 OV TV e+ g NERNGAT
ox ax By dy 1)

o= N"CSd'Q—Ir;, NEgdr +Ir§ NERT.AI

The assembly process remains naturally the same as in one dimension (see
(2.3.39)):



3-32 3.3 FINITE ELEMENT SOLUTION

n, n,

Kj=% K, bi=30b (16)

e=] e=l

Remark 3.9. This far we have called the discrete unknowns in the finite element method as
nodal values (solmuarvo) and the indices in formulas such as (16} have referred to global and
local node numbers {solmunumero). This has been appropriate, as we have had only one
unknown quantity per node, he nodal value of (he temperature. In more general siluations we
may have several unknowns per node, say two velocity components, the pressure etc. The
discrete unknowns are numbered starling from number one (usually in some fashion
following the nodat numbering both for the mesh and for an element) and we shall call them
here in general as nodal parameters (solmuparamelr). A much-used synonym in the literalure
is degree of freedom (vapausasie) bul this is not very pertinent, as the proper term from
classical mechanics would be generalized coordinate. The nodal parameters can be classified
again in an obvious way as global and local ones, The assembly process implied by formulas
(16) and explained earlier stay valid if we just replace in the interpretations the words global
and local node numbers with global and local nodal parameters, respectively. Tt should be
remarked that so-called nodeless discrete unknowns are sometimes also used in the finile
element method, especially with hierarchical elements (hierarkkinen elementti). For
bookkeeping purposes these variables can, however, always be associated with certain
anificial nodes and thus the term nodal parameter can still be used. 0

The assembly and some applications of the formulas developed above are now
explained in connection with a simple demonstralion case; Example 3.3. The
finite element methed is meaningful only when used with computers. However,
some practice with hand calculations is necessary to become comfortable with
the concepts introduced by the theory. Even with very simple example cases the
demonstration hand calculations inevitably tend to become rather heavy.

Example 3.3. Two-dimensional plane heal conduction according to the theory presented
in Section 3.3.1 is considered. The problem domain is shown in Figure (a) and the finite
element mesh in Figure (b). The mesh consists of two (n, = 2) identical square bilincar

elements (u," =n3=4). The total number of nodes is eight (n, =8). The task is to
generate the element contributions and to assemble and solve the sysiem equalions.

The boundary condilions are

T='f=% b on 'y (y=0)
T=7‘"=(1-5]TD on I'p (y=2L)
L {1
g=7q on Iy
g=h{T-T.) on I'p

The given quantities &, 5, 7, h, T.. are assumed to be constants for simplicity. Ty and
Ty are given temperatures at poinis B and D,
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Yor
. 1 e W o) °
4 @ [
Iy 2 |Telae 3o
4 @O [
D W []@
A ) B =« ! 2
Figure (a) Figure (b}

The finite element contribulions are (formulas (15)}

INE ONS QNf NS
f=f | k=L —k—L dQ + |, NfRNGAT
Yolat ax o ax 9y Oy L‘ft L

e _ e _ ¢ = £
b = [ Nfsd@ L_EN,. qu+IriN, T4l

2)

We first derive some results for the bilinear element.

4 3
n
4 g Qe b
.Q € 1 y ] i a 2
ri_ 1 [2¢ *
Figure (c) Figure (d)

Figure (c) shows the reference clement (see Figure 3.11) and Figure (d) the clement in
the global space with a simple rectangular geometry the sides of the element aligned with
the coordinate lines.

The element shape functions (3.2.7) are {for simplicily of presentation, the element
number superscript e can be dropped here mostly in what foilows without danger of
confusion)
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|
j

=(1-€)(1-n)=1-E-n+&n
Ny =&(1-n)=E

(3)
Ny=En
Ne=(1-&)n=n-£&n
The isoparametric mapping
x=(1-E-n+&n)x +(E-&n)xy +Enxy +(n-&n)x, @
y=(1=&-n+&n)y +(E-En)y +&nyy +(m-En)ys
gives here using the data of Figure (d)
xp=x+a, n=xnta, x=x, )
nEx. n=Enth wuEnts
simply
x=x;+&fa, y=y +nb 6)
In this case this is trivial to invert:
§=-{-_—£L. n=ul. 'O
a b
The Jacobian matrix (3.2.16)
dx/dE ox/d a 0
1= (%= Realeni g ®
dy/af dyion 0 b
and the magnification factor (see Section E.1.2)
M=det[J])=ab ¢l
Thus
, . il
J‘Q, fa@=|_ fdetl)ae = ab|_,, fd0’ = abjojo SE mdEdn (10)

We conlinue 1o apply the general formulas of Section 3.2.4 for demonstration purposes.
We have

o T AL

and from (3.2.15)
aN;19x] _[1/a 0 [[ON;/3E -
AN, /dyj L O Ub||3N;/an (12)

or stmply
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O _13N 3N 13N

dx —;f By b dn ) 13
The element shape function derivatives with respect (o the natural coordinales are
AN anN
—Ll=-ltn,  —L=-l+¢,
3 n 3 +5
N, aN,
_—==1- ' V=4,
g " m
LI any (o
g T an
8N4 anN,
[l — ==
N an o

We can now starl to evaluale the terms in (2).
The term

. 3N, BN; N, 8N,
R i

aN; aN;
=kab *[laikl——- laNkl—J]d.Q'

& adf b dn
<k ol g ok [ [ G g a3

Lel us evaluate as an example the term (K5 )¢
(i), =k folol-1+an-n)azan s k2 [ f (g~ 2 agan

I I
2 1.3 a 3 |. b 1,a
= —= {+ k=1 ——k—
u( A 3”) b ( 5) 3 a 6 b (16)

These type of integrals have been collected in formulas (F.2.3) and we have with a=b
altogether {(using directly the right-hand side on the first line in (15) and taking into
account that £ is constant)

=k£l
a

2 -2 -1 1 2 1 -1 -2
k-2 2 1L -1} k|1 2 =2 -l
K[ =— +—
[ I: (-1 1 2 =2| 6|-1 =2 2 1
1 -1 -2 2 -2 -1 1 2
4 -1 -2 -l
k-1 4 -1 -2
- 17
6l2 -1 4 -1 an
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In the nex1 term
(1(,3.)R Ej'ra NhN AT (18)

the Robin boundary is for both elements on side 2 (Figurs (b)). Only the element shape
functions N, and Nj are non-zero there and further as £=] they have the expressions

Ny=l-n, Ny=n¢ (19)
On the boundary
df" =ds=dy = bdn (20)
and Lhus
1
( —
(K,.j)R = hbjo N;N;dn 2D

The non-zero terms are in detail
(Kziz)R = hbj{:(l -2 +n2)dn = %hb
(x5 )R =(x% )R = th; (n-n?)an= éhb (22)
(k). = hb[ n%dn = %hb

These tesults could have been picked directly from formulas (F.1.1) as the shape
functions on the boundary are those of the (wo-noded line ¢lement. Together we have
(b= L)
0
h_L 0
6 (0
0

23)

(T =

(=2 S R =]
[=T0 S I ]
L==T == Y == I o]

Column matrix [b])° consists of three separale terms. First
(4 _ _ Irl
(b,. ), = [ Nisd =s[_ N;dQ = sab[ | N;dEdn (24)

The integrals can be found from (F.2.3) and we obtain

!
bl 2
B =22 gl
{3, 411 4
1

1
i
1 (25)
1

Second, in the lerms
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ey - =
(v )N =-[ Ngdr (26)
the Neumann boundary is for both elements on side 4 (Figure (b)). Only the element

shape functions N, and N, are non-zero there and further as £=0 they have the
expressions

N=1-1, Ny=nq (27
The relations (20} are valid giving
1
{ = —- M
(b ), == B[, Nian 28)

and (he non-zero terms are

b =—Ebf'(l—n)dn=—lq‘b
(tr) =2, 2

; 1 (29)
e _-7 R
(63), =~ap[ndn=-=7b
‘Thus
1
7o
. et 30
h=-5"1, (30)
!
Formulas (F.1.1) could have again been made use of.
Third, the contribution from the Robin boundary
e = .
(& )R = [ NAT.dT 31)
can be treated similarly as (26) and we find
0]
T L |1
b), =—==1 % 32
PR =="1, (32)
0

Collecting all the contributions together we oblain the element matrices

4 -1 -2 -l 0000

-1 4 -1 =2
[K].=[K]2=£ 1 Lo 210
6|-2 -1 4 -1| 6/0 1 20
-1 2 -1 4 0000

(33)
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1 0

2 |0 2 1

1
211 =
o) ={o) =2 : _gL o AL
1 1 0

We can now start the assembly. We get from from Figure (b) the table

m @ @
@1 2 4 3
@3 4 6 5

(G4

1t contains similar data as Table 2.2, Using the assembly rules (16) gives the system
malrices

(Kl Kb Kl ki 0 0],
Ky Ka K K 0 01,
[x]= Kl Ky Ku+Khi Ks+Kh Kb Kb|»
oo | K Kip KL+K3 Ky+Kh Kiy Ki|*
6 0 ki K3 K ki’ .
Lo 0 K3, kb Kk Kk
(35)
Wy
B |
[b]z‘b;w»bﬁ ;
e |B b ¢
g |

We write down in detail only the two active equations corresponding (o nodes 3 and 4:
Ky T+ KapTy + KTy + Ky T + KysTs + KT = b3

KT + Kl + KTy + Ky Ty + Ky5Ts + KygTg = by o
The Dirichlet data is taken into account according lo Remark 2.9. We have
=0, h=Tg, T5s=Tp, Teg=0 (37

As is seen, we have given here preference at poinis A, D and B, C, where the Dirichlet
and the Neumann or Robin boundary parts meet, to the Dirichlet data. The final active
equations are thus

Ky3Ty + K3y Ty = by — K33 Ty — KTy

(38)
KTy + KTy = by - KoTg —K4sTp
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where
1 2 _ok
K33 = KM""K” =8—6-

1 2 k
K = Kiy + Ky = Ky = Ky + K3 S

k i
K=K+ KL =85 44—2
44 33 22 6 6

) k x
K32 = K ==F=- Kys=Kiy = ‘lg

k AL k
K42=K;1=—lg+l—6—. K“"‘=K%“=—2E

si2 gL 39)
=pl+pt=2—-21=
by =by Y & =

2
b4=b31+b§=2%+2ﬂ'£

2

Equations (38} are thus in detail
8 -2 = 2
3 1BV Tek) L Tok ]!
6|2 s+4'T n] e -z 62

s21 _ (b 0
+—2-{1}—QL[0]+11T_,L{1} (40)

The right-hand side consists of five forcing terms generating the temperalure ficid. The
quanlity

hL
Nu = (41)

is clearly dimensionless. It is called the Nusselt number (Nusseltin luku) in heat transfer
literature. §i is a dimensionless measure for the matio of surface convection to heat
conduction.

A slight further manipulation of (40} gives the set
4 -1 - 2 =
hL Bl 1h LD ]
-1 4+2— [|TJ/7.| 2T |1-—| 2T.|2
k k
3 (1] _, 4L S
+_— Y —
TRt

Four additional dimensionless quantities appear on the right hand side. For example in
the case
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hL A T si? gL
Loy, Rap Reg, 2l 2= 4
k T, T. kT, KT, “3)
the set is

AN
-1 o6 lim] T iz (@4)

and the solution is

T, _11/2 T,

=——=0.239, = =—==0.957
T. 23 T. (45)

Tt is a good practice to operate wilh non-dimensional quantities. The step to obtain a non-
dimensional presentation should actually be performed preferable already in the
differential equation formulation stage. In this way the numerical calculations can made
more use of as fewer variables appear in the problem. In fact, the computer works with
purc numbers, not with kilograms or meters. However, we often put L=1 etc. for
shortness of presentation. It must then be understood that we are using a consistent set of
units and we work with the numerical measures only.

We now describe shortly how the data is presented in MATHFEM in this example case.
MATHFEM is described in more detail in Seclion 3.4.

Roughly speaking, the discrete problem consists of two main parts: (1) the finite element
approximation and (2) the weak form definition. The approximation is represented by the
list of the global nodal numbers gf each element, by the list of nodal coordinates, and by
the list consisting of an initial guess of the unknown function nodal parameter values
(MATHFEM employs the deltaform version). The weak form definition consists of the
list of fixity codes for the nodal paramelers, of the list of weak form integrands, and of a
list telling which integrand 1o use on the element domains and their edges.

In Mathematica notation, the approximation definition is
apr = {nod, crd, fun} (46)

The global element nodal numbers are given in nod, the nodal coordinates in crd in the
order of global nodal numbers, and the function nodal parameters in fun in the same
order. Once Lhis dala is defined, one is able to plot the approximalion, the finile element
mesh and perform manipulations such as taking derivatives and so on.

In Mathemalica notation, the weak form definilion is
prb = {fix, atr, exp} @n

The fixity codes are given in fix. This list consists of ones and zeros and is of the same
size as fun. The code one means that the corresponding nodal parameter is allowed to
change its value and the code zero that the parameter should keep its value. As the
number of different types of integrand expressions is usually limited only to a few, the
expressions are given in list exp in some convenient order. The list atr lells which
integrand to use on the element domains and their edges. The sublist of atr in the
position indicated by the element number consists of as many numbers as there are
regions in the element. These are defined to be the element domain and ils edges. The
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number in the position corresponding to the local number of the region (Figure 3.18} is
the location of the inlegrand expression in exp.

We consider next the data when the element mesh and the boundary condilions are as
given in Figure (b) and by formulas (1} and the Dirichlet condilions are satisfied in the
strong sense. The finite element approximation is given by

nOd = {[1' 2) 4! 3]’ {3) 4' 6! 5}};
erd = ({0, 0}, {1, 0}, {0, 1}, {1, 1}, {0, 2}, (1, 2}}*L;; (48)
fun = ({$a},{ ¢b), {0}, (0}, (¢d}, (¢c)};

The list nod contains the global nodal numbers of the elements in the order determined
by the local nodal numbering. The nodal coordinate list crd contains the nodal
coordinales in the order determined by the global numbering The funclion nodal
parameter list fun contains the given values (from the Dirichlel conditicns). The
unknown paramelers can be given any values in the linear case, but a pood guess may
decrease the computational work in the non-linear case.

The function set V and the weak form expression, i.e., the weak formulation is defined
by

fix = {(0}, {0}, {1}, (1}, (0}, {O});

alr={[2,1,3,1,4),{2,1,3,1,4}};

exp = (0, w[1]*d*¢[1]+w([21*d*¢[2)-w[0]*f, 49)
w{0)*h*($[0]-¢r), w0]*q};

The value zero in the fixily code tabie fix, denoling a fixed nodal parameter, appears al
locations commesponding to the nodes on I, . Note that due to the restriction ApeV=
Agln p = 0, the Dirichlet condilion “wins" at (he nodes where the boundary condilion
type changes. In the MATHFEM code, the fixily code table is walked through replacing
each occurrence of number 1 by an integer number starting from 1, using then 2 and so
on to get an unique numbering for the free nodal parameters. The final value n thus
oblained is the total number of unknowns of the problem. In the example case the
outcome of Lthe modification step is a= 2 and

fix=({0), {0}, {1}, {2}, {0}, {0}}; (50)

The members of the allribute list atr contain integer numbers referring Lo the integrand
expressions 1o be used for the regions of the elements. For bookkeeping Lhe different
regions of the elements are ordered as follows. Domain proper £2 of an element comes
first. The four edges (see Figure (b)) of the element I}, 3, I and Iy follow in thal
order. Similar ordering convenlion applies also in connection with line and triangular
clements. The different integrand expressions appearing in the weak form are listed in
exp in principle in an arbitrary order. Here the first member is the zero expression (= I
or element sides inside the mesh), the second the domain expression (£ ), the third the
Robin boundary expression (2 ;) and the fourth the Neumann boundary expression
(£ I'y). The first number of a sublist of atr, corresponding o an element, gives the
location of the expression of exp to be used in the domain, the nexl number gives the
location of the expression o be used on the first edge and so on, To simplify the
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numerical treatment, one-index notation is used for derivatives from zero to the first
order (and also higher if necessary). The one-index notation for the derivatives has the

meaning: ¢[0]=¢ , $[11=03¢/dx;, and ¢{2)=3d¢/ox,.

Figure (e) shows the solulion for the temperalure oblained by MATHFEM. The
numerical values for the given data correspond to those of (43).

<<mathfem.m;

nod ={(1, 2,4, 3}, {3, 4, 6, 5]1;

crd = {{0, 0}, {1, 0}, {0, 1), {1, 1}, {0, 2}, {1, 2} }*L;

fun = {{¢a}, {¢b], {0}, (0}, {¢d}, {¢c}};

fix = ({0), {0}, (1}, {1}, {0}, (O}};

alr={(2,1,3,1,4),{2, 1,3, 1, 4}};

exp = {0, wil}*d*$[1]+w(2]*d*$[2]-w[D]*f,
wl0}*h*($[03-¢r), wi0l*q};

apr = (nod, crd, [un);

prb = {fix, atr, exp};

da=pc=0;0b=¢d=T;L=1;d==T;h=¢r=1;q=1;
newapr = LINEAR[{apr, prb}];
SHOW3D[PLOT [newapr]];

Printf" fun="', newapr[{3]]];

Figure (e)
fun = {{0.}, (1.}, {0.23913), {0.956522}, {1.}, {0.}}

3.3.3 Numerical quadrature
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The element contributions consist of definite integrals over the reference
element domain and boundary. Some relevant formulas are explained in
Appendix E. The integrands are usually so complicated that numerical
integration (numeerinen integrointi) which is often also called numerical
quadrature is necessary or convenient. This is a theme of classical numerical
analysis and just a brief review is given here. We shall employ mostly the name
"numerical quadrature” here as the term "numerical integration" is often used
also in many other meanings, for instance for the numerical prediction of a
solution in a time dependent phenomenon.

The integrals in one or two dimensions are repiaced by sums:
Tf(r)dr=2wf(5)
i

I1£(r.s)drds=2W,f (r.s;) (17)

Here the quantities W, are weights (paino) or to discern them from weighting
functions in weak forms or from weight factors in the least squares method we
can call them weight coefficients (painokerroin). The indices i refer to the
integration points or sampling points (integrointipiste, niytepiste) where the
value of the integrand f is to be evaluated for the sum. The forms (17) are quite
transparent as a kind of Riemann sums where the weight coefficients can be
interpreted as some measures of the sizes of the subdomains associated with the
sampling points.

Let us consider first the one-dimensional case and the integral
1
[ f (e (18)

Most of the forrmulas in the literature are given for the standard non-
dimensional interval [-1,1]. An arbitrary one-dimensional integral

b
[, £(x)ax (19)
can be transformed to form (18) by the mapping
at+b b-a
= +=—£ 20
x== 5 7 (20)

giving (cf. formula (E.1.3))

I:f(x)dx=b;afi1f(x(f))d’ @1)
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We have employed above the symbols r and s for the independent dimension-
less variables. These notations are used quite widely in the finite element
literature for the local reference element coordinates. As our reference element
coordinates £ and 1 have the range [0,1], we have used on purpose this double
notation in this connection. For instance, with our notations we have the
application

1 1t
Jof ©)ag =2 [ F(E(r))ar @2)
of formula (21) with the mapping (20) now
1 1
E= 5 + 5 r 23)

Let us continue with the integral {18). The numerical integration formulas are
derived in principle by approximating the integrand f(r) by a polynomial
passing through the function values f(r;) at the integration points and by
evaluating the integral from the polynomial. There are basically two different
ways to select the integration points leading to the Newton-Cotes formulas and
to the Gauss formulas, respectively.

In the Newton-Cotes formulas the positions of the integration points are fixed in
advance. Normally they are put uniformly in the domain. Figure 3.16 (a) shows
the situation in the case the number of integration points n =4.

&
F(R) f(l"z) fra) f(i"-;) & f(fa)
. |
-1 -1/3 13 1 - 01/32/31 €&

(a) (b)

Figure 3.16 (a) Four integration points in the interval r €[-1,1]. (b) The same
in the interval £e[0,1].

The Lagrange approximating polynomial is
F()=2E () f(m)=LB () f ()+ L (1) (n)
+I3(r) f () + Ly(r) £ () 24)
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or in more detail

F(r}=

(r+1/3)(r-1/3)(r-1)
(—1e173)(-1=1/3)(-1-1)
N (r+1)(r-1/3){r-1)

(~173+1)(~1/3-1/3)(~1/3-1)

(r+1){(r+1/3)(r-1)
+(1/3+1)(1/3+1f3)(1/3-1)f(r3)

(r+1)(r+1/3){r-1/3)
(1+1)(1+1/3)(1-1/3) /(n) (25)

f(n)

f(n)

The Lagrange interpolation polynomials Lj(r)= L‘f-(r) are here in the language
of the finite element method the shape functions for a four-noded line element.
They were referred to in Section 2.2.2. The general procedure for writing down
the expressions for the interpolation functions can be detected from the example
formula (25). Finally the integral

Fr =L zne @ -2 [[LE w6 as)

where summation and integration orders can and have been changed.
Comparison with (17) shows that the weight coefficients can be evaluated from

W= L (r)dr @n

The weight coefficients for the most conventional cases have been determined
and documented in the literature,

Case n =2 gives the trapezoidal formula (trapetsikaava)

[ 7()ar=1F(-1)+1-£ (1) 28)

Case n =3 gives the Simpson's formula (Simsonin kaava)
(£ ()ar=2 £ (1) 457 (0455 (1) 9)
=1 3 3 3

and in the case n =4, we have
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[Lf(odr=§-f04)+§~f{—%]+%"f[%]*%“fO) -

A rough check on the weight coefficients is obtained by applying the formulas
1o the constant function 1 in which case we expect to obtain the exact integral
— here 2 — so the sum of the weights should also equal 2. This result is indeed
true with formulas (2B) to (30).

Figure 3.16 (b) shows how the integration points from the standard interval
[-1,1] in Figure (a) are mapped according to (23) on the interval [0,1]. A look
at formula (22) gives now a modified integration formula, say of (30}

1 £(€)ag =§-f(o)+§-f[§)+§‘f G)*%‘f ®) L

which could be used in connection with our notation,

In general, if the number of integration points is n, the corresponding Newton-
Cotes formula integrates exactly a polynomial of degree n—1 (or lower). This
is because n function values determine uniquely a polynomial of degree n—1
and errors are generated if the integrand function is of higher degree. However,
when the integration points are uniformly spaced and when n is in addition odd,
the formulas integrate "by chance” exactly still a polynomial of degree n,
Simpson’s formula is for this reason especially popular; it is simple enough and
stili integrates exactly a third degree polynomial.

In reality the functions to be integrated are of course seldom polynomials. But
when we consider a function expanded by Taylor's formula, which consists of a
polynomial and of the remainder, it is obvious that the formulas are more
accurate in general, the higher degree polynomial they can integrate exactly.

If the number of integration points needed to achieve a given accuracy is rather
high (say more than five) it is often not wise to apply the Lagrange interpolation
polynomials for the whole interval. Instead the interval can be divided into
subintervals and a lower degree formula can be applied separately for each part.
The formulas generated in this way are called sometimes composite formulas
(yhdistetty kaava). If for instance uniformly spaced subintervals and the
trapezoidal formula are combined, we obtain

ﬂlf(r)dr=;2_~le(rl)+f(rz)+f(ra)+---+f(m-1)+%f(rn)] (32)
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where the meaning of the notations is obvious. The use of composite formulas
may be advantageous for instance in those cases where the function to be
integrated is known to behave unsmoothly.

In the Gauss formulas the positions of the integration points are not fixed in
advance. Instead, they are sclected in an optimal way so that the resulting
formula integrates exactly as high a degree polynomial as possible. When there
are n integration points, there are 27 unknown quantities: the weights W, and
the coordinates r;, which can be determined so that the formula integrates
exactly a polynomial of degree 2n-1. The unknowns are obtained from a
system of equations, which is genereted by demanding that the formula should
give exact integrals separately for the functions POt rt T As the
formula is linear in the function values, it then gives an exact integral for an
arbitrary linear combination of these functions. The system of equations
becomes non-linear with respect to the coordinate values r;. In the solution the
Legendre polynomials can be made use of. The Gauss formulas are therefore
often also called Gauss-Legendre formulas. Table 3.1 gives the data for the
cases n = 1,2,3. Reference Stroud and Secrest (1966) gives the data for n up to
512 with coordinates and weight coefficients with the accuracy of 30 significant
figures!

Table 3.1 Integration point coordinates r, and weight coefficients W, in the
Gauss quadrature formula

ﬁﬂMmgmmn
n i i W,
1 1 0 2
2 1 —1/+3 1
2 1/+3 1
3 1 -375 5/9
2 0 B/O

3 +3/5 5/9

It should be noted that when the values r; are known the weight coefficients
can still be determined also from formula (27). Gauss type formulas have found
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much use in the finite element method because they give good accuracy with a
small number of sampling points and are thus cost effective.

Combination of the Newton-Cotes and Gauss type formulas can be devised —
so-called Lobatto formulas {see e.g. Akin (1994)) — where some of the
integration points are fixed in advance (the interval end points) and only the
rest is optimized for position,

We have discussed this far mainly one-dimensional numerical integration. The
Newton-Cotes and the Gauss formulas can be extended to two (and to three)
dimensions. There are two possibilities: we can try to formulate the theory anew
in two dimensions or we can just apply the one-dimensional formulas directly
in a double integration. The latter alternative is normally used in connection
with quadrilateral elements.

(-1,1) d an
<3 -6
n
o0 (1,1}
2 > r 3 6
.2 .5
o 1 -4 .1 4
(-1,-1) {L-D (0,0) Lo €
(a) (b)

Figure 3.17 (a) Domain r €[-1,1], s €[-1,1]. (b) Domain §€(0,1], n€[0,1].
Integration points for 2 X3 Gaussian integration.

Let us consider the integral

1 ¢l
L J, 1 (ros)aras (33)
over the standard domain shown in Figure 3.17 (a). The mapping
1 1 1 1
=o4gh  MESHS (34)

gives the corresponding reference element domain with our notation in Figure
3.17 (b) and we have the analog of (22):

Jolof € myagdn=[! [} £ (E(r)m(s))aras (35)
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The plane integral (33) is evaluated analytically — if possible — as a double
integral

ﬁl[ﬁlf(r,s)ds}dr (36)

keeping r constant in the inner integral so that the integrand is only function of
s and performing the integration first with respect to 5. Let us do the same now
numerically:

ﬁf&ﬂﬁ=iM70m) (37)
I=]

Here the star refers to the weight coefficients in the comresponding one-
dimensional formula with » sampling points in the s-direction. After this we
evaluate the integral

f,?.lwff (r.s;)dr (38)
=1

again numerically using one-dimensional formula now with r as the integration
variable:

J;E“ﬁ'f(r-s:)dr'*EWE(EM‘f(rk's;)}Z Y WeW f (n0s) (39)
I=1 k=1 I=1 k=] I=1

We have arrived at the numerical integration formula

m

Klﬁlf(r,s)drds= 2 iW;“ﬁ‘f(q,s,) (40)

k=1 1=l

The weight coefficients are thus (see (17)) the products of the corresponding
one-dimensional weights. This resuit has some similarity with the procedure of
generating shape functions for quadrilateral elements by multiplication together
corresponding one-dimensional shape functions (cf. Section 3.2.2).

Formula (40) is in much use especially with the Gauss formula and with the
same number of integration points in both direclions. Sometimes there may be
physical reasons for using different number of integration points in the two
directions. Figure 3.17 shows a case with 7 =2 and n =3. In this case formula
(40) will integrate exactly a polynomial of third degree in r and of fifth degree
m s.
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For triangular domains the application of the double integration procedure
described above leads clearly to biased distribution of the integration points.
This is aesthetically not quite satisfactory although this procedure works in
practice. General Gauss type formulas starting with unknown coordinates and
weights have been derived for triangles; for instance Hammer et al. (1956).
Table 3.2 gives some data. The column headed "p" refers to the highest degree
of complete polynomial the formula still integrates exactly. The data is given in
area coordinates. When applied, say, for the reference dormain shown in Figure
3.7 (a), the triangle area A =1/2 and the values of £ and 7 corresponding to
the area coordinates can be found from (3.2.1).

Table 3.2 Integration point coordinates (Li);, (L;);, (L3); and weight
coefficients W, in the quadrature formula for a triangle:

[ £, La,L3)AA = 241 3 Wi f((La i, (L2)i (L3)0)]
i=l

p n i (L) ) (Ll W
1 1 1 /3 1/3 1/3 1/2
2 3 1 1/2 1/2 0 1/6
2 0 1/2 1/2 176
3 1/2 0 1/2 /6
3 4 1 1/3 1/3 1/3 -9/32
2 375 1/5 1/5 25/96 ‘
3 1/5 3/5 1/5 25/96
4 1/5 1/5 3/5 25/96

The procedures explained above extend in an obvious way to three dimensions,
say for hexahedra, tetraedra, triangular prisms, etc; Irons (1971), Hellen (1972).
Reference Akin (1994) contains a large amount of data on numerical quadrature
with finite elements.

Nurnerical quadrature of the element contribulions leads for distorted elements
with a non-constant Jacobian usually inevitably to some errors. However, since
the finite element method is as such already an approximate procedure, this is
not dangerous so long as the errors vanish fast enough when the element sizes
tend to zero. In fact, numerical quadrature can be considered as an essential
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ingredient in the finite element model of a problem. The model now “can feel
what is happening only at the integration points”. In certain cases so-called
reduced integration (redusoitu integrointi) or selectetive integration
(selektiivinen integrointi) can be employed to take advantage of this feature,
e.g., Zienkiewicz and Taylor (2000) and Belytschko et al. (2000). We may call
the integration rule for an element to be a full integration (tiysi integrointi) rule
if the finite element contributions are evaluated exactly by the rule when the
element is not distorted. That is, the mapping from the reference element to the
global element is at most linear in the natural coordinates and thus the Jacobian
is a constant. (For instance for the three-noded triangle the isoparametric
mapping is always of this type but not in general for example for the four-noded
quadrilateral.) In this we further assume the data such as the thermal
conductivity to be a constant in the element. For vanishing integration errors in
the limit, full integration seems to be enough. In this text we will always apply
full integration if nothing else is mentioned. Roughly, in reduced integration a
less accurate rule than the full integration rule is used. In selective integration,
reduced integration is applied only for certain terms in the element contribution
expressions. Reduced and selective integration can in certain problems at the
first look quite surprisingly increase the simulation capacily and this further
with the benefit of lesser computational effort. One such problem is in elasticity
with a nearly incompressible material.

Example 3.4. We consider the element of Example 3.2 and evaluate the lerm

aNl aNl aN] aNl
= —_—t e 2k |d
K“ I ( 3 k + a k m 2 (a)

in the element coefficienl matrix as given in (15). For simplicity, the element number
superscript ¢ can be dropped here without danger of confusion. We perform the
calculations (1) analytically, (2) with numerical quadrature.

{1) Taking into account formula (E.1.3) and with constant &, we have first

11 ON, ON, &N, oN
K =k Ly Ll idet[s]dEd b
1] —[ojo(ax ox v ay)e[]gn L
The global derivatives have been evaluated in Example 3.2:
A 1
—t= 4(- =0.2{-
T 1_32‘1[14( 141)=0.2(-1+€)]
w1 &
=——[-04(- 1{-1
ay 1.320[ (-1+a)+1{ +§)]

and we have from there further

02 14

det[J]= dCI[[ ! Oﬂa]: 1.324° (d)
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Expression (b) is now in more detail

Ky =%,|:J'; [(1'4(_1""?)_01(‘]"'5))2
+(—0.4(-1+n)+l(—l+§))2]d§dn
132” (18-0.72¢ +2.88n +1.04¢% - 1.36En + 2121 JdEdn )

As the integrand happens to be here of a simple form and as the limits are simple, there
is obtained with a relatively small effort the analytical result

K, =%(1.8—0.72%+2.88%+ 1.04%—1.36%+2.12%)= 0.540404 ®

(2) We start from formula (e) wrilten as

K= 132I I f(&.n)dédn (g)

wilh
F(En)=08-0.72¢ +2.88n+1.04E% -1.36En + 21292 o)

(In an actwal numerical quadrature in a finite element program, the treatment would
naturaily begin earlier withoul the tedious analytical manipulations performed above.)
The integrand is of second degree £ and 7. The one point (1x1) Gauss formula (40}
will integrate exactly only up Lo the first degree terms in (h). The next four point (2x2)
Gauss formula integrates exactly up Lo the third degree terms and is thus here enough.
Thus 2x2 integration means here full integration for an arbitrary four-noded
quadrilateral element in connection with 2 diffusion problem. Use of formulas (35), (40),
(34), (17) and Table 3.1 gives

L:J:f(ﬁ-n)d{dn =%[1‘1'f(§1,ﬂ|)+1'l*f(éz.nz)

11 f (& )+ 11 £ (84ma)] o)
wilh
_iz-—J_-—=02113249 "‘=fJ51=02113249
& \/2:/— = 0.2113249, Th=\/jﬁ ~0.7886751 .
§3=J2§J_3 = 0.7886751, n3=%=02113249
G4 = f\él =~ 0.7886751, 4= f\/—i =0.7BB6751

| Weoblain
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F(E.m)=1.2196152  f(&.1,)=0.5148975
f(E3my)=1.1384358  f(£,.1,)=0.0803848

and

k 1¢l
=57 Jolo ! (B:m)dkdn

=ﬁ%[f(§1,m)+f(§z.nz)+ F(Ema)+ £ (Eana)]

S 0.71333333=0.540404 k
1.32

Ky

Resulis () and (1) are seen to be equal as predicted by theory.
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3.4 MATHFEM CODE
3.4.1 Introduction

In this section some properties of the Mathematica based program MATHFEM
(Appendix G) used in this text are described. The rather simple code is meant
for demonstration of the working principles of practical codes. As discussed in
Section 2.4, it is convenient to think that a solution of a problem by the finite
element method consists of three relatively independent parts — (1) pre-
processing, (2) generation and solution of the discrete equations, and (3) post-
processing — and the descriptions here follow that order.

Pre-processing means the phase consisting of the preparation of the input data.
This phase, usually performed partly by some of the well-known mesh
generation techniques, is not given much room here but it is assumed that the
domain is a line or a rectangle or something that can be obtained by simple
mapping from them.

The solver implements a rather general algorithm and it can be used for linear
and non-linear problems, and for several unknown functions. Also non-
stationary problems can be treated by using the time-discontinuous Galerkin
method (Section 9.3). There are no “a priori” limitations on the problem size but
the solution times tend to be acceptable only for problems with about 100
unknowns.

The post-processing phase, meaning transforming the outcome of the
calculations into a figure of some kind, has been paid also some attention to.
Although the post-processing functions are not particularly sophisticated in
implementation, they should give some idea about the possibilities.

3.4.2 Data structure

Roughly speaking, the discrete formulation consists of the finite element
approximation and of the weak form. The MATHFEM representation of the
finite element approximation is given by (Some features of the program data
structure have appeared already in Example 3.3.)

apr = {nod, crd, fun} (N

where the element nodal numbers are given in nod, the nodal coordinates in crd
and the function nodal parameters in fun. With this data one is able to plot the
functions, the element mesh and perform manipulations such as taking
derivatives of the functions and so on.

The representation of the weak form is
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prb = {fix, atr, exp} 2)

where the fixity codes (see Example 3.1) and the expressions of the integrands
are given in fix and exp, respectively. The second component atr contains the
information: which integrand expression of exp is applied on which part of the
element region. It should be noticed that the element region consists here, in
addition of the element domain itself, also of its boundaries. The fixity code
table fix is of the same size as fun. Code zero means that the corresponding
nodal parameter is fixed i.e., the value is known from the Dirichlet boundary
condition, and code one that the nodal parameter will be treated as unknown.

'The numbers of atr indicating the selection of combination of the expressions of
exp to be used are obtained in the following manner. First the expressions are
put in list exp in some order. The first element of the list is zero as the zero
expression is needed almost always. Thereafter the locations of the expressions
to be used on the element and on its boundaries are represented in the form of a
list in the order of the domain and boundary numbering order indicated in
Figure 3.18. So the first element of the list gives the location of the expression
to be used in the domain, the second digit the Iocation of the expression to be
used on the first edge and so on.

[3]
(4) 3
(4] {o] 2]
W 3 m o m
lli 0 2

Figure 3.18. The local numbering of the nodes and the element domain and its
boundaries.

Example 3.5. Definition of the apr and prb structure in Lhe case of two quadrilateral
four-noded elements (Figure {a)) and the appproximation problem (least squares fitting)
for a funclion sin.x-siny in (x,y) e [0,L]x[0,2L].

nod ={{1,2,4,3},({3,4,6,5}};

crd = ({0, 01, {1, 0}, {0, 1}, {1, 1},
{0, 2}, {1, 2}}*L;

fun = {1}, {1}, {1}, {1}, {1}, {1}}*10;

apr = [nod, crd, fun};

fix = {{I}, (1), (1}, {1}, (1}, {1}}
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atr={{2,1,1, 1, ]}5 {21 lv ]: 1: 111;
exp = {0, w[0]*(¢[0]- s Y 6
Sin[x[1]] *Sin[x121D}; (L)) €)]
prb=(fix, atr, exp}; @ L
4O o] 4
(4} 3
o L
3] (2)
1 r 2 X
Figure (a)

Remark 3.10. Internally the basis functions are expressed in terms of polynomials of the
global coordinates in contrast Lo the usual treatment based on the elementwise local syslem.
This introduces, in certain cases, a minor modificalion over the usual continuous
approximation (cf. Appendix G).0

3.4.3 Mesh generation

An antomatic mesh generation scheme is an essential part of any code meant for
practical applications, as the input data may consist of very large tables.
Discussion of the techniques for unstructured and structured meshes in common
use can be found for example in Akin (1994), Beer & Watson (1992) and
references therein.

- 't 1.0 A o ke |
Ir Iz T E o
4 4 3,
T T o e
] 4 A
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Y 1 -
Ll e o4 e o T .

(a) (b)

Figure 3.19 (a) Unstructured and (b) structured mesh for a polygonal domain.

The generation schemes for unstructured (rakenteeton, episidnndllinen) meshes
are best suited for the so-called simplex elements (triangle, tetrahedron).
Typically the input data consist of specification of the boundary of the domain
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in some convenient way and the number of elements wanted. Thereafter the
generation, guided by some kind of mesh density information, proceeds more or
less automatically. For example the Delaunay method can be used to generate
good quality meshes with a minimum amount of input data. For a thorough
discussion of the method and a Fortran library we refer to Joe (1986).

The generation methods for structured (rakenteinen, sainndllinen) meshes make
use of mapping and interpolation techniques. As simple and straightforward, the
method is widely used although the meshing of a complex region may involve a
tedious manual stage. The simple version of the interpolation technique of
MATHFEM is based on the use of an isoparametric mapping: the nodal
coordinates of the so-called macro element are chosen to represent the true
domain in the global coordinate system and the local coordinates are given
values on a regular grid. The MATHFEM function

msh = MSH[crd, n, nne] (3)

generates the mesh for a single macro. The input parameters are the list of
veriex coordinates in crd (in counterclockwise order), and n is the number of
nodes wanted in the coordinate directions of the local system. The last argument
nne is the number of nodes in an element in the mesh.
Example 3.6. Generation of simple meshes in lwo dimensions.

<<malhfem.m;

SHOW2D[MESH[MSH{{0, 0}, {2, 0}, (3, 3}, (0, 2} },

{10, 10), 3]));

SHOW2D{MESH[MSH[{{0, 0}, {1,- 0.4}, {2, 0}, (2.4, 1},

(2,21, (1, 24), {0, 2), (-4, 1}}, {10, 10}, 4)]};

3
2.5 2
i 1.5
1.5 1
1 0.5
0.5 ol
S os1i52953 G 0.5 1 1.5 2

Remark 3,11, The mapping technique extends easily to several macros. Then the mesh is
generated first for each macro and after that the approximation is forced to be continuous at
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the interfaces of the macros by using the fixity code table. Naturally the meshes of the macros
must be compatible for overall integrity. 0

Remark 3.12. The trend loward adaptive methods makes automatic mesh generation a part of
the solution algorithm. Then Lhe mesh is re-constructed during the solution several limes to
produce a numerical solution whose error {in some sense) is distributed unifermly in the
domain. O

3.4.4 Data generation

Only the nod and erd lists of apr have been discussed this far. For a complete
definition of a discrete problem one has to provide also the initial values of the
unknown functions fum, the fixity codes of the nodal parameters fix, the
integrand expression exp and the way these are applied atr.

The generation schemes of MATHFEM are applicable in one- and two-
dimensional polygonal domains. The initial values of the unknown function can
be generated by using the function

apr = {nod, crd, fun} = APR[{nod, crd}, map] (4)

taking as the input arguments the nodal numbers of the elements nod, nodal
coordinates crd and a pure function map. The pure function specifies the initial
values as functions of the global coordinates.

The structure representing the problem can be built using the function
prb = PRB[apr, exp] (5)

Initializing the members of list fix to have the value one meaning that all the
nodal parameters are free to change their values. The atr list is initialized to use
the second member of list exp for all the element domains and the first (zero)
expression for all the element edges.

The way to modify the fixity codes is based on checking whether a node lies on
a given polygonal curve. If a point is on the curve, the fixity code is zeroed and
otherwise it is left untouched. The same scheme applies also for modifying the
initial values. The function

prb = FIX[prb, pol, val] (6)

returns a prb representing a problem with fixed values for the nodal parameters
on the nodes lying on the given polygonal curve pol. The values given in val are
interpolated between the points of pol.

3.4.5 Finite element solver
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General. The second phase, solution of the problem defined by apr and prb,
involves many topics such as quadratures, numerical differentiation, linear
equation system solving, non-linear equation system solving etc. To write an
efficient solver means also considerations having to do with compiexity of
calculations (in storage and time) which are far beyond the scope of this text.

Although a solver intended for problems combining time-dependency, several
unknowns and non-linearity can be rather complex on the algorithmic level, it is
quite simple from the functional point of view: it is just a mapping transforming
the finite element approximation apr into a new one with modified nodal
parameter values. One may think that the problem represented by prb acts asa
kind of parameter which tunes the mapping. This point of view omitting the
internal structure will be adopted in the following sections.

Linear case. The generation and solution of the discrete equations is often the
most time consuming phase. During this stage the element contributions are
formed and added to the matrix and the vector of the system equations. After
that some of the well-known techniques are applied 1o get the solution. The
solver of the MATHFEM

apr = LINEAR[{apr, prb}] (N

takes as the input the problem {apr, prb} and retumns a modified finite element
approximation apr representing the numerical solution.

Example 3.7, Second order problem —3%¢/dx®-3%$/3dy*-10=0 in
(x,v) € 10,11%[0,1] with the zero Neumann condition on x=0, ye [0,1] and the zero
Dirichlet condition on the remaining part of the boundary.

<<malhfem.m;

dom = {{0, 0], (1, 0}, {1, 1}, {0, 1}};

msh = MSH[ dom, {10, 10}, 4 ]];

apr = APR[msh, {0} &];

fep=PRB[apr,{0, w[11*¢{11+w[2]* ¢[2]-w{0]*10}];
fep = F1X[fep, dom, {{0}, {0}, (0}, {0}}];
SHOW3D[PLOTILINEAR[fep]l);
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Non-linear case. It is clear from the way the weak form is derived that it is
always linear in the weighting function (functions) but it may well be non-linear
in the function (functions) to be determined. In practice one does not try to solve
a non-linear problem directly, but the problem is rather replaced by a series of
linear problems that can be solved by standard techniques. The function of
MATHFEM implementing a combined Picard-quasi-Newton technique

apr = NONLINEAR({{apr, prb}, err] (8)

takes as the input the problem and it returns a modified finite element
approximation apr representing the numerical solution. The second argument
err is the relative error allowed.

Example 3.8, Sccond order problem -2%p/ox®-3%¢/dy*+ ¢*-10=0 in
(x, )€ [0,1]1x[0,1] with the zero Neumann condition on x=0, y&[0,1] and the zero
Dirichlet condition on (he remaining part of the boundary,

<<malhlfem.m;

dom = {{0, 0}, {1, 0], {1,1}, (0,1});

msh = MSH[dom, (10,10}, 4]];

apr = APR[msh, {0}&];

fep = PRB{apr, {0, w1]*6[1]+w[2]* $[2]+w[0]* ¢|0]~2-w[0] *10}];
fep = F1X[fep, dom, {{0}, {0, {0}, (O})];
SHOW3ID[PLOT[NONLINEARIfep, 0.01]1];




34 MATHFEM CODE  3-61

3.4.6 Function plot

The simplest way to illustrate the finite clement approximation is a function
plot, where the unknown function is plotted against the global coordinates.
Besides that, one may also plot quantitics derivable from the solution. An
example is the unknown function derivative. It is noteworthy that the derivative
mapping produces a function outside the finite-element space.

The natural way to proceed with the finite element interpolant is like assembling
the global system. The basic scheme can be stated as: For each element (1) form
the approximation as function of the global coordinates, (2) apply the given
operator to get the wanted quantity, (3} calculate the nodal values of that
quantity and plot as a polygon or a line. Finally, the set of polygons when
rendered with hidden surface removal gives an illustration of the quantity
wanted. Function

graphics = PLOT{apr, map] )]

takes as input the finite element approximation apr and returns a Mathematica
graphics statement. The second argument map is a pure function acting on the
approximation in the way described above. The following examples show the
basic features. It is noteworthy that in the one-dimensional case the first
derivative is constant in each element and the second derivative is identically
Zero.

Example 3.9. A plot of function ¢(x)=sinx, x&(0,10] with its first and second
derivatives.

<<mathfemn.m;

msh = MSH([{{0.}, {10.}]], (51}, 2];

apr = APR[msh, Sin[#1]1&];

SHOWID[{PLOT([apr], PLOT[apr, D{#, x[1]]&],

PLOT[apr, D[#, (x[1], 21&]}1
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Example 3.10. Simple plot of function ¢ (x, y}=sinx siny with iis partial derivalive
with respect to x in (x, y)& [0,1]x[0,1].

<<malhfem.m;

msh = MSH[{{0, 0}, {1, 0}, {1, 1}, {0, 1}}, {10, 10}, 4];
apr = APR[msh, {Sin[#{[1]1Sin[#[(2]]}&];
SHOW3ID[PLOT[MAP[apr, [dentity]]};
SHOW3D[PLOT([apr, D[#, x [111&1];

3.4.7 Vector plot

An arrow plot is often the most useful way for visualizing vector data such as a
velocity field, The basic data consists then not of the approximation but only of
the (nodal) coordinates and the corresponding function values, The function

graphics = VECT[{crd, fun}] (10)

plots the vectors at the nodal points. If a plot on some other set of points is
wanted, one may use the SCAN function to get the values of the finite element
approximation on that set of points.

Example 3.11. Plot of the gradient field of funclion ¢ (x,y)=y-sinx in
(x. )€ [0,4]x10,4].
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<<mathfemn.m;

msh = MSHI{{0, 0}, {1, 0}, {1, 1}, {Q, 1}]*4, (10, 10}, 4];
apr = APR(msh, {Cos[RI[111]*#[[2]],Sin[#[[1]]] } &];
SHOW2D[VECT({apr([[2]], aprl[3}1}1];
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3.4.8 Density plot

A density plot can be used for visualizing scalar data such as temperature. In the
simplest form a density plot is nothing but the mesh plot where, instead of
drawing the element boundaries, the elements are filled with a given color or
pattern determined by the mean value of the function inside the element. For a
smoother illustration one may divide each element until the jump in the mean
value between the neighboring elements falls below a given limit. This option
is, however, not included in

graphics = POLY[apr, n] (1

of MATHFEM. The altemative approach based on the manipulating of the
approximation before plotting will be discussed in the next section. The
following example illustrates the drawback of the simple approach: the
resolution is tied with the grid giving an impression of a more or less
discontinuous solution.

Example 3.12. Density plot of ¢(x, y) =sinx-siny in (x, y)}€[0,5]x[0,5] combined
wilh the mesh plot.

<<mathfem.m;

msh = MSH[{(0, 0}, {1,0}, {1, 1], {0, 1}}*5, {10, 10}, 4];

apr = APR[msh, {Sin[#{[1]11Sin[#[211]) &];

SHOW2D{(POLY[apr, 30}, MESH[msh]]];
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3.4.9 Manipulation on the approximation

Before proceeding to other ways of visualization, we discuss some elementary
ways to manipulate the finite element approximation.

Mapping back to C°(2). The figures in Section 3.4.6 illustrate the
discontinuous behavior of the derivative. Although this is the true nature

obtained from the C° finite element approximation, one would often like to
illustrate the derivatives using a continuous approximation. For that task one has
to map the discontinuous function somehow back on the finite element space. A
simple — although not necessarily the best — method is the averaging of the
nodal values from the function obtained through differentiation (see Section
2.4.2). The nodal values from each element are calculated separately, the values
associated to a given node are added and the result is divided by the number of
elements having the node in common. The function

{erd, fun} = MAP[apr, crd] (12)

for simple averaging takes as input a finite element approximation apr and a list
of coordinates crd. The list returned consists of the given coordinates and the
approximation values on this list.

The figures below illustrate use of the function. When the approximation
belongs to the finite element space the mapping performed is identity. The
figure on the right is, however, recognizable more easily as the first partial
derivative with respect to x.

Example 3.13. Plot of function ¢ (x,y)=sinx-siny and its pariial derivative with
respect o xin (x, y) € [0,1]x[0,1].

msh = MSHI{{0, 9}, (1, 0}, (1, 1}, (0, 1}}, {10, 10}, 4];

! <<mathfem.m;
! apr = APR[msh, {Sin[#[[11]]Sin[#[[2]]]}&]);
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SHOW3D[PLOT[MA P[apr, Identity]]];
SHOW3D[PLOT[MAP[apr, D[#, x[1]1&1]];

Splitting of the mesh. The previous operation modified the finite element
derivative approximation itself. A useful operation having no effect on the
approximation but only on its elements nod,crd and fun is called here
splitting. The operation divides the elements in such a way that a given level
curve (tasa-arvokiyri) of a function ¢

Cc={(xy)eQ :¢(x, y) = =agiven constant } (13)

does not intersect any of the elements. Depending on the original approximation
and the element types, the polygons thus produced are not necessarily triangles
or quadrilaterals but arbitrary polygons with known vertex coordinates and
function nodal parameters (values in most cases). The splitting function finds
use when one wants to plot only some subregion of the domain. The most
important use is, however, in connection with contour plots to be discussed in
the next section.

Example 3.14. Splitting of the mesh using the level curve ¢(x,y)=0.5 of function
& (x, yy=sinx-siny in (x, y)& [0,5]x[0,5].

<<mathfem.m;

msh = MSHI[{(0,0}, {1,0}, {1,1}, {0,1})*5, (30, 30}, 4];

apr = APR[msh, {Sin[#{[111]Sin[#{[2]1]) &];

apr2 = SPLIT(epr, 0.5];

msh2 = apr2[[{1, 2}]};

SHOW2D[MESH[msh2]];
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3.4.10 Contour plot

In several dimensions illustration of the level sets (13) for one or more
selections of ¢ may give a satisfactory description about the solution. Often the
level sets are curves but they can also be sub-regions. The so-called contour plot
is useful, in particularly, if one wants to combine different types of plots e.g., lo
illustrate a scalar and a vector field in the same figure. The function

graphics = CONT[apr, n] (14)

produces a plot of n level curves of the approximation apr. The regions
between the curves are also colored. In the approximate approach the function
SPLIT is used together with the density plot function POLY. First the function
SPLIT is applied iteratively for all the level set values wanted and after that the
resulting modified approximation is plotted using POLY in such a way that the
elements having the mean value of ¢ between two given subsequent level set
values share the same color.

Example 3.15. Contour plot of ¢ (x, y) =sinx-siny in {x,yJ€ 10,5]1x[0,51.
<<mathfem.m;
msh = MSH{{0, 0}, {1, 0}, {1, 1}, {0, 1}}*5, { 30, 30, 4];
apr = APR[msh, {Sin[#[[1]]}Sin[#[[2]}]}&};
SHOW2D[CONTI[apr, 10]};
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3.5 APPLICATIONS

Some data and some parts of the example peometries in the following
applications are adapied from Incropera and DeWitt (1996) and from Cengel
(1998). The main practical interest in the examples is 1o determine the heat flow
rates in the systems. The calculations have been performed using a Fortran
program having a similar structare as MATHFEM.

3.5.1 Two fins

Two fin configurations are shown in Figure 3.20. Fin 1 (Figure {(a)} is of
uniform thickness and fin 2 (Figure (b)) is tapered. The temperature at the fin
base is given and on the rest of the surface of the fins convective heat transfer is
taking place.

(@ !
Figure 3.20 (a) Cross section of fin 1. (b) Cross section of fin 2.

We apply here the (approximate) fin theory presented in Section 3.1.2. The
properties and the conditions of the fins in the transverse ( y-axis) direction are
assumed to be uniform so the problems become finally one-dimensional in x.
We make the following assumptions on the data: constant (isotropic) heat
conductivity &, no heat sources, constant heat transfer coefficient h=h*=h",
constant reference temperature T,,. Combination of formulas (3.1.45), (3.1.47),
(3.1.49) (3.1.55), (3.1.57) gives first a standard weak form
) (a—wk LNCLI® a—T]dmzj wh(T -T,, )dA
ox dy oy A

+LR wht (T -T,,)ds =0 (1
As no dependence on coordinate y is assumed, (1) becomes (We take a width b
in the y-axis direction. Then formally dA = bdx, Jds =& and we divide by .)

j"d“’ dex+2J‘ wh(T =T, )dx+whe(T-T..)| _, =0 @)

For fin 1 the thickness is constant:



3.5 APPLICATIONS  3-69

=l (3)

and for fin 2 the fin is tapered according to

:=z0[1—%] @

The ternperature at the base of the fin is given
T=T, atx=0 (5)
This is the Dirichlet boundary condition.

For fin 1 a closed form solution can be found for comparison purposes, e.g.
Incropera and DeWitt (1996, p. 118)

T=T.+ coshm(L-x)+(h/mk)sTnhm(L—x) (1,~T.) ©)
coshmL+ (h/mk)smh mL

where

m= 2k N
kiy
The heat flow rate per unit length in the fin transverse direction is given by

¢ =2_|-:h(T—T,,)dx+hr0(T—T,,)L:L=0 (8)

The analytical result is

3 sinh mL + (i / mk )coshmL
= J2hk o
% ‘o costh-f-(hlmk)sinth( b= 1) 9

With finite elements we evaluate the heat flow rate by post-processing from the

clement contributions using (8) with T replaced by T. For fin 2 the last terms in
(2) and (8) are seen to vanish ag r =0 at x=1L.

We perform the calculations using the data
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L=0.020m, f=0.003m,

w
k (stainlesssteel)= 14——, A=30 w (10
m-K m2 K
T, =373K, T_,=293K
These give
h W
mL=0.7559, —=0.05669, ./2hkty=1.587—— (1)
m m-K
and the heat flow rate from (9) becomes
g = 8522 (12)
m
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(a) 1] 0.05 0.01 0.015 0.02 (b) L] 0.005 0.01 0,015 0.02

Figure 3.21 (a) Exact temperature distribution and finite element nodal
temperature values for fin 1 (uniform fin). (b) “Exact” temperature distribution
and finite element nodal temperature values for fin 2 (tapered fin).

We use two-noded line elements. Results for the temperature distribution with a
uniform mesh of only four elements are shown in Figure 3.21. The in practice
exact solution for the tapered fin is obtained by a mesh of 128 elements. The
nodal values are seen to be very accurate already with this crude mesh as the
exact temperature distribution is varying mildly.

The heat flow rates are given in Table 3.3. The results by a uniform mesh of
eight elements are given for comparison purposes. The values obtained for the
heat flow rates with the two meshes are seen to differ very little from each other.
In engineering practice a quite usual -— although mathematically of course not
rigorous — way 1o operate is to solve a problem consecutively by a rather crude
and by a more refined mesh. If the results by the two meshes do not differ “too
much” from each other, the result by the denser mesh are considered adequate
for the problem at hand.
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Table 3.3 Heat flow rates per unit transverse direction ( W/m)

Fin 1 Fin 2
4 elements 8542 76.082
8 elements 85.27 76.078
Exact 8522 76.077

3.5.2 Engine head

Figure 3.22(a) presents a part of a cross section of an engine head.
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Figure 3.22 (a) Cross section of a cylindrical motor head. (b) Computational
domain (measures in mm).

We consider as an initial study the performance of one typical repeating part in
the middle area of the head assuming axial symmetry. We have the situation
shown in Figure 3.22 (b) consisting of cross section of half of a fin and half of a
base part. We assume in addition symmetry in solution with respect to planes
perpendicular to the cylinder axis ( z-axis) and cutting the fins and the bases at
the middle (lines AB and FE). We do not try to use the approximate fin theory
as in the previous example. Instead, we make direct use of the two-dimensional
axisyrmumeric theory presented in Section 3.1.2. Thus the solution domain in the
r,z-plane is defined by the boundary line ABCDEF in Figure 3.22 (b). We
make the following assumptions on the data: the material (aluminum alloy) has
k =190 W/(m-K) . The temperature at the inner wall sg, =sp, is 7 =500K . On

the surface part spepp =sSg convective heat transfer is taking place with

7T.,=300K and h=40 Wl(m2 -K). Due to assumed symmetry in the cylinder
axis direction, parts s, and sgg are Neumann boundaries with the given
7 =0, so they give no terms into the weak form. The standard weak form using
formulas (3.1.35) and (3.1.37) becomes
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—k—+—k—-—)rdA+ wh(T—Tm)rds=0 (13)
R

The heat flow rate is given by

0 =2 W(T-T.)rds (14)

with finite elements T above replaced by T .

Some results obtained by two meshes are shown in Figure 3.23. Although the
calculations are performed for the part shown in Figure 3.22 (b), the results are
shown for clarity for a larger region by repeating the solution few times. In
addition, the scale in the z-axis direction has been compressed somewhat to get
the pictures to fit better on the pages.

The heat flow rates found are ) =43.084W and O =43.064W for the coarse

and refined mesh, respectively. Here it is clearly seen from the figures — as
commented on in connection with formula ¢3.1.40) — that the assumption of
constant temperature distribution in the thickness direction in a finlike
configuration is not strictly true.
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Figure 3.23 (a) Mesh with 8 four-noded rectangular elements and some
temperature contours. (b} Mesh with 200 four-noded rectangular elements and
some temperature contours.

3.53 Wall

A cross section of a wall under study is shown in Figure 3.24 (a). The wall
consists of long 20cmx20cm lightweight concrete blocks (k =0.8 W/(m-K))

with centrally situated circular holes (diameter 15cm) filled with rigid foam
(k=0.03W/(m-K)). The inner side of the wall consists of a S5cm thick rigid

foam plate (k =0.03W/(m-K)). The inside room temperature T} =20°C and
the outside temperature 7, =-10°C and the cormresponding heat transfer
coefficients are h* = IOW:'(m2 -K) and A~ =30 W/(m*-K).
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Figure 3.24 (a) Cross section of a wall. (b} Computalional domain. (measures
in cm).

Due to the assumed obvious symmetries, we can restrict the calculations to a
repeating wall part shown in Figure 3.24 (b). The boundary parts s,c and spy

are Neumann boundaries with the given heat flow rate density g =0 due to
symmetry so these parts again give no terms to the weak form, Parts s,y and
Scp form together the Robin boundary. The Dirichlet boundary is missing. The
weak form (3.3.3) becomes thus

J-A(a_wka_T+a_wka_T}dA

+[  wht (T—T:)ds+

SaH

wh™ (T—T;)ds=0 (15)

sco

With diffusivity having jumps — as here the heat conductivity between the two
material interfaces — it is understandably wise to try construct the mesh so that
the element boundaries follow the interfaces. The exact solution heat flow rate
density is continuous over the interfaces but the derivatives of temperature have

in general jumps there. It is realized that the conventional C? elements can then

model this jump and have in fact in such situations advantage over possible C !
elements which are too smooth. The mesh used and some temperature contour
plots obtained are shown in Figure 3.25 (a), Again, although the calculations are
performed for the part shown in Figure 3.24 (b), the results are shown for clarity
for a larger region by repeating the solution a few times. It is seen that the
temperature change happens practically already in the foam plate. To obtain a
more interesting temperature distribution, the problem has been solved again
with the heat conductivity of the foam material increased artificially to half of
that of concrete. It is now clearly seen how the temperature contours get kinks
on the material interfaces.
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Figure 3.25 (a) Mesh with four-noded quadrilateral elements and some
temperatrure contour plots (b) The same with the heat conductivity of the foam
changed to (k =0.4W/(m-X)).

The heat flow rate through the part per unit length in the wall transverse
direction out through the wall is obtained here either from

d=- wh* (T -T2 )ds (16)
or from
y = - wh‘(T—T;)ds a7

with T replaced by T . Use of formula (17) gives 1.24W/m and 3.46W/m as the
heat flow rate per unit length in case (a) and (b), respectively.
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4 CONVERGENCE AND ERROR ANALYSIS
4.1 INTRODUCTION

The shape functions N; in the finite element approXximation
=Y N;¢; (1)
j

for a quantity ¢ must presumably satisfy some general requirements for the

finite element method to give converging results when the element mesh is
made more and more dense. Some properties of the shape functions have been
considered already in Section 3.2.3. Here the matter is siudied from the point of
view of evaluation of the integrals in the weak forms. The treatment is not
rigorous and it is just meant to give a qualitative idea of the main factors behind
COnvergence.

As a simple example we recall the one-dimensional heat conduction weak form
(2.1.28):

F= j d—wkgz-dﬂ j wsdQ +wgly, = )

and the analogue for obtaining the discrete equations (2.3.5):

dw  dF _
Jﬂ—wk—-—dg j WsdQ +Wgl. =0 (3)

We have introduced some new notation in the latter equation, which will be
explained in more detail in the next section. The finite dimensional weighting
function W is taken consecutively as N; in generating the discrete equations.

To obtain a notationally more general presentation we, however, continue here
by expressing (2) and (3) with the general D-C-R equation notation:

Faf o dw d¢d.§2 - wfd.¢2+w;| @)
and

dw d¢ — “=d _
Lz —d.Q o dQ + Wy IFN =0 &)

4-1

4-2 4.1 INTRCDUCTION

The left-hand side of a weak form is generally (in one dimension and for one
unknown function) of the type

| dw dg d%p
F= J' f dx "'v¢ldx dx

DL (6)
(The general integrand function notation f and the source term notation f shouid
not produce confusion here.) It seems obvious that the terms in the integrand
should tend to those of the exact solution when the mesh gets denser.

Engineering literature dealing with the finite element method gives roughly the
following two main requirements for convergence, Zienkiewicz (1971}, (1975):

Condition I (completeness condition): The element shape functions
should be able to present with a suitable selection of the nodal
parameter values in the limit as the element size tends to zero at least
any given constant value in the element for any of the derivatives of
¢ appearing in the weak form. {7}

Condition 2 (continuity condition): The finite element

approximation must be at least C™ ! continuous where m is the order
of the highest order derivative of ¢ appearing in the weak form. (8)

Conditions 1 and 2 are considered in general to be sufficient to guarantee the
couvergence of the formulation. They are, however, not necessary, as there
exist converging formulations violating the second condition.

The completeness condition means roughly the following. When the element
mesh is made denser, the values of ¢ and its derivatives in the weak form

should tend to the exact values. When the elements get smaller and smaller, the
values corresponding to the exact solution change less and less in each element
and in other words these values can be approximated more and more accurately
by constants in each element. (This resembles the concept of the Riemann sum
in the definition of the definite integral.) If the finite element is not even able to
produce in the limit these constant values, it cannot give convergence.

Remark 4.1, Ofien some useful information can be obtained by assuming a lentative finite
element solution, which is nodally exact. 1t can also be called the interpolant to the exact
solution (tarkan ratkaisun interpolantli). This is in fact the goal we strive for constantly in the
formulations in the following chapters, A nodally exact solution cannot be unstable and it is a
very good starting point for adaprive procedures or for post-pracessing. At least in one
dimension we can then consider each element as a new solution domain with exact boundary
conditions. []
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Let us consider as a further illustration of the completeness condition the
situation in Figure 4.1. In Figure (a) the element is two-noded (linear) line
element and we assume in the spirit of Remark 4.1 that the approximate
solution is nodally exact. It is realized from the figure that function ¢ and its

first derivative dé/dx are approximated more and more accurately as the
element size gets smaller but the approximation for the second derivative

d2¢ldx2 remains all the time at the unrealistic value zero. If the second

derivative d2¢ Jdx? is present the weak form, this element would not satisfy the
completeness condition. It should be noted from the figure that if ¢(x) is

smooth enough in the element {of class C‘) the finite element constant value
d¢ /dx in the element coincides with the exact derivative value d¢/dx at least
at one point (point P) in the element. Thus also that part of the weak form
integrand containing the first derivative is evaluated correctly in the limit. For
instance a three-noded (quadratic) line element could be able to approximate a
non-zero second derivative and would now satisfy the completeness condition
(but not in fact the continuity condition). In the diffusion problem weak form
(4) only the first derivative d¢/dx appears and the linear line element clearly
satisfies the completeness condition,

Figure (b) shows the case where the element is one-noded (constant) element.
The element satisfies the completeness condition only if no derivatives of ¢

appear in the weak form.

— Exact

--- Finite element

Figure 4.1 (a) Linear line elements. (b) Constant line elements.

The completeness condition is fulfilled in most elements already with a finite
size. It is recalled from Section 3.2.3 that the isoparametric elements considered

4-4 4.1 INTRODUCTION

there can represent any first degree function in the global coordinates and thus
also any constant first derivative value.

The weak form integrands contain in addition to the unknown function and its
derivatives given functions such as the diffusivity D, the source term f etc.
Approximation of given functions is of course in principle not necessary. In
practice they are however normally approximated to ease the computations. It is
obvious from the previous discussions that it is enough to take a suitable
constant approximation (the value say at the midpoint could be used) —
naturally a more accurate presentation is allowed — to achieve convergence in
this respect.

The continuity condition is critically present at the element interfaces. Inside
the elements this condition is normally automatically satisfied. For instance
with the conventional polynomial approximation the function and all of its

derivatives are continuous to any order; the representation is of class C™ inside
element. To achieve C' continuity at the element interfaces is already awkward

in two and three dimensions. C° =C continuity is easy to achieve as we have
seen with isoparametric elements. This is enough for problems where the
highest derivatives in the weak form are of first order as will be the case in the
problems considered in this text.

Elements satisfying the continuity condition are often called conforming
elements (konforminen elementti) and those violating it are called non-
conforming elements (cpikonforminen elementti). Sometimes the name
compatible element (yhteensopiva elementti) is used for a conforming element.
The term has its origin in solid mechanics where the displacement components
are the basic unknowns. If the approximation is continuous enough, the
elements fit to each other after deformation without gaps; we have compatible
elements.

(b)
Figure 4.2 (a) Approximation. (b) Two elements.

Figure 4.2 shows an example of a rather exotic non-conforming element. The
element is a three-noded line element but the two end nodes are outside the
element domain. This is a one-dimensional version of a triangular element used
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in plate bending, Ney and Utku (1972). The element does not even give a c?
continuous approximation but seems still to work satisfactory in cases where
the weak form contains second order derivatives.

The continuity condition can be illustrated in the following way, Zienkiewicz
(1971). The question is still of the evaluation of the terms in the weak form but
now we study the integrability of ¢ and its derivatives. Let us first think the

element interfaces as thin but finite strips on which the element approximation
is completed smoothly so that the integrals over the whole domain can be safely
evaluated taking the contribution from the strips into account, The thicknesses
of the strips are now let to approach zero. If the contributions from the strips
tend to zero, the integrals can be comrectly evaluated just from the elements as is
assumed for instance in the basic formula (2.3.20), The presentation of Figure

4.3 shows that in the case of C® elements the first derivative stays finite in the
strip but the second derivative grows without limit, If the integrand contains
only the first derivative, the contribution from the strips goes to zero. The
second derivative leads to an undefined form of the type o=-0, and its
contribution may be non-zero so the correctness on the basic formula is unsure

1n this case.
§ :
\i 3¢
| —
(a) (d) i r:/

]
'
|ea
Figure 4.3 (a) A strip of thickness Ax. (b) C° continuous function. (c) First
derivative. {d) Second derivative.

It should be noted that the continuity condition must be applied also to the
weighting function to assure the correct evaluation of the appropriate terms just
from the elements.

4.6 4.1 INTRODUCTION

As conforming elements are in some problems complicated to generate, the
temptation is great to use non-conforming elements. To deal with them
mathematically is not an easy theme. However, a useful engineering approach

to clarify their acceptability has been developed. It is called the parch test
(tilkkutesti).

The idea of the patch test is as follows. Let us consider as an example the part
of a mesh of triangular elements shown in Figure 4.4 where all the elements
connected to a node i are present. The set of elements is called in this
connection a patch (tilkku).

|y

Figure 4.4 Paich.

Let the governing linear (or linearized) field equation be
L($)-f=0 ©)

with appropriate linear boundary conditions. L is a linear differential operator,
for instance in the two-dimensional pure diffusion case with isotropic
diffusivity

d d

=—(-D—+—(-D— 10
La(Daxa( oy (10)

We think the exact solution ¢(x,y) expanded by Taylor's formula with node i
as the expansion center:

NI AN ¢ 2.
¢(x,y)—¢0+(ax]ox+(ay1]y+ {ax ] x4+ (1

(The subscript 0 indicates to a value evaluated at the local origin = node { in
Figure 4.4.) We have a polynomial representation. It seems obvious that the
finite element solution is the better the higher order polynomial solution it can
simulate by producing the exact nodal values. This is studied with the help of
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the patch by first taking consecutive polynomials (we change the notation from
(11) for convenience of presentation)

p=c, ¢=ax+fy, ¢=ax’+Bxy+yy’, - (12)

the coefficients of which are arbitrarily selected and by fixing the nodal values
of all the nodes except of node i with the values calculated directly from the
polynomial. The nodal value ¢; of node i is determined from the finite element
system equation

¥ Kty =b (13)
I

for the patch where thus the values ¢;, j#i are known. If the nodal value ¢,

obtained is equal to the nodal value calculated from the corresponding
polynomial, the patch test is passed for the polynomial degree in question.

A necessary and sufficient condition for convergence is that the
element must pass the patch test up to polynomial of degree m
where m is the order of the highest order derivative of the
unknown function appearing in the weak form. (14}

(This is the general opinion in the engineering literature although the exact
mathematical proof seems to be missing.)

For the higher degree >m polynomial the patch test is passed, the better rate of
convergence is to be expected when the mesh gets denser.

Remark 4.2, It should be noted that the test is performed in principle for an infinitesimat
patch. In practice the patch is naturally of finile size. Because of this, if the coefficients of the
derivalives in the differential equation depend on position, they should be given some
constant values to be used in the test. For instance, in axisymmetric formulations the radial
coordinate r often appears as a coefficient. It must thus be given a constant value when
applying the lest. Similarly the source lerm f in the differential equation (9) (now with a
constant D) must be taken according 1o the assumed polynomial solution; see Example 4.1, 0

Remark 4.3. Let us consider for instance the quadratic expression in (12). In fact, it is
enough to perform the patch test first only for ¢ =x2, then for ¢ =xy and finally for ¢ =y2.
The multipliers ct, B, ¥ are needed in general in theory to give the right physical dimension

for ¢. The multipliers are, however, seen just to multiply both the nodal values and the

possible source lerm equally and they cancel in the Lest, Further, as the finite element system
equations are linear with respecl to the nodal values and with respect to the source term, the

patch test is then seen to be passed for the linear combination ax® + Bry+yytifitis passed

separately for x%, xp ond ¥ . Similar themes will be discussed in Remarks 5.9 and 5.11,0
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For instance some quadrilateral elements have been found to fail in the test
when the elements are of arbitrary shape but to pass if they are parallelograms.
Thus when applying the test, one should select some arbitrary irregular
geometry so that it is then highly unprobable that the test would be passed by
chance.

The patch test was originally an ingenious insight by lrons (1972). It can be
applied in addition to testing the convergence of non-conforming elements also
say for checking the effect of a possibly too coarse numerical quadrature rule or
just to check the working of a new program using standard elements. Reference
Taylor et al. (1986) discusses many features of the patch test and also deals
with boundary conditions.

Example 4.1. We consider the steady one-dimensional D-C-R equation

%(-D%}%(mp)”wf:o @

and demonstrate the application of the patch test with two-noded line elements and the
standard Galerkin formulation.

According 10 Remark 4.2 we can continue by taking constant values for D, i and ¢ to
obtain the field equation

d’  dg
—DF+IlE+C¢—f=0 ®

The wesk form is (This is considered in more detait later. In any case, il is quite obvious
how 10 proceed: field equalion (b) is multiplied by a weighting funclion, integrated over
the domain and integration by parts is effecled with respect (o the diffusion term. Finally
information about boundary conditions is introduced which phase is not considered
here.)

dv dg

Dfndxdxd.()i-u_[g w%dgwja wodQ - [ wfdQ+bi=0 (©

As we do nat deal with the boundary conditions, the exact conlent of the notation bt
referring to some boundary terms is not needed here. A Lypical sysiem equation is

Z Kyd; =Y (d)
i
with (for a node inside the mesh)
_ dn; dN; dv;
Kj=D[ Th=td0ruf, N—Ld@rc [ NiN; a2

dx
b=[, N fag

(e}
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Qe @ o

i1 a |2 2a 3

Figure (a)

x
We take the patch shown in Figure (a) consisting of two elements with Lhe lengths
MWeg, 1W=2q ity

Of course any other combinalion for the lengths could have been taken but this should
suffice as an example.

We first write down Lhe element contributions. Remembering Remark 2.10 and making
use of formulas (F.1.1) gives

Dl1 -1{ w|-1 1| eh*}2 1
K| =— +— +—
wr=g T )
8
Nf
AT
Nif
The column matrix depends on the expression for fand is dealt with later.

In the system equation

Ko + Kooy + Knay = by h)

for the internal patch node 2, the assembly process gives Lhe expressions

) el 2 2
Ky =Ky, Kp=Kkn+K{j, Kn=kKj

1.2 ()
by = b +H
Taking expressions (f} into account, there is oblained
K2|=_2—£+E
a 2 6
K22=2+E+E+2._.£+26_a=2+ca (j)
a 2 3 22 2 3 2a
D u ca
Koyg=m——t—t—
BT 2 2 3

The expression for the nodal value ¢, , determined from the syslem equation (h) is thus

=1  |[D u_ca D _u_ca
%_3D12a+ca[(a+2 6]¢1+(2a 2 3]%”2] ©

We can now stari ta apply the patch test,

(1) The first polynomial is the constant (see Remark 4.3}
#(x)=1 1)}

4.1 INTRODUCTION

giving the nodal values
f=1, =1 (m)
and to pass the paich test we should finally get from (k) the result ¢, =1.

For the assumed exact solution (1) we determine from (b) according o Remark 4.2 the
corresponding source term

f=c (m)

It should be noted that it is a useful trick in general lo introduce exact solution
benchmark problems by taking any expression for the unknown and then to calculate
from the field equation the source term needed to salisfy the equation.

We obtain making use of forrulas (F.1.1)

) =, {ﬁi]d!) =£2E{i}

5 {0)
{b}2 =cI Wi df =ca .
a? sz |
and
ca 3ca
=—14 -
ST )
Substitution of (m) and {p) into (k) gives
g 1 D u ca D wu ca) 3ca
= =t —— [+ = — [+ =
iD/2a+calla 2 6 2a 2 3 2
- ! (D u ca D _u_ca 3a
3D/2a+cala 2 6 2¢ 2 3 2
1 3D
=—— | 4eal= {q)
3DIZa+ca(2a ) s
The patch test is thus passed.
(2) The next polynomial is
¢(x)=x ]
giving
=-0, ¢y=2a, ($,=0) (s)
and
f=utex ®

After some sleps we gel
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(w

and Lhe paich test is again found lo be passed. Thus according to the patch test criterion
(14) we have a convergent formulation {m =1).

(3) The patch test is no more passed for the quadratic polynomial ¢(x) = x2. Instead of
the comrect value ¢, = 0, there is obtained

1 ua®  3ca’
| —+
¢ 3Dl2a+ca[ 2 4 ] ™)

Without conveclion and reaction terms the patch test clearly would have been passed
{the numerator of (v) goes Lo zero) even for the quadratic polynomial; in fact, according
lo Section 4.2.5 it will be satisfied for any degree polynomial.

It should be realized Lhat the patch test is normally performed numerically. In this very
simple demonstration example we have proceeded wilth closed form formulas which
reveal more.

In practice it is not enough that a formulation is convergent. The important
thing is that accurate enough results are obtained with reasonable meshes. The
formulation in Example 4.1 was found to be convergent but it will be seen in
Chapter 6 that when convection is large, the formulation is totally useless,

The term discretization error (diskretointivirhe) refers to those errors which are
due to the finite element model imagining that all calculations have been
performed with infinite accuracy. Discretization error includes thus the errors
due to approximation of the unknown and given functions, approximation of
the boundary, use of numerical quadrature, etc. Additional errors due to the fact
that the calculations are in reality performed with finite accuracy in a computer
are called round-off errors (pyéristysvirhe). Their effect normally grows when
the mesh is made denser so that a theoretically convergent formulation can in
fact Jead at some point to divergence. In practice only an additional calculation
with double precision can give some information about the round-off.

4.2 THEORETICAL BASIS

The main idea here is to give the reader some familiarity with the basic
concepts and shorthand notations used in formal mathematical treatments of the
finite element method. This may help in following more advanced literature on
the subject. The discussion will concern mainly problems in one dimension.

4.2.1 Convergence rate

In addition to the pointwise error (virhe) e(x) appearing in

4-12 4.2 THEORETICAL BASIS

¢ (x)=9(x)+e(x) (1)

where ¢(x) is the exact solution and ¢(x) the finite element solution, more
complicated error measures called error norms (see Section C.4) are in use in

the finite elerment mathematics. The standard notation for a norm is "" A
suitable error norm
lef=]e-9| @)

describes in some abstract manner the distance of the two functions ¢ and {5 in
the function space (see Section C.1).

The so-called a priori error estimates (etukiiteisvirhearvio) in the finite element
method are typically of the form

|el<cn 3)

Here C is a problem dependent positive coefficient depending for instance on
the element type, the smoothness of the exact solution, etc. Quantity h is an
agreed linear measure, the so-called mesh parameter (verkkoparametri),
describing the density of the finite element mesh. The denser the mesh, the
smaller the k. In two dimensions h could be for example the diameter of the
smallest circle containing the largest element in the mesh. The exponent g,
which must be positive for a convergent formulation, gives the so-called
asymptotic rate of convergence (asymptoottinen suppenemisnopeus) of the
method. The larger the g, the faster the solution converges with the refinement
of the mesh (Figure 4.5).

The theory gives the value of the exponent g but in general not a practically
useful estimate for the coefficient C. In practice it would be important to know
the smallest possible C for which (3) is still valid, that is, when it becomes an
equation

Je]=cne @
The content of formula (3) or (4) is often given also in the form

||e||=0(h") (5)

The notation O(h?) is in words "order of magnitude A9 term" (kertaluokkaa

h% oleva termi), that is, it is a term which behaves essentially as a constant
multiplied by 27 when A is small enough.
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X g=1/2
g=1
g=2

/‘1:3

h

Figure 4.5 h7 versus h.

The rate of convergence can be studied also by numerical experiments in cases
where the analytical solution is known by determining the finite element

solution say with three similar meshes of different density. The error || e|| can
then be calculated directly afterwards. The examination of the results gets

easier, when the assumed relationship (4) is transformed by taking the
logarithm:

log]le|=logC+qlogh 6)

This is the equation for a line in the logh,log"eﬂ -coordinate system and g is

clearly the slope of the line (Figure 4.6 (a}). This makes it possible to determine
the rate of convergence conveniently experimentally. A prerequisite is, that the
meshes are dense enough so that the asymptotic rate of convergence behavior
has been reached and that round-off has not spoiled the results, so that the three
points calculated stay roughly on a line. In physical problems " e|| and A are in
general dimensional quantities — if the problem has not been cast beforehand
into a dimensionless form — so that it is necessary to use the type of
representation given in Figure 4.6 (b), where || and & are some suitable

reference vatues. (It is to be noticed that the logarithm cannot be taken of a
dimensional quantity.)

Knowledge of the rate of convergence is important for instance in connection
with adaptive procedures, where the mesh is refined for further calculations

locally in different way in different parts of the domain based on previous
results.
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Figure 4.6 Numerical determination of the rate of convergence.

The so-called Richardson extrapolation, e.g., Crandall (1956, p.171), can be
made use of in extrapolating results from consecutive calculations towards the
limit £ — 0. Let us consider say the determination of the value of a quantity ¢

at a certain point. Let the values obtained by using consecutive mesh
parameters fy, h,, -+ be o 62, -«+ , respectively. We mark the points (hl,q;l).
(h2,¢72), ... on the h,¢-plane and construct a polynomial geing through them
and finally evaluate it at & =0 to get an estimate on the exact ¢. This procedure

in fact does not demand information about the exponent ¢. If it is known,
however, we can write for two consecutive calculations for instance

e =0 —¢ =Chf

- M
ey =@~ =Ch] =aCh{

in which h, =cthy. o is a dimensionless number describing the refinement,

often &=1/2. By eliminating the unknown CH} from (7), we obtain the
extrapolated estimate

9‘52 - 0“’61

1-e?

0= (8)

{Formulas (7) are of the form (4). As we are not using absolute values on the
left-hand sides, the muitiplier C can be here also negative.) We can also deduce
from (7) the result

aq

((52 -é ) 9

€y =
1-af

These formulas can be employed to estimate exact values without knowing the
exact solution,
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4.2.2 Weak forms formalized

Let us first consider the one-dimensional pure diffusion problem with the
boundary consisting of the Dirichlet type only; equation (4.1.4) without I'y.
(Some of the notations to be introduced are explained in the
NOMENCLATURE section.) The weak formulation is: Find ¢ € § such that

jﬂd“’ @ sa-[ wrae=0} vwev (10)

Here V is called the weighting or test function space (paino- eli testifunktio-
avaruus), that is, roughty the set

v={u:uec(Q), u=0on Ip} an

The function ¢ to be determined is a member of the trial function set
(yritefunktiojoukko) S where

s={u:ueC(Q), u=won I'p} (12)

It is seen that the difference between V and S consists merely of the conditions
on I'p; the members of § must satisfy the Dirichlet boundary conditions and
the members of V the same but only in the homogeneous (= right-hand side is
zero) form. This means that V is a linear space (see Section C.2) as the sum
u +v of two members « and v is seen to be again a member of the space. The
set S is not, however, a linear space if the given Dirichlet boundary data & #0
as the sum of two members does not clearly satisfy the boundary condition.

Remark 4.4. A more precise characlerization of the sets V and S than that given above
consists of saying that u belongs to the set H ! of functions having the L,;-norms of the
function jtsell and of its first (generalized) derivative bounded, Hughes (1987). Often the
notation Hé is used for the weighling function space to indicate that the satisfaction of the
homogeneous Dirichlet boundary condition is included. In two- or three-dimensional cases all
the first order (generalized) derivatives are included in the definition. 0

Remark 4.5. Using the deltaform described in Remark 2.15 simplifies the presentation.
Instead of (10) we can state: Find ¢ — ¢ (= Ag)e V' such that

dw __dp ~
ﬂaDa;dQ—J‘ﬂwfd.Q-O YweV (13)

where $ = + A¢. Now we can operate with only one set V.0
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The boundary conditions that the members of the trial function set § must
satisfy a priori (etukiiteen) in a weak formulation are called essential boundary
conditions {oleellinen reunehto) similarly as for functionals (see Appendix D).
In the standard energy equation weak form the essential boundary conditions
are the Dirchlet conditions. Those boundary condition that are consequences of
the satisfaction of the weak form are called natural boundary conditions
(luonnollinen reunachto). In the standard energy equation weak form the natural
boundary conditions are the Neumann and the Robin conditions. The fact that
the trial functions have to satisfy beforehand only the essential boundary
conditions is of utmost importance in the practical application of the finite
element method.

In the finite element method, we define corresponding 1o (11) and (12} the sets

v={a:iec(Q , u=0o0n I'p, & is represented
by the current finite element mesh }

S=li:iec{R), u=u on I'y, i is represented

by the current finite element mesh }

Thus VcV and SC S, that is, if #€ V, then also i€ V and similarly with s

and S. V is called a finite dimensional subspace (iirellisdimensioinen
aliavaruus) of V.

The finite element method analogue of (10) is: Find 5 € § such that

dw dq‘) o
jﬂdx Lie- j wfdR=0| VWweV (16)

The system equations in the Galerkin method were obtained by selecting W to
be consecutively the global shape functions N;. Since any w is obtained as a

linear combination of the shape functions (@ =aN; + BN, +--+), the weak form

(16) is then clearly satisfied for any w if the system equations are satisfied and
the other way round.

The finite element method analogue of (13) is: Find o-¢(= A¢)e V such that

dw _d ] -
L: s m‘?«dg [, wfaQ=0| VvieV (17

where 5:5-1—1.\&5.



4.2 THEORETICAL BASIS  4-17

Remark 4.6. In the literature, superscript /i is very often used in connection with the finile
dimensional weighting funclion and the approximation. This convention reminds us of the
fact that the sets defined depend on the mesh. To be precise, it should be noted that in our
notation the tilde above the symbol of the funclion to be determined means approximation but
in connection with the weighting function it means the finite dimensional case. That is, we do
nol approximate the weighting function, we are just forced lo select it from a finite
dimensional set. O

After these formal statements an important result is derived. As w belongs to
vV, italso belongs to V and thus (10) must hold also in the form

jd“’ d¢dg j WfdQR=0 VeV (18)

Subtraction of (16) from (18) gives

d¢ d¢
jﬂ ( dx]d.Q 0 vweV (19)
or(e=¢-¢)
dw _de
ja— L42=0 vweV (20)

It is noticed that the source term has disappeared through this manipulation.

We now generalize and consider the full standard weak form (3.1.70): Find
¢ € S such that

jﬂ d.Q j fd9+j w,"dr+j w (a+5)dI" =0 |(21)

Vwe V., Here the sets V and § must be redefined in an obvious way from those
of (11) and (12). The only change is that all partial derivatives of & must be at
least piecewise continuous. See, however, Remark 4.3. The weak form (21)
consists of linear and constant termms with respect to function ¢ to be

determined. Let us use, correspondingly, the shorthand notations

a(u,v)= IQ au d.Q +I wavdl (22)

and
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b(u)=[_ ufde —L_N wjtdr —IFR ubdl" (23)
These are a bilinear form and a linear form, respectively (see Section C.5). The
weak form (21) is then simply

a(w,9)-b(w)=0 VweV (24)

This type of concise representations abound in the mathematics literature on
finite elements.

We may now repeat the steps to arrive at the equivalent of equation (20}. The
finite element system equations are obtained from

a(w.§)-b(#)=0 VeV (25)
Equation (24) can be written also for w:
a(#,¢)-b(#)=0 vweV (26)
Subtraction of (25) from (26) gives
a(w,¢-¢)=0 vweV (27
or
a(w,e)=0| vweV (28)

or in detail taking the notation {22} into account

dw de
o o D5 57 dQ+[ Waedl =0 VeV (29)

This is the analogue of (20) in the general case.

The bilinear form (22) is here also an inner product (see Section C.3). (We
assume that the diffusivity tensor is symmetric and positive definite as is
usually the case due to physics.) According to (28) the error e of the finite
element solution is orthogonal to each weighting function.

The energy norm

1/2

"“"aEﬂ(u,u)”2=[_[ﬂ£:; » ai dQ-E—I uandl” (30)
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(u,v)EL? uvds2 {38)
and
Jul =], v*a (39)

without any subscripts. It is realized that, in one dimension, using these
notations, l“lo = "u“, lu]l = ||u'l|, etc.

In the one-dimensional case the proof is rather straightforward. Let us divide
0 =10, L[ into elements 2° with k= max (h*). The obvious relationship

fo=[ i @[ F= 0= f)=F) (40)

is valid in a typical QF for any c? function f vanishing at x; € Q°. Taking
absolute values on both sides of this and continuing gives first

n 1/2

1/2
el 2fe] ]
(2) uz(i)

S (o) oV as] <) 1

The steps indicated above are in detail: (1): the Schwarz inequality for the L,

Jras

&

(4}
€ < h”z [l f’

@1

inner product over Jx;,x[, (2) Epos.d.x S‘[Q,pos.dx, (3)

(x=x)"2 < (h%)2, (4): h® < h. Raising both sides of (41) 10 the power 2 gives

Psh(irr) @

and integrating both sides of this over the element gives further (the right-hand
side is a constant and A® < h)

(71 <2(1r1) @)

For norms consisting of integrals the square of the total norm is the sum of the
squares of the norms over the elements:
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n 2
2 e
[P =3 (1) (44)
e=1
Thus summing both sides of (43) over the elements and taking the square root
finally leads to

I £l<k] s

It should be emphasized that the derivation demanded f only to be continuous
inside each element and to vanish at least once there.

(45)

We can now apply (45) to the function &= ¢ — ¢ . Assuming that the interpolant

is piecewise constant in such a way that the value at some point in each element
coincides with the exact value, we obtain

lelskfe|=rfs'~¢|=n|

¢f

(46}

which corresponds to (35) with s=1. (Note that & =¢" as the interpolant is
piecewise constant.)

The finite element approximation consists more often of piecewise linears
rather than of piecewise constanis. More useful inequalities can be derived
easily by noting that the essential point was that the function was known to
vanish at one point in each element. If one considers linear interpolants, which
coincide with the exact function at the nodal points, & vanishes according to
the so-called Rolle's theorem at least at one point inside the element. (This is
obvious as it means that there is a tangent to x, which is parallel to the
interpolating chord, see Figure 4.1 (b).) Thus {45) holds true here in addition to
the form

lel<nle] @)
also if fhas the role of the error derivative, i.e.,
[&]<]

¢ 9" ¢

&= (48)

"'”l

(Note that (é"=¢" as the interpolant is linear.) Combining (47) and (48) gives

lell<k*|e7] (49)

Formulas (49) and (48) correspond to (35) and (36} with s$=2. Similar
derivations can be employed for higher degree interpolants.

4.2.4 Error estimate
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is generated by the inner product. (The energy norm is actually the square root
of the quadratic part (multiplied by two) of the corresponding functional. See
for instance expression ([.3.21) as a special case of (30).) Let us consider the
square of the energy norm of the finite element error. We have

lel?=|o-¢:=a(p-.0-6)=a(p-¢+& -0.6-¢)
=a(p-F+¢-9.¢-9)=a(¢-4.0-9)+a(¢ -4.0-¢)
=a(¢-.0-0)<|a(9-F.0-9)|
<a(9-3.0-8) "a(p-6.0-¢) a31)

On the first line an arbitrary function e 5 has been added and subtracted on

the first argument of the bilinear form. The second line is achieved by taking
into account the linearity of the bilinear form with respect of its arguments; here

the first one. It is then realized that the difference function ¢ —¢$eV and thus
because of (28) or (29)

a(¢-4.9-¢)=a(p -9,¢)=0 (32)

The fourth line is finally achieved by applying the Schwarz inequality (C.3.4).
Dividing both sides of the inequality contained in (31) by the non-negative

number a{¢ —5 R 6)” 2 we obtain the important result

a(0-6.0-6) <a(p-7.0-7) (33)

or

[¢-d1,<le-6], 34)

It means that there is no member ¢ of S that is a better approximation to ¢ in
the sense of the energy norm measure than the Galerkin finite element solution
¢ . This result is referred to as the best approximation property (paras-

approksimaatio-ominaisuus). In pure diffusion problems the energy norm (30}
is seen to consist of the first derivatives of ¢ (if the Robin boundary vanishes).
Thus good values for the derivatives, or consequently say in heat conduction
because of the Fourier law, to the components of the heat flux vector are to be
expected. These quantities are in fact often more important in practice than the
ternperature itself.
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4.2.3 Interpolation results

To proceed further in the estimations some results from classical interpolation
theory are needed. Figure 4.7 shows examples of polynomial interpolation.

(b). . o

Figure 4.7 (a) Constant interpolation. (b) Linear interpolation. (¢} Quadratic
interpolation.

The interpolating function or the so-called interpolant (interpolantti} to the
given function ¢ is equipped here with the caret symbol: ¢. By a constant,

linear, quadratic, etc., polynomial interpolant we mean polynomials of the
degree mentioned, which coincide in value with the given function ¢ (in one

dimension) at least once, two times, three times, etc. in the interval under
consideration. From Figure 4.7 it is intuitively obvious that if function ¢

behaves reasonably smoothly, its interpolant must be in some sense near the
function itself and that the higher the degree of the interpolating polynomial the

~

better the fit. Following basic estimates for the difference & =¢ —¢ are valid,
Johnson (1987, p. 84):

|elyscw]ol, @)

|e], scr|¢], (36)

where the square of the seminorm (see Section C.4)

g 2
ulf= = Lz(—a" ]dxdy--- (37

+joe=s axl'ayj...

and where # is the mesh parameter and C a constant independent of h. The
highest complete degree of the interpolating polynomial in the above formulas
is s—1.

To simplify the formulas to follow we shall henceforth denote the L; inner
product and norm just by
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We are now able to proceed from the best approximation inequality (34) or
el <l (50)

In é=¢-¢, S means now the finite element interpolant (elementti-
interpolaniti) to the exact solution, that is, it coincides with the exact solution at
the nodal points. This concept has been discussed already in Remark 4.1. As the
exact solution is unknown, so is the interpolant, but that does not prevent us
from making use of the interpolation results derived above. The main thing is
that also the interpolant qﬁ € § as the theory demands. Let us consider (30)
without the Robin boundary and for simplicity of presentation with an isotropic
diffusivity and in the two-dimensional case:

N dé
||e":=a( ) jﬂ Dﬁaﬂ dQ ana ngg
3y (az Y (2eY
= %\ lag<p 212 lae
I [ 1 [ y) m’-[ﬂ|:[ax] +(ay]
< Dipay | 2 [} € D C2 1247V o 2 (51)

The steps used are rather obvious. Formula (36) has been finally made use of.
Combining (51) with (50) and denoting D C again as C gives the estimate

lefl, sch*] 9], (52)

This estimate can be shown to remain valid even for the full expression (30) {(a
positive) and even when the term _[Q ¢cpdQ due to reaction part is included (c

positive) with the right-hand side in the form Cy/Doy, +ch? +ah h|g],

where D, is now the maximum eigenvalue of the diffusivity tensor.
For example, if the problem is solved with linear elements, estimate (52) gives
el <cl¢l, (53)

Thus the exponent of the rate of the asymptotic convergence is 1. For quadratic
and cubic elements the exponents are 2 and 3, respectively.

Let us consider still the energy inner product {22):
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afu,v)= Lz o Daﬁ ; ZdQ+ j uavdl (54)

We evaluate this for u=v=¢ —¢ . Here function ¢ is taken to be the finite

element extension of the Dirichlet boundary data discussed in Remark 2.15. It
may be taken to be non-zero only in the first element layer around the Dirichlet
boundary. (It is assumed that the Dirichlet condition is then exactly satisfied
everywhere on I'p which may not be strictly true.) It is realized that the

difference function ¢ —¢ belongs to the linear space V. We obtain making use
of the bilinearity and symmetry of the inner product

a(p-9.0-¢)=a(¢.6)-2a(4.0)+a(9.9) (55)

The same quantity evaluated using the representation

p-F=¢+¢—-¢-9=¢+te—9=¢—0 +e (56)

gives similarly

(tﬁ ¢ +e,p- ¢+e)= (q; -9.0- 5)—2a((5—6,e)+a(e,e)
=a(§-0.0-9 )+alee)
=a($.6)-2a(4.¢)+a(6.0)+a(e.e) (57)

It is noticed that here ¢ —@ € V and the middle term on the right-hand side on

the first line disappears because of (28). Equating the right-hand sides of (55)
and (57) and some manipulation gives the resutt

ale.e)=a(9.0)-a(6.6)-2a(e.d) (58)

With homogeneous Dirichlet conditions, when the last term disappears (again
due to (28) as then ¢€V), this is referred to in the literature as the

Pythagorean Theorem and said in words: "the energy of the error equals the
error of the energy". In the homogeneous case we have also (as a{e,e)=20

because of the positive-definiteness of the inner product)

a(6.6)sa(9.6) (59)

or in words: "the approximate solution underestimates the energy”.

It can be shown that the left-hand side of (59} can be evaluated from
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a(3.9)={a}" (KKa}= X {a} T[T {a (60)

4.2.5 Pointwise error estimate

Here we need some results concemed with Green's functions. Green's function
is the solution for a linear boundary value problem when the source term
(forcing function, loading function) is the so-called Dirac delta function and the
boundary conditions are homogeneous.

Let us consider as a simple example the one-dimensional pure diffusion
problem with constant diffusivity, the Neumann condition ¢’(0)=0 and the
Dirichlet condition ¢(L)=0. The source is first assumed to be concentrated
around a given point y on a length Ax so that the intensity f = F/Ax where F
is a constant. The solution is sketched in Figure 4.8 (a).

0 ¥ L x 0 ¥ L X
9 ¢
F(L-y
N\ \|, D
0 y L x y L-y! x
(a) (b

Figure 4.8 (a) Finite source intensity and the corresponding solution. (b) F
times the Dirac delta source and the corresponding solution.

When F is kept fixed and Ax—0, f —e and the source distribution is
denoted

f(x}=F8,(x)sFé(x-y) (61)

where Sy(x) =8(x~y) is the Dirac delta function. Subscript y refers to the

point of action of the pointwise source. The Dirac delta is not a function in the
classical sense but rather an operator defined by its action on continuous
functions. Let A{x) be continuous, then

J:h(.r)a(x—y)dx=h(y) (62)
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that is, the Dirac delta picks the value of k at y. The total integrated source in
the case of (61) is thus

[ fax=["F5(x-y)ax=F[ 6(x-y)dx=F 1=F (63)

The solution of the problem with this source distribution is shown in Figure 4.8
(b). When F =1, it is the Green's function Gy (x):

(64)

xzy

The solution is obtained by solving the diffusion problem in a piecewise
manner from the differential equation. But the solution must also be obtainable
from the weak form or using the present notation: Find G, €V (the boundary

conditions are homogeneous so that S =V ) such that

a(w.G,)~(w8,)=0 VweV (65)
But from the definition (62) (w,8,) = w(y) and

a(w,Gy)=w(y) YweV (66)

Thus the inner product of w with the Green's function picks the value of w at y.
This relationship is seen to be similar to (62).

The finite element solution error e belongs also to V and (66) gives for it

a(Gy,e)=e(y) (67)
From (28)
a(w,e)=0 VweV (68)

Subtraction of (68) from (67) gives finally
e(y)=a(G,-e) VeV (69)

This gives the possibility to estimale the pointwise value of the error appearing
on the lefi-hand side. Taking absolute values of both sides, applying the
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Schwarz inequality for the inner product and using the best approximation
result (50) gives

|e(y)! =|a(Gy—w,e)|£[|Gy—ﬁr .

l,<|G,-#| e, vwev o)

Vwe V. The last term can be bounded directly by using interpolation results.
To achieve a pood estimate we naturally try to select a w which is as close as
possible to G, to make the norm small. However, how well the Green's

function can be followed by a w belonging to V depends strongly on the
problem.

As an application let us consider the one-dimensional pure diffusion problem
with constant diffusivity sclved using linear elements. The interpolation
estimate (51) is, when applied in one dimension and with slight changes in
notation,

11,
and (70)) reduces first into the form

|‘-’(>’)15"Gy

<Ch||9”| 70

vweV (72)

In order to proceed one needs at least some knowledge of the Green's function.
Here it is seen from Figure 4.8 (b) — and this is true for any boundary
conditions -— that the function is piecewise linear and has a kink at y. There are
two possibilities:

(a) The point y is located at a node. Then the Green's function clearly belongs to
the V space and a w can be selected to coincide with G, so that the

corresponding norm disappears and the result is
e(y)=0, y coincides with a node (73

Thus the exact nodal values obtained and shown in Figure 2.10 are not
accidental but are in fact valid for any source distribution. (The same
conclusion can be obtained for quadratic and cubic elements at the element
endpoint nodes but not in general for the inner nodes.)

The exactness of the nodal values indicated by (73) is due to the fact that the
Green's function was simple enough to belong to V. If the field equation
contains a reaction term or if the diffusivity depends on position, the Green's
function is more complicated than indicated in Figure 4.8 (b) and it does not
belong any more in general to a polynomial weighting function space. The kink
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still existing in the Green's function coincides with the node and the function is
smooth everywhere else. Then one can show that the energy norm of the
difference between the Green's function and its interpolant £ Ch and the result

is
le(y)l <Ch || ¢°|, ¥ coincides with a node (74)

(b) The point y is not located at a node. The error estimate can be obtained for
example by starting with the aid of the triangle inequality for absolute values.
Namely

~

)| =|0()-9(3)|=|#(3)-8(3)+8(»)-4(»)]
_|¢ )-8y ||¢ §(y)] (75)

The first term on the right hand side is the absolute value of the interpolation
error € =¢ —¢ . It can be estimated by uvsing a finite Taylor expansion (See
Remark 4.7 at the end of this derivation.):

|¢(y)—cf(y)|£h2 sug"(p'“ (76)

The second term is the absolute value of the difference between the interpolant
¢ and the finite element solution @ . It is realized from Figure 4.9 that this term

varies linearly (for linear elements) between the nodes and the value at y is
bounded from above by the value say at node i. Thus

|4(2)-8(9)| <|d(0)=(x)|=]8 (x)-d(x)| scr?|o"]
<Ch*Lsup|¢’| a7
e

Use have been made of the estimate (74) at a node and of the definition of the
L,-norm. Altogether (75), (76) and (77) give

|e(y)|SC_?h2 sug|¢'| (78)
e

which holds true for any fixed point in the domain. (Formula (74) can be
developed further to have the sup-expression on the righi-hand side if so
wanted.) One should note, however, that the multiplier C may depend strongly
on position and in order to verify (78) by numerical experiments one has to use
similar meshes where the position of the point in the local elementwise
coordinate system is fixed.
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Figure 4.9 The exact solution ¢, the finite element interpolant ¢ and the finite

element solution ¢ .

Remark 4.7. The interpolation error E(y)=¢(y)-43(y) vanishes at points Xx; and X
(Figure 4.9). We assume ¢ to be at least a ¢* function in §2°. Then & is clearly also at [east

a C?function in 2°. Taylor's formula with remainder expanded at x; gives

Hy)=&(5)y-x)+&E)r-x) /2 (79)

where £ € [x;, y]. Similarly for y=x;,,:
2
0= (5 )(xipy =5 )+ & (M) (501 - 5) 122 & ()1 48" (n){n°) 12 (80)
where ne [x;,x;,]. Together (79} and (80) give

éy)=-& M (y~x)2+&(E}y-x) /2 81)

Taking absolute values on both sides of this, using the triangle inequality on the right hand
side, making use of the facts & =", | y—x; | S &° Sk etc., there is linally obtained

|E(y)|£lt2 suplgi.’i']Sh2 sup | ¢”| (82)
F-Tell <
This is the result, which was used in the derivation above. 0

Points, where the order of convergence is higher than in general, are referred to
as super-convergence points (superkonvergenssipiste) in the literature, (In
connection with the result (73), a node certainly deserves the name of a
superconvergence point!) For say the derivatives of the unknown function,
some other points (here the element centroids) may give superconvergence.
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5 SENSITIZED FORMULATION
5.1 INTRODUCTION

The sensitized formulation is an essential feature in the rest of this text and thus
a general background chapter is considered here useful to introduce the basic
ideas. These are approached through a structural mechanics problem employing
a variational principle. Further, the assembly process with more than one nodal
parameter per node is dealt with in this chapter.

5.1.1 Historical background

Historically, the finite element method was applied originally with very
encouraging results to structural mechanics problems having available an
associated variational principle. These problems are mathematically often kind
of diffusion cases; roughly the second order derivatives in the differential
equations are dominant. When more general types of problems with no
associated variational principle available — especially fluid dynamics problems
with dominant convection — were first attacked using the Galerkin finite
element method, the results were not at all satisfactory: very dense meshes were
needed to suppress the unphysical "wiggles" appearing in the discrete solutions.
On the other hand, even in structural problems for flexible bodies using simple

C? elements — thin beams, plates and shells — and still having an associated
variational principle — impracticably dense meshes were again needed to
achieve reasonable accuracy. Otherwise the displacements obtained were quite
too small. This is called locking (lukkiutuminen). Many more or less useful
tricks have been invented to try to circumvent these difficultres. It seems now
that a rather simple to understand and theoretically sound procedure has finally
emerged by which the standard Galerkin method can be modified to work well
also in those cases where the standard version is performing poorly. This
modification consists in effect of a combination of the Galerkin method and the
least squares method. This methodology is called usually stabilized formulation
(stabiloitu formulaatio) but we prefer to call it sensitized formulation (sensitoitu
formulaatio). This latter terminology stems from the remarkable article by
Courant (1943) which is in addition considered in the mathematics literature as
the birth paper of the finite element method. It seems that researchers on
stabilized formulations have not been aware the ideas suggested much earlier
by Courant and we therefore want to start the description using these earlier
presentalions as the starting point. We quote from Courant {1943):

"These facts which are intimately related to more profound questions in
the general theory of the variational calculus have suggested the
following method for obtaining better convergence in the Rayleigh-
Ritz method, Instead of considering the simple variational problem for
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the corresponding boundary value problem, we modify the former
problem without changing the solution of the latter. This is
accomplished by adding to the original variational expression terms of
higher order which vanish for the actual solution «. For example, we
may forrnulate the equilibrium problem for a membrane under the
external pressure f as follows:

Iv)= HB (v% + vz +vf )exdy +Hak(Av - f)zd.rdy =min.,

where k is an arbitrary positive constant or function. Such additional
terms make /(v) more sensitive to the variations of v without changing

the solution. In other words, minimizing sequences attached to such a
“sensitized” functional will by force behave better as regards
convergence [7].

The practical value of the method of sensitizing the integral by the
addition of terms of higher order has not yet been sufficiently explored.
Certainly the sensitizing terms will lead to a more complicated system
of equations for the ¢;. This means that a compromise must be made

for a suitable choice of the arbitrary positive function & so that good
convergence is assured while the necessary labor is kept within
bounds."

Remark 5.1, The term Rayleigh-Ritz method is used in the literature usually simply in the
same meaning as the lerm Ritz-method (cf. Remark 1.2). This lerminology normally also
implies that the discretization is performed via a variational formulation as is here clearly the
case in the quolation above, 0

Remark 5.2. In the formula of the quotation above, there is obviously a slight misprint and
there should probably read

1) = [[ 02 2 + 20 )dsdy + []_k(Av ~ £) dndy = min., o

Reference [7], in Courant’s article of year (1943), is concerned with the
possibility to append the variational integral in addition to the integral of the
field equation residual squared considered above with an arbitrary number of
similar terms consisting of integrals of derivatives of the field equation residual
squared, We quote from Courant (1923):

"Zur Erlduterung behandeln wir die Randwertaufgabe der
Potentialtheorie fir einen Bereich G in der xy-Ebene. Die
vorgegebenen Randwerte mégen identisch sein mit den Werten, die ein
Polynom p(x,y) auf dem Rand annimmt. Der Rand von G mige
abgesehen von endlich vielen Ecken eine sich stetig drehende Tangente
besitzen. Wir betrachen das Integral
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Dipl=1 [ (0} +0, + (800" + (807" +(89,) +(40.)" +-Jasdy,

wobei rechts iiber alle in Frage kommenden Ableitungen zu summieren
ist, und fordem, das Integral D[¢) zum Minimum zu machen, wenn
zum Vergleiche alle in G mit ihren Ableitungen stetigen Funktionen ¢
zugelassen werden, welche die vorgeschriebenen Randwerte besitzen."

Remark 5.3. From formula (1) of the latter quotation, it is apparent that the presentation
there is assumed (o be in a dimensionless form as otherwise the total expression would not be
dimensionally homogeneous. 0

The example cases in the quotations concern the solution of the Poisson and the
Laplace differential equations Av—f=0 and A@=0, respectively. The

A-notation refers to the Laplace differential operator A =%/ ax2+0%/9y>.
Further, (),=0(Q/dx and (), =d()/dy. The conventional functional

expressions in the first parts of the formulas are easily discerned from the least
squares type appended terms.

Remark 5.4. Tt is realized as commented on in Courant {1923) (hat the possibility to append
the sensitizing terms is not limited to linear problems. O

5.1.2 Timoshenko beam

Although we later concentrate on the use of weak forms and applications in
heat transfer, we start here by presenting the important ideas of Courant
employing a variational principle and a structural mechanics problem. This way
to proceed hopefully proves to give finally an easy to understand explanation
for the maybe rather mystical extra terms appearing in some presentations in the
literature. As a side product we find how sensitizing can dramatically improve
the discrete solution behavior also in structural mechanics problems. The
membrane case considered by Courant is not very suitable as a demonstration
example here as the standard finite element version is known to work well with
it. The Timoshenko beam problem described in the following proves to be a
more illustrative model for our purposes. For readers not familiar with
variational calculus and functionals, certain relevant concepts are given in
Appendix D. In what follows we borrow much from Freund and Salonen
(2000).

Figure 5.1 describes some notations for a so-called Timoshenko beam. The
beam axis is straight and the beam displacement is assumed to take place in the
xy-plane. The maybe somewhat odd selection of the coordinate direction —
y-axis downwards — is in rather general use for historical reasons in beam
bending. Here we are using in principle contrary to the rest of the text the
Lagrangian description for the kinematics commeon to solids (cf. Section 6.1.1).

54 5.1 INTRODUCTION

However, as we restrict the study to the small displacement case, the difference
in the descriptions does not come up (the domain after the deformation may be
considered to coincide with the initial domain). The intensity of the given
distributed transverse loading is g(x) ([g]= N/m).

N

L

(@) ‘y
0

='(l=

© Q (b)

Figure 5.1 (a) Beam under distributed loading. (b) Transverse displacement v
and cross section rotation 6 greatly exaggerated. (¢} Shearing force O and
bending moment M at a cross section.

In the Timoshenko beam theory the following kinematical assumption is made:
beam cross-section material planes perpendicular to the beam axis before the
deformation move as rigid planes during the deformation. This means that for
small displacements the displacement components 1 and v in the x- and y-axis

directions, respectively, for a generic material point Q are obtained by the
formulas (Figure 5.1(b))

u(x,yy=-y0(x)

2)
v{x,y}=v(x)

where v(x) is the beam axis transverse displacement or deflection (taipuma)
(displacement of point P) and 6(x) is the beam cross section rotation. The
continuum problem is thus reduced to the determination of two functions. This

is the first occurrence in this text where rwo unknown fiunctions appear
simultaneously in a problem.

From the free-body diagram for a differential beam element the following
equilibrium equations

in@=]o,[ 3)
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are obtained where Q is the shearing force (leikkausvoima) and M the bending
moment (taivatusmomentti} (Figure 5.1(c)). These are the important quantities
in the design of the beam with respect to stresses. The beam can also be loaded
by a distributed couple loading which would add a term in (3b). This refinement
is usually needed only in dynamic problems, which are not considered here.

When the beam material is assumed to be elastic, the overall material properties
are found 1o be given by the shearing stiffness (leikkausjiykkyys) GA(x)

(IGA]=N) and the bending stiffness (taivotusjaykkyys) El(x) ([El]= Nm?) so
that

Q=kGA(£‘i—9]
dx
T 4
M=-El—
dx

GA and EI are to understood to be in the general case just double letter
symbols. For a homogeneous material in the y-direction with a constant
Young's modulus E (kimmokerroin) and a constant shear modulus G
(liukukerroin), GA and EI can be interpreted so that A is the cross section area
and [ is the cross-sectional second moment (pintaneliGmomentti, pintahitauns-
momentti). For a rectangular cross section with breadth b and height ¢ and
isotropic homogeneous material

E

GA=——bt

2(1+v)

o3 )]
EI=E_'

12

where v is the so-called Poisson's ratio; a material constant whose value for
most structural materials is between 0 and 1/2. The dimensionless multiplier k
in (4) is called the shear correction factor (liukumakorjauskerroin). The need
for this multiplier is explained as follows. The kinematical assumptions (2)
mean that the shearing strain (liukuma)

avix,y) N du(x,y) _dv(x)
dx oy dx

S —8(x) ©)

is constant on a cross section. In reality the cross section does not remain
exactly plane but warps somewhat and 8 must be considered to represent some
kind of average rotation of the cross section. Similarly, the shearing strain is not
constant on a cross section and this can be taken approximately into account by
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the shear comrection factor. Literature contains procedures to determine k. For
instance the value k=5/6 is used for a rectangular cross section for a
homogeneous material.

Remark 5.5, Comparison of (4a) and (6) shows that the shearing force is obtained as the
product of the modified shearing stifiness and the shearing strain. When (he beam gels thinner
or specifically, when Lhe ratio ¢/ L gets smaller and smaller, based on expressions (5), the
relative value of the shearing stiffness compared o the bending stiffness gels larger and
larger. From physical reasons the shearing lorce remains finile in a problem even when the
beam gets thin, The shearing strain approaches then zero, as the shearing force must then be
the product of a large and a small quantity. Thus we get from (6} in the limit

dv
—=-0=0 7
P )]
or
dv
0=— 3
dx 1

In the socalled Bernoulli beam theory, expression (8) is used from the outset as one of Lhe
assumptions lo form the beam model. Looking at Figure 5(b), this means that Lhe cross
section is assumed to remain perpendicular to the deformed beam axis after the deformation.
Due to relation (8), in the Bemoulli beam model only one lunction, the beam axis defleclion
v(x), remains to be determined. However, the corresponding differential equation is of the
fourth order and the model i$ not realistic for thick beams. Thus the finite clement
applications have lately concentrated on the Timoshenko model (and o its analogues in plale

and shell problems). This affords simple €® continuous approximations but the locking
phenomenon mentioned in Section 5.1.1 for thin cases has been a prablem. O

Substitution of the constitutive relations (4) into (3) gives the equilibrium
equations expressed in displacement quantities:

R,(v.08)= L‘,(V,B)-{-(IE%}(GA[%—B\]+Q=O

Ry(v,0)=14 (v,B)EkGA(%—B]—%(—EIz—i]=O

in=]0,L[ (9

We have introduced some new notation for later use. The subscripts v and & are
employed just to discern between the two field equation residuals. (Based on
the equilibrium equations one may assume that the first equations is associated
with the transverse displacement direction and the second with the cross section
rotation direction which somewhat explains the notation.) The terms denoted by
the symbol L are defined implicitly by the middle forms. The unknown
functions are included as argument symbols to make the expressions more
transparent. We could define alternatively a linear matrix operator
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%kGAdi —%kGA
1= 7 4 (10)
kGA—  —kGA+—EI—
dx dx  dx

and write equations (9) as

ot ol -

The boundary conditions for the example case shown in Figure 5.1(a) are

:;:0 at I'p ={0} (12)
and
0=0, = kGA(E—G =0
dx x=L at 'y =
N =(L] (13)
M=0,=- E'Iﬂ =0
dx x=L

In the structural mechanics terminology the structure here is calied a cantilever
beam (ulokepalkki) with the left-hand end x =0 of the beam clamped (jiykisti
kiinnitetty) and the right-hand end x=L free (vapaa). Boundary conditions
{12) are clearly of the Dirichlet type and latter conditions (13) can be in some
sense be considered to be of the Neumann type.

Equations (9), (12), (13) describe the structural problem in a strong form. We,
however, consider here the corresponding variational formulation. The most
important variational principle in elasticity is the principle of stationary
potential energy (potentiaalienergian stationaarisunden periaate):

When a conservative system is in equilibrium, the potential
energy of the system has a stationary value. (14)

An elastic body forms a conservative system if the external forces acting on the
body are conservative. We refer to Washizu (1982), for an especially valuable
source on variational principles in solid mechanics.

The potential energy functional of the Timoshenko beam is, e.g., Dym and
Shames (1973),
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ne)=|, [ kGA[a—B) 5 1[‘:3] qv:ld.Q+bt (15)

The admissible argument functions v(x) and @(x) in (15) must satisfy the
essential Dirichlet type boundary conditions; here conditions (12). The short-
hand notation bt includes the possible additional terms arising from the natural
Neumann type boundary conditions conceming given shearing force Q or
bending moment M. Because here the given Q and M are zero in (13), the term
bt vanishes. Proceeding similarly as in Section D.3.1, we find that the
differential equations (9} and the boundary conditions (13) indeed follow from
the condition § 17 =0.

5.1.3 Preliminary considerations

We shall first generate a conventional finite element solution for comparison
with the later sensitized formulation. Before actual calculations we perform in
this section some preliminary manipulations. We have had some practice how
10 discretize a functional in Section 2.1.1 where the least squares expression
was considered. The approach was first to substitute the approximation. The
system equations were then obtained by differentiations of the discretized
functional with respect to the nodal parameters and putting the results equal to
zero. Samples of this way to proceed are given in Examples 2.3 and D.1. For
later purposes we proceed here by a slightly alternative route: we first perform
analytically the variation to obtain the equation &8I7T=0 and only then
substitute the approximation. The stationarity condition 817 =0 can then be
interpreted as a weak form with the variations of the argument functions having
the roles of the weighting functions (see Remark D.2). This route is convenient
for example if we have at our use a computer program which is intended to be
used only with weak forms as is the case with MATHFEM. The final resulting
system equations become the same using either of the two routes.

Applying the calculation rules of Table D.1 on (15) gives the variation
81T =] i kGA B )9 59|+ 909%€_ 5, (16)
dx dx dr dx

We use the notations
dv=w,, 60=wy (17}

where w,(x) and wp(x) are now called weighting functions and write the
stationarity condition 17 =0 as a weak form
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+E1d6 % _ aw, [d2 =0 (18)
dx dx

oo

Because conditions (12) are essential, the variations v and 86 must vanish
there (see Section D.3.1). This is also the case even when the right-hand sides
of (12) would be non-zero. Thus in the weak form (18)

w, =0
t 'p={0 19
we =0 at 'y ={0} (19)

and the admissible v and & must satisfy (12).

As this is the first place where we deal with two unknown functions, before
proceeding to approximations, we shall derive the weak form (18) alternatively
directly from the governing differential equations (9). The procedure is a rather
obvious generalization from what has been done earlier with one unknown
function the aim being one scalar equation. The manipulations become simpler
when we start from (3). The first equation is multiplied by an arbitrary
weighting function w,(x), the second by wy(x) and the resulting equations are
integrated over the domain £2 and added together to produce a preliminary
weak form

Iﬂl:w‘,[%+qJ+we(Q—%—]:|dQ =0 20)

To lower the final order of derivatives appearing, we integrate the terms
containing dQ/dx and dM /dx:

dw, dwy L L _
jﬂ(— . Q+qu+w9Q+-EM}dQ+|0w,,Q—loweM =0 @l

Taking the restriction (19) into account and making use of the {(here
homogeneous) boundary conditions (i3) shows that the boundary terms
disappear and the weak form is now

fol (-

This is actually an application of the principle of virtual work discussed in
Remark 3.1. It is seen that no material data is yet included and this form can
thus be employed for example in connection with a plastic body where the
principle of stationary potential energy would no more be valid. Substitution of
the elastic constitutive relations (4) gives the final form here:

]Q+ M+wq]dg=o @2)
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I

This is seen to be equivalent to (18). (If wanted, we can always change Lhe
signs in (23) to make it (18) by taking new arbitrary weighting functions of
opposite signs to those used here.)

+wy [kGA[ &g |- 96 Elfw,,q dQ2=0 23)
o dx dx

Remark 5.6. The above type of manipulations lo produce a weak form generalize in an
obvious way lo any number of unknown functions and differential equations. The resulling
weak form is always just one scalar equation and we have ss many arbitrary weighting
functions as there are independent scalar differential equations. O

5.1.4 Standard Galerkin finite element solution

We take as the basis of the discretization expression (18) written in a more
conventional form so that the weighting functions are put first in the products in
the integrand:

[, [( dd";" ]kGA(z ] ddviﬂ El‘;z q}d_@ =0 (24)
We employ the simplest possible discretization:
P(x)=32N; (x)y,
6(x)=2N; (x)6;

F

23

using two-noded linear elements. The nodal parameters are thus the deflection
and the cross section rotation at a node. The system equations using the
Galerkin method are obtained with a similar logic as earlier: the approximations
(25) are substituted in (24) and the specific two discrete equations
corresponding to node i are found by taking first w, =N;, wy =0 and then

w, =0, wy =N, to obtain

j[dN'kGA[ﬂ—e"] ,-q:|d.Q=0

2 dx

(26)

j [ NkGA(d—v—é] CLg Elde]dfz:O
dx de  dx

We proceed to evaluate the element contributions and to perform the assembly
using the following simple demonstration example case,
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Example 5.1. A uniform property cantilever beam under constant distribuled loading ¢
is analyzed (Figure (a)). The beam cross section is rectangular and the malerial is
isotropic with Poisson's ratio v =1/3 and we lake k =5/6.

S HITHTHI 1 ;
§ * _Ja;[

L b

y
Figure (a)
m o o & @

1 2 3
Figure (b)

A very crude uniform two element mesh is used (Figure (b)). A natural listing order of
global nodal parameters is here

{:1[}= [y 6 v, 6, v 6,1 {a)

Due Lo the clamped end boundary conditions, we shail finally put
v=0, 6,=0 (b)

Nolations and approximations for a generic element are shown in Figure (c). The listing
order of the local nodal paramelers is taken Lo be (we leave the element superscripl e for
simplicity of notation mostly from the expressions to follow)

{‘“l}=["1 6 v Bz]T (c)
1 21 2] 2

I_h—_| [v,\-l‘,z 8, 8,
| 8

Figure (c)

The element approximations are
F=ZN v =N+ Now, =v +8v,
i

] d
6’=>J;N,-9J = NG, + N0y =(1-£)8, +£6, )

Making use of formulas (26) on the element level gives the element contributions

¢ [aw & 5
Fl—_[n,[?kGA[a—B]—N,q]m
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B=_. —leGA[%—B-)-P%EId—O-]dQ ()

F=[ %’ukGA(%—é]—qu]dQ

Fy=[_,|-N:kGA L N T
2 dr dx
We evaluate in detail the first contribution (g):

dn, di;
Fl = n'[Txl-kGA(g—ExﬂLlﬁ —?N‘,Hj ]—N]q]dﬂ

dN, dn; dN
= j[In,—kGAWd.Q]vj -)}(J’ ,E'kGAdeQ]Bj -jﬂ‘ Nygd@

P .
=kGA ‘ﬂﬂ]—dﬂv1+kGAI s 40,
9% dr dr 2 dr dx
: av, dw,
—LGAL:,EN, dQe, —kGAIﬂ,ENI @26, -gf , MdQ )

In the last step constant kGA and g have been assumed. The other sieps should be

obvious for example following the manipulations explained in Section 2.3.1. Evaluating
the integrals making again use of the formulas in Section F.1.1 gives

1 1 | 1 h
F=kGA| —v, —= —kGA| —=6,——8, |—qg—
1 (h"l h"z] ( 2Ty 2] ‘I2
kGA kGA kGA kGA gh

v,+-—~—2 01__11 v2+—2 92—7 (g)

Performing the rest of the calculations we arrive at the element conlributions

{FY =[KT {a} - {6} ®)
axi LEC I M) 4l
with
1 2 1 4
[ kGA kGA kGA kGA q
B 2 a2
KGA kGAh EI _kGA kGAh EI|,
[KF =| 2 3 h 2 6 k
h 2 h 2
KGA kGAR_EI _kGA KGAR EL|,
2 6 I 2 3 h
()
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1/2]1
2

b} =gh
BY =ahi, a1,
(V]

The dimensionless ratio

El
-_— ')
kGAL? g
is a measure of the relation belween the overall bending stiffness and the shearing

sliffness. When the beam gets thinner this ratio gets smaller. Similarly, the
dimensioniess ratio

El
EGAN?

Ep =

9]

is a convenient shorthand notation to be used on the element level. With (k), the stiffness
matrix () can be wrilten as

I 2 3 4
1 hi2 -1 hiz T
[K]= kGA hi2 h2(1/3+e,,) -hi2 RE(U6-g) |2 t
- ~hi2 1 EYIR )

RIZ K (176~g,) 12 KE(1/3+6,) |

From Figure (b) the data concerning the local and global nodal parameter numbering is
given in the following table (see Remark 3.9). The symbols with superscript "star” refer
here to the local nodal parameter numbers to discem them from the local node
numbering symbols.

(ORI
o @ & @
Ol 2 3 4
@3 4 5 &6
(m)
The assembly rules {2.3.39) — taking Remark 3.9 into account — give
N 1 1 3 4 5 6 ~
K\ K K Kis o o

I 1 1 2 1 2 2 2
k]= K Kn Kpt+Kn Ku+Kip Ky K |2
o6 | KS Kb KLh+KE KL +kEL Kh KL

o]
(=]
e
Bt
2,
&
£
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bll 1
bll’. 2
by +4 |9

bl =<
{;xi} bi-}-bzz 4
b (s
B2 s

The first two nodal variables are fixed by (b). The remaining active equalions are thus
Ky3vg + Kayly + K35v3 + Ky = by
Kyava + Kygtly + Kysvy + Kyelly = b,
K53V2 + K5482 - K55v3 + K5683 = bs
K63V2 + K“92 + K65V3 + K“B:i = bﬁ
Collecting the terms from (1) according Lo (n) gives in detail the set

KA (v, +0-h6y —1-vy +1/2-hEy) = gh

k—G—«h[O vy +(2/3+26, )iy —1/2-v3 +(1/6- £, )48 | =0

"GA(1 vy =112 hq + 1 vy ~1/2- 1103)——

kGAh[lIZ vy + (1168, )10y =112 vy +(1/3+£, )8, ] = 0

Here, for a rectangular cross seclion,

5 E 5

kGA==————bt =—Ebr
62(1+1/3) 16
LA
12 12

We continue with the case = L/10 and obtain (hk=L/2}

__Epra6 a4t a4
25 EbE 2 27315
12-5- Btk 15(LI2) 15(5¢)

With this data set (p) is found to be

"G‘“{z vy +0-hBy —1-vy += h63] gh
kKGA 258

—N} 0¥ +_——!9 ——vy +—— Qi 0
h ( 273350 2V3 750’3}

()

(o)

r)

@

()



5.1 INTRODUCTION  5-15

kGA 1 1 gh

A kB, +1ovs —=h, |= 22 K
n ( i R 3] 2 (s)
kGA (1 117 1 129

R s kg, vy 2 i, |=0

I ’[2"2 750 % 2 375'3)

The solution is

_383 gi® _383 qE, it

2 =

4
=0.0(J5A4326-£
47 kGA 47 El E!

3 3
=ﬁﬂ_=@m=o'onjgl.£
47 kGA 47 EI El

4. 1094 gi® _ 1094 gt
17 47 kGA~ 41 EI

2
4

=0.015518-£ t)
El

qL’
gy =2 A0 S IRAET g oz1277.85
47 kGA 47 EI El

Consistent siress resultant expressions in an element are found from (4) and {d) to be
0, = kGA [32-;—‘1'-—9, —(6, -e,).:]

0. -8 ()

M, =—EI ( _?T'J

Thus, with assumed constant element properties, the shearing force varies linearly and
the bending moment is constant in an element,

The exact solutions for the beam problem are found to be here
gl i x ¥ oafxY 1=y 1| x 1fxY
e e e I el B e [l [ ey e It
El 14\ L 6l L 24 L 375 L 2\ L
4 2 E]
6:& l'_v._l o ‘i'l 25
ErjzL 2L 6 L
X
=qljl-—=
Q q( L] )

;|: 1 x 1[x]2:|
M=gl| 24X 2%
2 L 2{L

The exact results and the results by Lhe finite element method are shown in Figures {d) to
(g) for the deflection, rotation, shearing force and bending moment, respectively.
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x/L

0.1-

vi(gL}1 EI)

Figure (d)

ExaclL

—— Finile element

xfL

prr—s

0.1 4

8 1(qr> 1 EI)

Figure (e)

Exacl

—— Finite element

1 xfL

l -4
OXql)
Figure (f)

M KgL?
-0.5

—— Exact

—— Finite element

—— Exacl

— Finite element

x/L

0

=]

Figure (g)



5.1 INTRODUCTION  5-17

The resulls by the standard Galerkin finite element method are secn to be very inaccurale
and the locking phenomenon thus appears strongly here.

Remark 5.7. The mesh in Example 5.1 is crude but even taking this into accounl the results
are still intolerably poor. However, according to the theory presented in Chapter 4 the
displacement solution obtained is the best one in the energy norm! This clearly shows that the
energy norm is not necessarily a good practical measure in engineering work. In Chapter 4 we
had the case where only one function appears in the energy norm. The energy norm concerns
two funclions here:

ve], =hﬂ[kGA(%—BT+EI(%§T]dQ}m @n

It is defined as the square rool of the strain energy (lthe quadratic parl) appearing in the
potential energy expression (15) (usually without the Factor 1/2). Using (4), we see thal the
right-hand side of (27) can be expressed also as

12 172
1 2 1 .3 1 El 5. 4 2
— —M =f =
ez )ea] |fa{p o]

B 1 - 5 172
_[ QE(ELQ +M )m] (28)

These manipulations have been performed to compare the terms due to shearing and bending.
The dimensionless number € introduced in Example 5.1 by formula (j) gets smaller when the
beam gets thinner. However, the actual shearing force and bending moment values in a
problem are usually found not 1o change strongly when the beam gets thinner. In fact, in the
cantilever problem considered in Example 5.1 these values do no depend at all on the beam
properties. This is because we have then a so-called starically determinate (slaatlisesli
miliriitty) case (see formulas {v)). Based on this, it is seen from (28) thal the contribution from
shearing gets smaller and smaller compared Lo the contribution from bending when the beam
gets thinner. From (27) it is then seen that the term dv/dx—8 =0 must remain smal! for the
whole term to remain small, We thus again arrive towards the Bemoulli case discussed from a
slightly different point of view in Remark 5.5. The standard finite clement solution tries to
approximate as well as possible Lhe exact value of (28). So il also tries to keep the lerm
di/de—8 small. Actually the solution is found 1o put too much emphasis on the limit
condition dv/dx-8 =0. Demanding this condition to be exactly valid in a two-noded
clement gives
di = wv=wy

2 8=

ar - (1-6)6; ~£0; =21 -0, + (6~ 6,)E =0 (29)

from which follows two conditions per element:
Y274 -
—“=—=8=0

h (30)
8, -0, =0
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Applying these relations sequentially element by element, say, for the cantilever beam finite
element model starting from the clamped end, it is easily found Lhat no displacements can lake

place: the locking is complete. It should be finalty noted that even when the shearing force 0
oblains high (unrealistic) values (Figure (f), Example 5.1), the value of d5/dx—§ in an

element can still be very small as the shearing force is oblained by a multiplication with a
very large number kGA. This is a case where reduced (cf. Section 3.3.3) integration (one

point numerical integration applied to the term associated with shearing) makes the otherwise
standard Galerkin formulation wilh two-noded elements Lo work quite well. In Facl, equation
(29} is then replaced by

Va3~V

~0,+(0-0,)5=0 ey

r -

which represents now only one kincmalical condition per element. This changes the element
“softer”. O

5.1.5 Sensitized potential energy

The quotations given in Section 5.1.1 show that the sensitizing idea of Courant
consists of appending a standard functional with a least squares type expression
obtained from the governing differential equations (which can be found also
from the stationarity condition of the functional as the FEuler-Lagrange
equations).

Let us now proceed with the Timoshenko beam problem in the way suggested
by Courant. The functional is given by (i5) and the field equations by (9). We
write a sensitized functional (sensitoitu funktionaali)

,(»8)=11(v8)+ 1P (1,8)+ 1P (v,8)+ TP (.8)+ -

T (0}
R T T R
En(v,a)+lj' { “} ["" “9] { ”}dg
2pa Rﬂ gy oo R9
T (0
R T, T R
+1 | QI8 Do 4% 40
2°84dx |Rg} [Ty Tep| drx|Ry
2 T (2) 2
R T, T R
=] d—z{ vy | T “’] i?{ "}d9+--- (32)
270 dx* (R L7y Tee | dx® |Ro
In the words of Courant we have modified the variational problem without
changing the solution as clearly the sensitizing terms disappear for the exact

solution. First, the multipliers 1/2 have been introduced just to avoid the final
system equations to contain the factors 2 (see Remark 2.6). Second, the

sensitizing parameter (sensitointiparameltri) matrices [1:](0), [r](l), .-+ in the

corresponding quadratic forms can be taken symmetric without loss of
generality (see Remark D.4). In connection with the least squares method in
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Appendix D we called the corresponding matrices as weight factor (painotekiji)
matrices. As the least squares functionals appear here in a somewhat different
role, we consequently also employ a different terminology for the matrices.
Thirdly, the elements of the sensitizing parameter matrices must naturally have
such physical dimensions that the whole expression remains dimensionally
homogeneous, Fourth, we must have some criteria to determine suitable values
for the parameters. This is considered in the following. In any case, we are no
more just "at the mercy" of the pure conventional variational principle. We have
now available the possibility to try to steer the discrete solution in a more
advantageous direction by a suitable selection of the values of the sensitizing
parameters.

In what follows we retain only the first sensitizing integral in (32) so we have
the functional

I, (»0)=TI1{v,0)+1®(v,6)
=] [ kGA[—-—G) +%EI(%xB-]2~qv:|dQ+bt
il [ 2] el &

The problem is thus to determine the three optimal values 7,,, Tgp, Tg = Toy-

This is effected by making use of certain reference solutions and of a special
kind of patch test to be explained in Section 5.2.

Remark 5.8. It will be found that the oplimal sensitizing paramerer values depend on the
mesh used when Lhe finile element method is applied which should be kept in mind when
looking at expressions like {32) and (33). In fact, it is found Lhat the parameter values tend to
zero when the mesh size parameter gets 1o zero. Thus in the theoretical limit considered in
convergence studies no sensitizing is needed. But in practice we naturaily have always to live
with finite meshes. 0

5.1.6 Sensitized finite element expressions

We proceed here to penerate the system equations corresponding to the
sensitized functional (33) similarly as in Section 5.1.3 by first generating the
equation 8J7,=0. The variation &§f1 of the original functional has been

performed already in Section 5.1.3 so it remains to study the sensitizing part:

T (0)
R Tow T R
an(0)=5 _l_ v w ve vido
ZIQ{RG} [Tg,, Tog Ra
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weldfls e
Tog Ry
(0}
*”V?F”“}ﬂﬂm
272 Rg) [Ty Tom Ry

| {g(av,ae)}T [-:W To T” {Rv(v,e)}dg )

2o (69,60 |70, 0| |Ro(v.0)

The steps used should be rather obvious and are explained also in Remark D.5.
The calculation rules of Table D.1 are again applied. The two scalars on the
second and third row are seen to be equal as transposing the term

{R]T[T](D)S {R} gives (transposition of a scalar does not change its value)
T T T

((RY (1”6 {RY) =8{r)" (I#17) ({RY") =8{rY [I{R}  3)
Finally, for instance (see equation (9)},

SR, (v, 9)_— kGa[ 42¥ 50 =L,(6v,50) (36)

dx dx
We again make the interpretations (17): §v=w,, 8 = wy to obtain
T (0
(SH(O) =I {L\,(W‘,,WQ)} I:Tw T»G] {R‘,(V,B)}dg (37)
Q|Lg(w, we)| %o Tea| (Ro(v.8)

The weak form obtained from the sensitized functional (33) is thus now

F,=8M,=8I +6M @ =F+F® =q (38)

or in full (compare to (24))

J‘Q[[ddw; JkGA(%—B]-r%E]%_ vq]dQ
TR P e ol

Taking the approximation (25), the system equations for node i using the
Galerkin method are thus

o
1]

(39)
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| W oAl g )-Ng lae
2| dx dx

b il R R

[ [—N,-kGA( Y g J+ﬂ1~:1 f’-‘i}dg (40)
a dx dr  dx

Ao o o] {rhaano

We shall consider them in more detail in Example 5.2.

5.2 DETERMINATION OF SENSITIZING PARAMETER VALUES
5.2.1 Reference solutions

Weighted residual methods in a way give up the study of the detailed field
equations and consider them only in an average, integrated sense. We now try to
inject information about the actual local solution behavior info the formulation.
Let us consider a generic point in the domain of the solution. To simplify the
treatment we assume constant operator data in the differential equations (5.1.9):

d%v de
v,0)=L, (v,0)+q=kGA— —kGA—+q=0
R,(v,0)=L,(v.0)+q 2 14
d%e

=] = i‘i— ——
Ry (v.0)= Ly (v,0) ~ kGA ~~KGAO + EI- = =0

(1}

Here kGA and EI are some local constant representative values around the

generic point under study. It should be emphasized that the intention is just to
make the process of the determination of some roughly suitable sensitizing
parameter values simple enough. No emor with respect to convergence is
introduced in the possible approximations included in (1). This is understood by
considering Section 5.3.2,

Since set (1) is linear and has constant coefficients, the solution is found by
standard methods of mathematics as the sum of the general solution of the
homogeneous system (g =0) and of a particular solution of the full system to
be (Through differentiations and eliminations first a fourth order differential
equation for v can be derived and solved. After that 6 can be solved from
another differential equation.)
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v=A+Bx+Cx2+Dx3+qo = X r—x* |+
2kGA 24E1
6EI 1 @
6=A-0+B1+C-2x+D| —+3x% [+ gp— x>+ -
kGA 6Ef
Here A, B, C, D are integration constants. The loading has been developed into
a Taylor series about the generic point:

g=qo+ (g )X+ 3)

We have taken for convenience here and in the following without loss of
generality the local origin x=0 at the generic point under study. Only the
constant part g, of the loading has been included in the solution shown in (2).
It will be found that ending at this suffices for the determination of the
sensitizing parameter values.

Now the exact solution around the generic point under study must be
approximately — or if the data happens to be constant -— exactly according to
(2). How can we make use of this information? At a first glance one could
speculate that some kind of iterative procedure might be needed, as the values
of the integration constants would have to be found at the point under question
from a preliminary numerical solution. Fortunately this is not the case. It will be
presently seen that the values of the integration constants are not needed at all.

We coliect v, 8 and g in a column matrix and obtain the presentation

v 1 X x x*
61=A{0t+B{1}+C12x}+ D{6EN/(kGA)+3x*
q 0 0 0 0
(—1/(2kGA)- ¥* +1/(24ET - x*
+ o 1/{6El)-x° o (4)
1

\

We call this combination of v, 8 and g as the reference solution (referenssi-
ratkaisu). The values A, B, C, D, gqq, -+ fix the solution. We obtain specific
reference solutions taking consecutively only A#0, only 820 only C#0,
only D#0 only gy #0, --- These give the consecutive reference solutions (see
Remark 5.9)
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v=1l, @&=0, g=0,
v=x, @=I, =0,

: ! ®)
v=x", 0=2x, g=0,

As a check one can take the solutions consecutively from each line in (5) {(or
from each column matrix on the right-hand side in (4)) and find that equations
(1) are always satisfied.

Remark 5.9, It will be found that A4, B, --- cancel in Lhe equations used in the patch test in
Section 5.2.3 so that we can simply take A=1, B=1, ---.0

5.2.2 Series form reference solutions

The reference solutions found in the previous section were obtained using the
mathematics theory for ordinary linear differential equations. In two or more
dimensions, the field equations are partial differential equations and a
corresponding simple mathematical theory does not exist. For these situations
we can try to use a series type approach, Freund and Salonen (1998). The ideas
are introduced here to be later extended into multidimensional cases.

The starting point is again the simplified field equations (1):

kGAv,, —kGAO, +q=0

6
kGAv,—kGAO+EIf,, =0 $2
We employ the obvious new notation for the derivatives to simplify the
formulas. We develop the unknowns into Taylor series about the generic point
(x=0):

1

v(x)=vp+(v, )0x+—(vn)0 x2+ e (vnt)o % ﬂ(vm)o o

(7

1

0 (x)=6p+(B, )y ¥+ = (B )y x* +~(Bxxx )y < +£(9m)0 e+

and the same also for the loading:
1
q(x)=q0+(qx)0x+-£(qn)ox2+--- (8)

The subscript 0 refers to a quantity evaluated at the locat origin, Evaluating (6)
and its differentiated forms at the origin gives
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kGA(vy )y —kGA(B;), + o =0
kGA (Ve )y =k GA (B )g +(4x) =0
kGA(vJur.tx )0 —kGA (gxxx)o + (qx.t )ﬂ =0

&)
KGA (v, ), —kGA (), +EI (B,), =0

KGA (vee )y —kGA (B, )y + EI (85 )y =0
kGA(Vere )y —KGA(Be )g + BT (Baas )y =0

Equations (9) contain information about the governing field equations. If we
end as shown, there are nine unknown quantities (v,)g: (Voor (Veredoo
(Vexer)or G+ @)o» Ercdor Orexdor Orxeedo in the six equations (9). Thus we
can try solve for six of the quantities and express them in the rest. Here it seems
logical to consider the lowest order derivatives (v.)o, 6y, (6;)9, s given
(compare to initial or boundary conditions in general which are of lower order
than the highest order terms in the differential equations) and to solve the rest
from (9). After that the solutions are substituted in (7). As the calculations
would be rather tedious by hand, we perform them below using Mathematica:

eqs = (kGA vo —kGA 8, + q=0,
kGA vy —kGA 8y +0:. =10,
KGA von —kGA Oy + g =10,
kGA v, —-kGAO+H g =0,
kGA vo ~kGA 8; + Bl 8y =10,
kGA viy ~KkGAOg +H g =0);

sol = Solveleqs, (Vo s Yix 5 Ymx 1 Oy Oox 5 o 1]

3 -kGA qQ+ EI G Che -kGA 9 + KGR
{{B)W*’FEIJ Voo —‘-————EIISF,VW“"‘—]—SF R o)
= | - kGha, ~kGA e s kBA v
B o » Vi + = rm %, B 3 = |

V[x_]i=v+ v, x+lv x1+1 Yo X4 1 Yoo X'
— 3 2 = 6 =X 24 g~ g

Collect{v[x) /. sol, (v, vz, 8, 05, 0 G, Gu)}

(% %) kaRe ®o Hox [
\ 2kGA  24ET) 6 EL 6kEA 24 kGA | 6EL | 2

fv-a

1 21 3, 1 4
O ]:=0+ 8, x4 —Og X+ — Oy X'+ — B, X
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Colleci[0]x] /. sol, [ ¥z, 8 6xy G Qs Gu ]

gx® KA X2 Ko kAR
{E‘Ei*{l Tm—;e*zrﬁ' SEr %0

We have obtained the tentative reference solution

. ) x—kGAI(6EI)-x° kGA/(6EI)-x°
0t =vg{01+(v,)y] —kGA/(2EI)-x> }+611+kGAl(2ET)-x*
0 0 0

1/2-x2 ~1/(2kGA)-x* +1/ (24EI)- x*

+(0: )4 * 1+ 1/(6EI)-x°
0 1

~1/(6kGA)-x’ ~1/(24kGA)- 5*
+(g:)oq V(24ED) 2" 1+ (gu)y 0 - (10)
* 1/2-x*

The terms in the first five column matrices on the right-hand side are again
reference solutions: each of them is found to satisfy separately equations (1).
The multipliers v, (v.)g: Gy, (0;)¢ have now the role of the integration
constants. Comparison with (4) shows that only the first of the four first
reference solutions are identical. However, certain linear combinations of the
new reference solutions are seen produce the old solutions (4) so the
presentations are equivalent. The last two solutions in (10) are found not to be
any more exact reference solutions. This is obviously due to the truncation in
the series representation of the unknowns. However, the five separate exact
reference solutions are here enough for the determination of the sensitizing
parameter values.

The series type approach to reference solutions can be extended to 1wo or more
dimensions. We will give a demonstration of this in Chapter 12.

5.2.3 Sensitizing patch test

The obvious criterion for selection of the sensilizing parameter values is the
goal of achieving the nodally exact solution. This has been emphasized already
in Remark 4.1 and we continue here to follow this goal.
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An alternative version of the patch lest, described in its conventional form in
Section 4.1, is now employed for the determination of the sensitizing parameter
values.
i1 i il i itl
h h h
(@ - ®

Figure 5.2 (a) Two-element patch. (b) One-element patch.

We consider here the simplest case of two-noded elements similarly as in
Example 5.1. A generic element is "cloned" to form a uniform mesh and a
typical two-element patch is taken as the system (Figure 5.2 (a)). Using the
sensitized formulation, the two general finite element system equations
corresponding to node i are formed. The details are given in Example 5.2.
Constant parameter values are assumed in an element. The nodal values are
taken according to the reference solutions (5):

via=L  y=l vy =l
;-1 =0, 8;=0, 0,,=0
(1)
vio=-hk, v=0, Vi = h
1, =1

In the fifth reference solution used here, the constant loading gqp =1 is already

included. The nodal values (11} are substituted consecutively. Correspondingly,
there are finally obtained the following five sets of two-equation systems:

0=0

12
Tg —Tay =0 ( )
—Tio +Tﬂv=0 (13)
0=0
0=0

(14)
Tow =0
~ E1/(KGA)T,g +| 1* - E1/(kGA) |5, =0 s

~ Ty + EI/(kGA)-Tgp =0
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(kGA+12E1 7 Jrgg +1=0

(16)
~T,g + 276, ~12E1 /(kGAN }- (1,9 +74,)=0

Following the comments in Section 5.3.2, we have for generality developed the
expressions without assuming a symmetric sensitizing parameter matrix.
Immediately, sets (12) and (13} demand symmetry, 7,4 =Ty, and from (14),

T, =Tg, =0 an
and from (15) and (16),
S 1 1 1
kGA+12EI/h*  1+12g, kGA
s (18)

El EI1kGA g, k
Tw =t = 7"

kGA kGA+12EI1H>  1+126, kGA

where the dimensionless number

EI
kGAh*

£y = (19)

Thus the sensitizing parameter matrix is found to be diagonal with negative
elements and this means physically that sensitizing makes the solution more
soft counteracting locking.

Remark 5.10. In the conventional patch test an irregular patch is taken and the lest is
performed o delermine the nodal values at the intemnal node: are they according to the
polynomial expressions? In (he sensitizing palch test a regular patch is taken and also the
internal nodal values are fixed according 10 the reference solutions. The test is performed 1o
determine the sensitizing parameter values. The intuitive idea is that if the element as cloned
to form a regular mesh produces a good response, the element will probably behave
reasonably well with the generic parameter values obtained also as an individual element in
an trregular mesh. Numerical results have confirmed this behavior. O

Remark 5.11. As the finile element systemn equalions are linear with respect 1o the nodal
values and with respect lo the source lerm, using the optimal values of the sensitizing
parameters found above, the paich test is now seen 1o be passed for the full expression (4)
with arbitrary values of A, B, --- . Thus in the case of constant beam properties, uniform
mesh and constant source term, the finite element solution will be nodally exact at least with
essential boundary conditions. With essentisl boundary conditions the active system equations
consist of equations for only the internal nodes, which explains the reservation in the sentence
above. In the case of natural boundary conditions we can perform a study of 2 "boundary
patch” around a boundary node which would be in one dimension a one-element patch (see
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Figure 5.2(b)). This is not considered 10 be a very important fealure in the design of a
sensitized method. It will be sludied in some detail in Section 6.2.3.0

Remark 5.12. In the above example case we obtained the four (if the parameler matrix is
assumed originally as non-symmetric) unknown parameters in principle from ten system
cqualions. Thus the system from which the parameters were determined was seemingly
overdetermined (ylimiirkytyvi) in the sense that there were more equations than unknowns.
Here, however, the system was consistent so that four linearly independent equations could be
found which determine the solution uniguely. In the general case, it may well happen that
using several reference solutions we may really obtain an overdelermined system. Then the
conventional least squares solution method employed in connection of overdetermined
systems could be used Lo try solve the set. 0

Example 5.2. We evaluale first the element conibutions for a two-noded element
(Figure (a)) using sensitized formulalion. Constant element properties and constant
sensitizing parameler values in an element are assumed.

1

—— ]\[ r—

Figure (a)

The numbering of the nodal parameters is done similarly as in Example 5.1. Making use
of expressions (3.1.39) on the element level gives

dy =
F=R+FY = |—LkGA|—=-8|-Ng|ae
I =H+ I [ (dx ] 14
(0 5
= 2Tl
Tov oo Ry
da—o’)#‘ﬂﬂﬂ]m
dx dx
0 (=
[“’" ()
To, Too Ry
]—qu:IdQ
D -
o 2] (e
Tov  Top R

NS {A(Nl 0)

(M.0)

_\,—a

F}=F,+F} =j [leGA
o {aﬁﬁig

B=rR+f7=(, [d:i’ kGA

_‘,_Jf—"\

5‘]“'
cbi

(@)

=5
-

Nz.
“' {Lo (¥2.0)

Flab+ 0= [ NszA[

=)0k
QJI

“T’
|
=

58,
5

—

0 NZ w T - {ﬁ }
M rde2
+L"{Le(° Nz) } [’ﬂv Tee] Ry
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The standard pants Fj, F,, Fy, F, have been evalualed already in Example 5.1 (see

formulas (i)). For the sensitizing terms Flm), Fz,w), F;o’, F‘fu’. the simplified residual
expressions (1):

d?y d
R.(v.8)= L\,(v.ﬂ)+q=kGAE—kGAE+q

®
Ry(v.0)=1Ly(v 6)—kGA-d—v—kGAB +Elﬁ
. ' " W
and the corresponding approximations
R =0-kGa%% 1 g=0.v, + 50 10.v,-%%0, 4 g
dx h h (C)

Ry = k6aSY —kGAd +0 = —"ﬂv, - kGANO, + kG4
dx h

v, —kGAN,0,

are used. It is seen that for this low order approximation the bending behavior —
expressed (hrough the bending stiffness — disappears. From (b),

LWO=0,  L.0=-2
LN =528 10, = -kGAN,
L,(N;,0}=0, lo(Ng.0)=k% (d)

LN,y =222, Lg(0,Ny) = ~kGAN,

For instance, writing

F = (K, {a}- 5, ©
Il x4 ax]  Ixl
we oblain
T 0) [ =
[Kl](o){a}=I {Lu(vaO)} |:Tw Tve] ){lfp}dg
o {M.0) Lo t0] |R
_.J‘ [o __"GA] T T | .
ar h Ty Top
kGA kGA v
R N
_ kGA ~kGAN, kGA —KGAN, vy
h 8,
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0 kGA ~ kGA 4|
kGA h i 9,
=== (o 0] kGA kGA aa,
-2 _kGAN, == -kGAN, 2
y h 5
]
kGA 4] kGA 0 -kGA |8
=_'__[Tﬂv Tﬂﬂ]
h - kGA -kGAhI2 kGA —kGARI2||v,
0‘2
2
kGA
f . ) (o0 -1 + (T, + iegg 1 2)8) = Tgo vy + (Tg, + gy 12)6, | (3
and
T 0)
bI(m —_ {LV(NUO) [Tw T\ﬂ]( {q]dﬂ
a I.Q(Nl yo) Tgv reo 0
0
= ,[0 ——"G"] e N LI
7 h J|Te, Top 0
kGA q
=T[Tev Tm]_[ .{O]d-Q
=kGATavq0 (g)

The last form of (g) is obtained assuming a constant loading gg. The other contributions
are arrived at similarly. Denoting

o 0
7 =[] {a)- ) ®
%1 Axd 4% dxl
we obtain the sensitizing sliffness matrix

1 2
Tgg —Toy + }Ww /2

(K]® = (kGAY | ~7,g +Impg 12 T, —htg/2—hty, /24 hiTpy 13

Tk ~Tgg Ty, = hTgg 12

Tg+higg/2 —T,, ~ht,g/2+ktg, /24 h Ty 16

-‘rg; Tge + lrr;o 12 1
To—higyl2 -7, —Imgl2+ e, 124 h*Tg 16 |2 -
Tao —Tg, —Higg!2 3
T —higg 12 T, +htg/2+htg, 12+ W1 13 |4

and the column vector
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Ty

{6} = kGAq,
—Tpy

Ty T hTg, 12

m O© @

1

T +h1g, /2|2

@

3
4

@ @

1 h 2

h |3

Figure (b)

X

We proceed now to form the system equations corresponding to nede [ of the patch
shown in Figure 5.2(a). However, to have simple indexing we consider the mesh shown
in Figure (b) and its node 2. Similarly as in Example 5.1, we amive al the system

cquations

Ky + Ky + Kyyvy + K340y
Ky + Koy + Kggvz + Koy

or in more detail

+ Kss'l’:, + K3693 "b} =0

+ K45V3 + KMBS —b4 =0 (k)

1 2
Kin + K30, ’*(K:u + Klzl)"z +(K31.4 + Krzz)ez + Ki3vs + Kigy “(b; +b&z)= 0

Kigv + Ky + (Kls +K3 )Vz

+(Kis + K%z)ez + K2y + K30, - (b}‘ +6})= ®

Although we apply the sensitized formulation, we for simplicily neglect the index s. We
collect the terms from formulas (i) of Example 5.1 and from formulas (i} and (j) here:

kGA kGA
Ky=-——% (kGA) ( Top
1
h
EGA [kGA
K35='T ( J,)("Toa)
by =goh
2
., koA (oA}
2 h
kGAh EI _(kGA)
6 h h
kGA)
K43=( ) (-0 ~Tos)

h

%GAR  2EL _ (kGAY
(et Sy S M A

3 ] h

kGA (kGA)
, K32=~—2~+%(Tgv—}ffmf2)
LGAY
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K“:_%J,("GA) (.6 —hTpg /2)
k
ittt P oAy (—Tw—Irr,012+hr9v12+hzrmIG)
6 lt h

b, = kGAquhty,
The First reference solulion (5) gives the nodal values (i £ 2)

v=l, wn=1l, y=l

6]50, 62=0, 83=0 (0)

with no loading. The corresponding system equalions are thus

[ kGa (kGAY
___h_+(_h_)(_7m)].l
r 2

N 2ka+(kGA) Zrm]-l

+

h

[ kGA (IcGA) (ko) )]
02

[ kGAY
k—§i+(—h)—(rm + htgy 12)}-1

H@(—nﬂ —-r,,,)]-l

L

r 2
kGA (kGA)
— (7,5 —h1gy 12) |=
2 (o =10 12)
Further development gives
0=0
T —Tgv =0

(q)

This is set (12), Equations (13) - (16) are obtained similarly.
5.2.3 Refined stress resultant expressions

Before recalculating with sensitizing the problem of Example 5.1, we consider
the evaluation of the stress resultants (jannitysresultantti) — shearing forces
and bending moments — from the sensitized solution. The displacement
assumptions of a linearly varying deflection and rotation are clearly very
unrealistic. On the basis of the optimal design of the element properties by
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sensitizing, the element is found, however, to be able to give nodal values of
good accuracy. As the element is very simple, so are the resulting finite element
expressions and the element is thus convenient for practical calculations. The
final overall results must in any case be interpreted simply just as kind of
sample data obtained for selected points (nodes) of the structure. From this raw
material one can try to extract more refined results by rejecting the original
displacement assumptions and considering locally some better altemnatives.

We recall first the consistent shearing force and bending moment expressions
for the two-noded element (sec expressions (u), Example 5.1):

0. =kGA[v2;vl -6 ‘(92'91)5}

(20)
M, =- E;(?Lgl]

h

Subscript ¢ refers to "consistent”.

The actual analytical solution for the deflection v and for the cross section
rotation @ of a uniform Timoshenko beam (we associate again some local
constant representative data for an element) is given by (2) with A, B, C,Das
the integration constants. We now consider the deflections v, v, and the
rotations 8,, @, at the beam element ends as given. Using these four boundary
conditions, we can solve the integration constants. The expression for the
deflection is found to be (no distributed loading)

V=H1V1+H2 (91+'}')+ H3V2+H4(92 +T)

=Hlv1+H291+H3v2+H492+(H2+H4)}' (21)
where
H1=1“3§2+2§3
Hy=(E~2£2+8%)h
) s (22)
Hy=3E"-2¢

Hy=(-¢2+&*)h
and where £ is the element length. Also, the shearing strain (5.1.6):

=—-0 2
=4y (23)

5-34 5.2 DETERMINATION OF SENSITIZING PARAMETER VALUES

is here a constant. The functions H happen to be the so-called cubic Hermitian
shape functions (& € [0,1]) used in some situations in the finite element method,

e.g., Zienkiewicz and Taylor (2000, p. 36, 435).

The shape functions are sketched in Figure 5.3. An approximation in a
Hermitian element for a generic function ¢(x) is (£ can be expressed in x)

¢ (x)= Hy ()¢ + Ha (x)@] + H3 (x)92 + Hy (x) 62 (24)
where

,_(d¢ , _{d¢

o). w(2)

This is a case — not considered in this text further — where some of the nodal
parameters in a finite element method can be derivatives of the function under

study., The Hermitian element has been used in problems where a c!
continuous approximation is necessary; for instance in structural mechanics
especially in connection with the Bemoulli beam theory.

H H
14— 2
\ 0.1h-
0 — 0 .
0 1¢ 0 1¢
Hy H
1 4
0.14 1

Figure 5.3 Cubic Hermitian shape functions.

It seems quite natural to try to make use of the rather realistic deflection
expression (21) in post-processing. (We could have included here also the
effect of a distributed loading but this idea seems to be difficult to generalize
for plate problems so we reject this possibility.)

The constant shearing strain is associated via (5.1.4) and (5.1.6) with a constant
shearing force:

0
= 26
Y tCA (26)
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From (23),
dv
6= e - 27
Y 27

and the curvature (kiyristymi) (This term is actually the curvature of the beam
axis only in the Bemoulli theory; here it is a measure connected to the bending
moment via (5.1.4).)

a0 __d o d
de  dx? dx?
d’H, d’H,, d’H; d’H,,  d*(H,+H,)
= s M= 0 2 V2 5 62 2
dx dx dx dx dx
1
=—;2—(—6+12§)v1——-(—-4+6§)91
1 1 1
—-,1—2(6~12§) -Z(—2+6§)92—Z(—6+12§)y (28)

The curvature is seen to vary linearly along the beam. The values at the ends are

dé 6 4 6 2 6
—— | ==y+-0 +—0y +
[ dx)l hz"l AL ’2"2 PR h?’

(29}
48] _ 6, 2g+8, tg 8
dI 5 hz h 1 hz 2 A 2 hy
The bending moments at the ends are obtained thus from
6 4 6 2
M =El| =w+-0,—— v, +—0, |+6he
I (hzlhthth] nQ
)

6 2 6 4
Mz = EI[_h—ZV]_ _Eel +h—2v2 —262]_6h5hQ

Expression (26) and the notation (19) have been introduced. The bending
moment varies linearly between these values. From (5.1.3b), the shearing force

MZ_ML

Q==

(31

In post-processing, we are given the nodal displacements and we want to know
the three quantities 0, M, M, Solving from (30) and (31), we obtain
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S - 26, +—=v, ~—6
Cr (1+12sh)h[ e ? 2]

X

(

6
2R
:Bl-—VZ —92+

EI 6
o =@z [ e (616 )} (G2

E1[62 6 4. 12g,

M), = | oy =20 vy =~ 0 + 1
(:), = ey | 2 m Tt

The notations have been now changed to indicate that these are approximate

results. Subscript r refers to "refined”. For slender elements the terms
containing £, become small. Bending moment inside the element is assumed to

vary linearly between the nodes:

M= N(M) + Ny (M), =(-E)(M, ) +&(M.), (33)

The shearing force Qr is constant in an element. It may be noted that (33)
coincides with the consistent expresssion (20b} at the element midpoint.

Example 5.3. We repeat the analysis of the cantilever beam presenled in Example 5.1
now using sensitized formulation.

From (17) and (18), 1,5 =7, =0 and

€y h'z
=l N
1+12¢, kGA @)
S S
% 1412¢, kGA

When these values are substituted in formulas (i) and (j) of Example 5.2, we obtain

1 2 3 4
1 hi2 -1 iz i
[K]® oo L KGA K12 W (U3+g,) -hi2 W (116-g)| n
T ol+l2g, B | -1 ~hi2 1 -niz s
hi2 K(16-g,) -hi2 K (173+g)
and
011
1|2
IO —__En 52
o} 1+12¢, 7' ] 03 ©
4

S
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It is interesting to note that the stiffness matrix (b) is just the original stiffness matrix (1)
of Example 5.1 multiplied by the factor —1/(1+12¢,) . Thus the final element stilfness
matrix of the sensitized formulation is simply

(KT = [k]+[x]7

] 2 3 4

! iz -1 hi2 1
_ 126, kGA|M2Z R(U3+g) -hi2 E(l/6-g)2 .
T1+12g h | -l ~hi2 1 -hi2 |3 )

hi2 BE(L16-g,) —hi2 K (L/3+¢g,)]s
The mesh and the data is the same as in Example 5.1. So g, =4/375 and

12¢ 16
—h (e
1+12¢, 141

Sensitizing is thus scen Lo change the element stiffness matrix here substantially. The
sensitizing loading terms are

A =(b;)(°) +(bﬁ)‘°) =0+0=0

b = (b} )‘m (23 )(m —Zh gt (~141)=0

1+12¢,
®
o = (] ) =0+0=0
© _ {1\ O (0} £ __ 4
by _( ) ( ) T 1+12¢, R (EH= il
Instead of set (s) of Example 5.1 we have now

16 kGA
mT(Z 2+0 hﬁz—l vyt — h83] qh
) kGAI 0wy + 25 th—l 3+l—”—h93 =0
141 & 2 750 @
16 kGA h
o (1 vz——h62+l v3—-ih03) "2
16 kGA 117 1 129 4

vy b ROy = vy b o by | = = gt
[T (2”’ 750 2 2"”*37513] an? "

The solution is
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]d 4

1’2_1151009 qh _ 161009 ge,h =0.047579.&L_
2256 kGA 2256 El El

3 3

2=262375 g _ 262375 qsfh —0.15507. 95

2256 kGA 2256 EI El o

229381 gh® 229381 g¢, 0" g

= = T -0.13557- 41—
=728 kGA 1128 El El

_ 156625 gh _ 156625 &,
371128 kGA 1128 EX

3
=0.18514- 95
El

The exact resulis and the results by Lhe sensitized linile element method are shown in
Figures (a) to {d) for the deflection, rotation, shearing force and bending moment,
respectively,

0 1 x/L
0
Exacl
— Sensilized finite element
0.1 1
v/t ET)
Figure (a)
0 I x/L
0 4
Exact
0.1 4 Sensilized finite element
81(gl? 1 EI)
Figure (b)
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x/L

Exacl

Sensitized [inite element

consistent
gl
QHal) ---  Sensilized finite clement
Figure (¢) relined
M [(gL?)
...0_5 4

Exact
Sensitized finite element
consistent

Sensitized finite element
refined

Figure (d)

Compared to the results by the slandard version, a dramatic increase in accuracy is
detecled. Similarly, the refined stress resultant distributions are clearly to be preferred
over the consistent ones. The displacement are not here nodally exact, but as the
boundary conditions on the free end are natural, this result is according to Remark 5.11
not in contradiction with the theory.

Remark 5.13. The analogue ol the Timoshenko model for plates is the so-called Reissner-
Mindlin model. Sensitizing can be applied also there, Freund and Salonen (1998). It is found,
however, that some de-stabilization (roughly, use of reduced integration for the shearing
terms in the standard Galerkin method) must be first performed and only then sensitizing lo
have an accurate enough formulation. [1

5.3 WEAK FORMS AND SENSITIZING
5.3.1 Explanation starting from the variational form

It seems that at the time Courant wrote the important articles about sensitizing
the main emphasis was on variational formulations and weak formulations were
hardly mentioned in engineering applications. Starting from the eighties
specially Hughes and his associates have introduced numerous important
contributions where weak forms have been "stabilized" by appending them with
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additional terms, e.g., Hughes and Franca (1987), Hughes et al. (1989). It seems
that these formulations have evolved gradually without any knowledge about
the similar kind of formulation by Courant. Comparing with Courant, the main
difference is of course that the starting point is more general as it is a weak
form and not a variational principle but the approaches are similar in the respect
that certain additional terms are appended to the standard expressions. Starting
from the sensitized presentation of Courant, we can now rather easily shed
some light on the emergence of these so-called stabilized terms in weak
formulations.

Let us consider as an example again the sensitized functional (5.1.31).
Demanding its stationarity gives the equation

511, =811 +5 [ {RY[¢] {R}ac+

I d

1 d T
+5§IQE;{R} [

The terms involved are in more detail

5n=j kAl & —e | 99¥ _sg +E1£d—&—9——q6v de2 +8bt
e dx dx dr dx

sl e wea-f OOl e iole o

{R}dQ+--=0 m

1, d T 40 d
6—| —IR —
2 -de{ } [T] dx

] d {L,,(5v,69)}T[T]m£{RV(v,ﬂ)}dg

Q'dx | Ly (6v,50) dx | Ry (v.8)

The manipulations needed are explained already in connection with formulas
(5.1.16) and (5.1.33). Making again the interpretations dv=w, and 60 =wy,
where w, and wy are weighting functions, we can write a sensitized weak form
(sensitoitu heikko muoto)

{R}dQ

F+FO L rO 4. =0 )

where

FE_[ %-—WG kGA 2—9 +%Elﬂ—qu dg2 +bt (4)
Q0 dx dx dr  dr
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@ _ |L(wvg) T 0 [R.8)

: _L’{le(wv.we)} e {Rg(v,ﬂ)}dg ®)
- -d_ LV((SV,(SB) i (1)1 Rv(v,ﬂ)

d -Iﬂdx{[g((Sv,SB) [] dx RG(VaB) e )

In {(4) the notation bt means again some terms from the boundary differing from
the use above. Let us now forget the variational principle and consider that a
standard weak form F =0 has been arrived at from the governing differential
equations by multiplying them with the weighting functions, integrating over
the domain, integrating by parts in the uvsual way etc.,, as explained in
connection with formulas (5.1.20) - (5.1.23). A least squares weak form

(pienimmiin nelién heikko muoto) F =0 is seen to be arrived at directly from
the corresponding least squares functional. Similarly, the gradient least squares

weak form (gradientti pienimmin nelitn heikko muoto) F =0 follows from
the corresponding gradient least squares functional etc. The sensitized weak
form (3) can thus be interpreted as a linear combination of several weak forms,
It contains free parameters by which we can again try to steer the discrete
solution in the direction we want using the patch test similarly as before.

The gradient least squares type appended terms in connection with weak forms
have been presented for the first time in Franca and Dutra Do Carmo (1989).

Here the weak form F =0 with F according to (4) is the principle of virtual
work applied to the Timoshenko beam problem and weak form (3) may be thus
called as sensitized principle of virtual work (sensitoitu virtuaalisen tytn
pariaate). It is obvious how a sensitized principle of virtual work can be
generated for other structural problems.

5.3.2 Concluding comments

At a quick glance the sensitizing terms used above seem to have a serious
defect with respect to the low continuity of approximation. For instance, the

residual (5.2.1a) contains the second derivative term d2v/dx?. According to the

continuity condition of Section 4.1 this would demand a ¢! continuous
approximation for convergence. However, it must be remembered that when
studying convergence, the element sizes tend by definition towards zero. Thus
roughly speaking, any kind of extra terms producing beneficial behavior (or
not) can be used if these terms vanish fast enough when the element size gets to
zero. This last behavior is found to be normally the case. We need no
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sensitizing in the theoretical limit never reached in practice. Let us as an
example consider the sensitizing parameter expressions (5.2.18). Written as

. —__ EIIKGA . ( -
vv—_———.l 60=—_-__
kGA + 12512 kGA + IZE’2
kGAh kGAh

we see that for a given kGA and El the denominators in (7) get larger and
larger with a diminishing h and the expressions itself thus tend clearly to zero.

The sensitizing terms are written in the literature usually in the form
T 0
2 [ i} 717 (R} ®)
e

etc., to emphasize that they are to be evaluated only over the element interiors.
This kind of representation is found sometimes to be used to motivate why we
can violate the conventional continuity requirements in the approximation. To
be honest, the elementwise representation is finally used also for the standard
part of the weak form and the explanation seems not to be watertight. But the
logic of the next paragraph explains how we can well violate the conventional
continuity rules with respect to the sensitizing terms. As indicated already in
Remark 5.8, the parameter values depend on the mesh and an elementwise
representation like (8) reminds us about that. We will, however, usually avoid
the elementwise form for simplicity of presentation.

We arrived above at a sensitized weak formulation via a variational principle
mainly to see the connections with the older literature on the theme. As weak
formulations are more general than variational formulations, we can now
broaden the possibilities. In a sensitized weak form the sensitizing terms are
residuals of the field equations (or their derivatives) multiplied by some factors
and added to the standard weak form expression. If the exact solution is
considered, just zeros are added. The sensitized formulation remains thus
consistent (konsistenttti formulaatio). By this concept is meant in the finite
element method that the exact solution satisfies the weak form. This property is
usnally considered important. Obviously we can medify the sensitizing terms
now in many ways. First, the modeling possibilities may increase if we let the
sensitizing parameter matrices be non-symmetric. Second, the multiplying
factors L may be changed, say to simplify the resulting expressions, and the
formulation is still consistent. Third, based on the previous paragraph, we can
further simplify also the residual expressions — as has been done already in
Section 5.2.1 — and violate somewhat consistency because the sensitizing
terms in any case vanish when the element size gets to zero.
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In some situations the sensitizing terms can be given a transparent physical
interpretation. This is found to be the case especially in connection with the
diffusion-convection problem dealt with in Chapter 6. In general, however, no
deep interpretations are necessary. We may be simply satisfied by the fact that
sensitizing brings into a formulation additional quantities, sensitizing
parameters — or so-called tuning parameters (viritysparametri) — which give
more freedom for the discrete solution to simulate a problem.

The long neglected sensitizing idea of Courant is due to its simplicity
conceptually very appealing. In a way one could say that the idea takes the best
of two worlds. The Galerkin method (or the variational method if available)
needs low continuity for the approximation but does not always work well with
reasonable meshes. The least squares method leads to nice symmetric system
equations but is awkward to apply as such due to the high demands on
continuity. By combining the two methods free parameters emerge for
optimizing the discrete solution and the least squares terms no more need high
continuity. The idea is naturally not restricted just to the finite element method.
However, combined there with the logic of determining the sensitizing
parameter values by a special type of patch test it seems to offer a powerful tool
1o further enhance the applicability of the finite element method.
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6 DIFFUSION-CONVECTION
6.1 INTRODUCTION

In this chapter the effect of convection is considered. The numerical treatment of
convection has been a major problem and this text concentrates strongly on it.
The standard Galerkin method does not work well in convection dominated
cases. Wildly oscillating solutions (in space} are obtained with reasonable
meshes. This behavior can be remedied by sensitizing.

6.1.1 Energy equation completed

Before dealing with the diffusion-convection problem we introduce a rather
general form of the energy equation. This far it has consisted of the field
equation (3.1.13):

%__J,:() (1)

ox,
and of the Fourier law (3.1.50):

aT
Ga =~Kop 3%y )

We employ here and from now on mainly the index notation in Cartesian
coordinates and summation convention similarly as in Appendix A. Instead of
conventional typical Latin indices such as {, j, we have used here Greek symbols
such as &, and reserved the former for finite element shape function and

nodal parameter indexing.

Equation (1) is valid in the steady case in a continuum at rest. The general local
energy equation following from the principle of balance of energy is, Malvem
(1969), Ziegler (1983),

V.eq+pe ~o:d—s5=0 (3a)
or
a&.p - — (e
pe Gaﬁdaﬁ s=0 (3b)
dx,

Here g is the density (tiheys) {[p]= kglm3) of the continuum, e the specific
internal energy {ominaissisdenergia) ([e] = J/kg )}, o the stress tensor (jinnitys-
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tensori) ([s]= N/m? ), d the deformation rate tensor (deformaationopeustensori)

([d}=1/s) and q ([g]l= W/m?) and s ([s]= Wlma) have the same meaning as
before.

There are two main ways 10 describe a continuous medium in motion; the
Lagrangian and Eulerian description (Lagrangen ja Eulerin esitystapa}, Malvern
(1969, p.138). The former is usually employed for solids and the latter for fluids.
As our applications here with moving bodies will be only for fluids, we will use
the Eulerian description. (In the applications for heat transfer in Chapter 2 and 3
the motion of the continuum was assumed to be negligible. Therefore the
description used there can be considered equally well to be either Lagrangian or
Eulerian.)

The deformation rate is connected to the velocity (nopeus) v ([v]=m/s ) of the
medium by the kinematic relation

1 dv,  9vg
d =— _{I+_ 4
ap 2{8&; axa] ()
The quantity
o =V 7= (5)
ot

is called dilatation rare (dilataationopeus) and it describes the relative volume
time rate of a continuurn element.

One local form of the principle of the conservation of mass is

P +pVev=0 p'-i-p%-:O 6)
ox,

This is often called the continuity equation (jatkuvuusyhtild).

With (5) and (6), the dilatation rate can be expressed also as
dgg =—— (7

The relations above are generally valid. Depending on the specific further
assumptions, a confusing number of versions of the energy equation exists. We
now make some constitutive assumptions to proceed to a certain version.
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First, the medium is assumed to be a Newtonian fluid (Newtonin fluidi), Ziegler
(1983, p. 78):

O =—POag +2Udyp + Ady,Sop (8
Here p is the pressure (paine) ([ p] = N!mz), [ the viscosity (viskositeetti) of the
fluid ([i2] = Ns/m%}and A =—~2u/3.

The so-called stress power Gygdgg in (3b) obtains the form

Tapdap =~ POopdap + 2dagdap + Ad,y, 8updapg

= —pdaa + Zlu'daﬁdaﬁ + lldmdﬁﬁ
=—pdyy +P )

where
P = 2lud(zﬂdaﬁ + A'daadﬁﬂ (10)

is called the dissipation function (dissipaatiofunktio).

Second, we assume a mechanically incompressible fluid (mekaanisesti kokoon-
puristumaton fluidi):

dp =-y, pdT (11
The coefficient ¥, ([¥,]1=1/K) is called isobaric cubic expansion coefficient

(isobaarinen tilavuuden ldmpétilakerroin).

Remark 6,1. The term "mechanically incompressible fluid” is not in wide use. If we consider
a general constitulive relationship p = p(p,T)} and differentiate it, we get

op ap
dp =—dp +—dT 12
P =5, ¥t ar (12)
or using standard notalion
d
_p=x7dp—yr,d‘l‘ (13)
Iy
Coefficient &y ([xkp]=1/Pa) is called isothermal compressibiliry (isoterminen
kokoonpuristuvuus), With the mechanically incompressible fluid assumption we effectively

set kp =0, that is, we assume that no volume changes follow from pressure changes. This

means that the pressure is a (generalized) constraint force and it has no constilutive relation.
The fluid can, however, respond to lemperature changes by volume changes. For instance the
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so-called watural or free convection (luonnollinen eli vapaa konvektio) can still be
realistically modelled but not for instance pressure wave phenomena,

The differential form (11) is often replaced by an approximate finite form
PP’ ==y, p°(I'=T") (14)

ar
p=p"+1,pT° =7, p°T {15
where p” and T° refer to a certain reference state of the fluid. [

Third, it can be shown that the differential of the specific intemal energy for a
mechanically incompressible fluid has the form

de=c,dT+Zdp (16)
p

where ¢, ([c,]1=J/(kg K)) is the specific heat capacity at constant pressure

(ominaislimpdkapasiteetti vakiopaineessa). Division of (16) by the time
differential dr and taking result (7) into account gives

€ =c,T +-=p =c,T —Zdyy an

and
pe =pc,T ~ pdyg, (18)

Substitution of expressions (9) and (18) into (3b) gives a specialized energy
equation

aﬁ-&-pc’,?"—cb—s:O (19)
0xy

We have used the notation () for the material (time) derivative, substantial

(time) derivative (aineellinen aikaderivaatta, ainederivaatta, substantiaalinen
derivaatta). In the Eulerian representation

=Rl ¥ o, A
f(x,t)—Dr-ar+v \4 at+vﬂ,axﬂ (20)
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Using this notation and employing the Fourier constitutive law (2) gives the
energy equation

or @ aT

aT
pcpﬁ—-{-a—xa-(—kaﬁ@)'l'pcpva—-s—(p=0 (21)

ox,

If the term pc,, is assumed to be constant in space we can express it also as

ot dxg| pcpoxg “axg  pc,

k
9T, 0 | _Kp T +v a_T_S+¢=0 (22)

Remark 6.2. The heat flux vector q consists in the general case addition to heal conduction
also of a contribution due to thermal radiation. In the Now of mixtures some additional terms
further emerge. Here we assume (hat these additional effects have been buried in the source
term. It shouid be added that with fluids the conductivity tensor is normally assumed to be
isotropic (kyg = k6aﬁ ), 50 that the diffusion tlerm in (21) is in fact

i{_ki’l} 23D

0%y 0x,

Remark 6.3. The energy equation contains the velocily field explicitly in the convection
term and implicitly in the dissipation function. At this phase we assume that the velocity field
is given so thal the only unknown is the temperature. (Sec also remark A.4.) In reality the
velocity field can be determined in some cases with sufficient accuracy uncoupled from the
encrgy equation (say in forced convection) but in many cases not (say in free convection). 0

6.1.2 General D-C-R model problem

As the energy equation in the previous section has a somewhat complicated
form we will present the basic mathematical properties from now on using the
notation introduced in Appendix A for the general diffusion-convection-reaction
equation. When applying the results for the energy equation, it is then easy to
make the notational changes necessary.

The general model problem consists of the field equation

9 o4 2 .
a_?+5f§+ﬁ(va¢)+f¢-f=0 in £ @4)

where the diffusion flux vector

) ¢
s Y 5 TP 25
-’C‘ aﬂ a.\'ﬁ ( )
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of the boundary conditions

¢=0 on I'h
A=7 on Il (26)

*=ap+b] on I

where the diffusion flux density

g
J = g == Dy 2 @7

aﬁ‘a‘;_g
and of the initial condition
¢(x,0)=dy(x) | in Q at t=0 (28)

The superscript £ in £ and I' refers to the fact that the domains in question are
in space and time. These notations are explained in more detail in Chapter 9.
Similarly as in Chapter 3 we have not yet introduced the constitutive relation
(25) for the diffusion flux vector into the governing equations to keep them as
basic as possible. The above equations have been explained in detail in
Appendix A.
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6.2 ONE DIMENSION
6.2.1 Standard Galerkin method

A one-dimensional steady diffusion-convection problem is described by the
diffusion-convection equation (later D-C equation})

d \
R(p)= %[ Ddf}+~d:(u¢) f=0| in 2=]a,b[ ()

and for example by the boundary conditions

9=9 on I'p ={a} @
d -
- %’: 74| on ry={b} 3)

This is a special case of the formulation in Section 6.1.2. We have employed the
same type of example model problem as in Section 2.1.1 just with new notation
and extended by the convection term. Quantity u is the given convection
velocity positive when directed into the positive x-axis direction.

The standard weak form corresponding to (1), (2) and (3) is

dw _d¢ _
I dQ+I w-ﬂ mp d.Q I wfdQ+w_] N—0 (4)

It is obtained the way explained in Remark 2.5. The only difference with respect
to {2.1.28) in addition to notation is the convection term.

Remark 6.4. In deriving (4), the term wd(—Dd¢/dx}/dx from Lhe ficld equation due o
diffusion has been integrated by pans similarly as before to lower the order of the derivative
on ¢ . One can do the same for the convection lerm:

d dw b
L: wE;{mp)dQ = —J-.n -a;ttgil de + awuqﬁ 8]

This manipulation, however, helps liltle here. (For a non-constant # some simplification could

be claimed as no derivative acts on « on the right-hand side of (5).} If e is a C® function in
(see Section B.1), as is assumed here, the finite element sysiem equations are found not to
change. This is because with the conventional continuous finite element approximation even

w and 15 are C° functions and equation (5} is exactly valid also when w and ¢ are replaced

with W and ¢ . The convection term appears in the differential equation often alternatively as
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ud¢/dx and thus in the weak form integral as wudg/dx but even here no simplification is
achieved with integration by parts. 0

Taking the finite element approximation
8 (x)= XN ;(x)¢; ©)
i

and applying the Galerkin method in (4) similarly as in Chapter 2 gives the
system equations

[k ){a}={b} (7)
with
Ki=|, ’D fd.Q+J' Ndx( ul; )d$2

®
b= NfiQ- N,-j“lrN

The convection term is now seen to make the system coefficient matrix non-
symmetric,

The simple special case
d%¢  d¢ .
-D'd?'f'ua‘:() mn Q=]O,L[ (9)
$(0)=0, o(L)=¢ (10)

is used below to explain certain solution behavior. This is a case with zero
source term, constant diffusivity D, constant velocity «, and Dirichlet boundary
conditions.

Equation (9) is a second order linear differential equation- with constant
coefficients and the exact solution is easy to find by standard procedures. There
is obtained

0(x)=

P L)-1 -
exp(Pex/L) 7 (1)
exp(Pe)-1

where
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Pe=—" (12)

is a global Peclet number (see (A.2.8)). If Pe is small, diffusion dominates and
the solution is nearly linear between the values determined by the boundary data
(10). If ]Pel is large, convection dominates. If we take for instance the case

u >0, point x =0 represents the inflow boundary. As described in Section A.3
and in fact directly found from (11), due to the condition ¢(0) =0, the solution
must then be nearly zero almost everywhere in the domain except at the
neighborhood of the outflow boundary x=L where a boundary layer is to be
expected due to the condition ¢(L) = a .

The weak form (4) simplifies to

I (d—wD—@-l-wuﬂ]dQ:O (13)
Q) dx dx dx

The discrete equations are obtained correspondingly from

j (@D%mu@]m:o (14)
2| dr  dx dx

With large convection the discrete diffusion term practically disappears
compared with the underlined term due to convection. We would again like to
obtain the nodally exact solution. We can now draw some conclusions without
any actual calculations, Let us consider Figure 6.1. A uniform mesh of two-
noded line elements (length =#) is used. The nodes and the elements are
numbered from left to right. The exact solution is practically zero except for the
thin right-hand side boundary layer, so the interpolant to the exact solution is
essentially non-zero only in the last element (Figure (a)). Figure (b) shows the
corresponding residual ud@/dx. Figure (c) shows the weighting function
w=N,_, used to generate the system equation corresponding to node n-—1.
These two terms are positive. Thus multiplying them and performing the
integration gives a positive left-hand side in (14) and the equation cannot be
satisfied for the assumed interpolant solution. The Galerkin method must have
negative residual in the second from right element to satisfy the discrete
equation. What happens is shown in the figure. The Galerkin solution alternates
between the values =0 and =¢ at the nodes. This is in the case where the
number of elements is odd. When the number of elements is even, & detailed
study shows that every second of the nodal values tend to minus infinity as the
Peclet number grows without limit and the results are thus still more
unsatisfactory than in Figure (a).
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¢1¢a ’4\\ ’l\\ /G
’l’ \\ 'l’ \\\ G\
’! \\ ,I \\ T E
l’ { .' \‘-', /E fI \\ I
(a) . *
d¢  dé
ua, W—
_____ @A s
7 I
L
(b) i/ x
w= Nn—l
o Ao
(C) n—1 n x

Figure 6.1 Convection dominated case, (a} Exact solution ¢ (= E), interpolant

to the exact selution 45 (£1), Galerkin solution 6 (2G). (b) Residual for the
interpolant and for the Galerkin solution. (¢) Shape function N _.

We now look in more detail at the typical discrete equation for the uniform
mesh. Using the notations of Figure 6.2, the system equation for node i is

K@i + K@ + K i1 9 = & (15)
with
Kiia=Ki', Ky=K3'+Ki, K=K (16)
bi=bl 4
mw & on @ @
[i-1 & i h li+1 x

Figure 6.2 Part of a uniform mesh.

The element contributions are (see formulas (F.1.1) or Example 4.1)
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wr=2 Y el ]

£ (17
{b}c='[ F{le}dﬂ

N f

Here f =0 so we do not need the latter expressions. We obtain

D «
Kr'.i-1=_';_’£
D u D u 2D
K..=—+—+———=-— 18
“"h 2 kR 2 h (18)
D u
i,i+l=—7+'2"

and the system equation is
D u
71'(_¢f—l+2¢:‘_¢i+l)+§(_¢f-l+¢i+l)=0 (19)

Alternatively, if the finite difference method is applied directly to the differential
equation {9) using well-known central difference formulas, the following typical
discrete equation

D
~oe (11 —20; + 01 ) + %(—@'-1 +0141)=0 (20

is obtained. This is seen to be equivalent to (19).

Equation (19) or (20) can be considered as a difference equation with constant
coefficients and it can be solved in closed form for any number of nodes. A
study of the solution shows that it starts to give unphysical "wiggles" when the
value of |Pe,,[ exceeds 2. Here Pey is a local elementwise Peclet number

defined as
Pey=— @1

In Figure 6.3 the solution for a uniform mesh of five elements by the Galerkin
method is compared with the interpolant to the exact solution for two values of
the Peclet number. The Galerkin method solution can be obtained either by
solving directly the finite element system equations or by employing the finite
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difference closed form solution. The solution for Pe, =2.5 is found to be
already quite useless due to the oscillations.

{ - o/d o P19
— 1
=ca (g
= f,.“ E
0 A
0 1 x/L 0 R
(a) (b)

Figure 6.3 The solution (a) Pe=35, Pe, =1.(b) Pe=25, Pe, =5. Interpolant
to the exact solution (I), Galerkin solution {G).

All what has been seen indicates that the Galerkin method would demand a very
dense mesh for avoiding the wiggles. The wiggles are generated by the
convection term. It is often said in a somewhat unscientific way that in problems
with convection the information on the value of the dependent variable from the
point of view of a fixed spatial point is more important on the upwind side than
on the downwind side. This is discussed also in Section A.3. The concept of
upwinding or upwind scheme or upstream scheme (yldvirtapainotus) is
employed in many numerical methods to somehow take this feature into
account. The central difference method and the Galerkin method clearly do not
have any directional preferencies and thus they do not contain any upwinding.

In the model problem under study a simple upwinding method — which might
be called fiell upwinding — is achieved with the finite difference method in the
case u > ( by replacing (20} with

D ]
_“h_g‘(‘?’f-l‘2¢i+¢i+1)+;(—¢i—1 +¢;)=0 (22)
The derivative (d¢/dx); is approximated thus by a unilateral backward

difference formula; information is taken here only from the upwind side. If
u <0, the approximation is similarly

—hﬂz(¢i—l‘2¢i+¢i+1)+%(-¢;+¢i+l)=0 23)
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By studying the general solution of the difference equation (22) it is found that
no wiggles appear any more for any Pey > 0.

]_cw L4179
— 1
--...U
0 t 0 =
0 1 x/L 0
(a) (b)

Figure 6.4 The solution (a) Pe=35, Pe, =1.(b) Pe=25, Pe, =5. Interpolant
to the exact solution (I), finite difference solution with full upwinding (U).

Figure 6.4 is the counterpart of Figure 6.3 but the numerical results are oblained
from (22). It is seen that indeed even for a large value of the Peclet number no
wiggles appear, however, the accuracy for a small value is worse than without
upwinding.

Full upwinding can be given the following interpretation. Let us replace the true
diffusivity in (9) with

D:=D+D’ (24)
where
- Hh
D =— 25
3 (25)

and let us generate the system equations with central differences or, which is the
same, using the Galerkin method. We obtain using equation (20),

1 h
_F[D*'%](‘Pf-l _2¢i+¢i+l)+%(_¢i-l+¢i+1)=0 (26)
or
D I
. ;5‘(@—1 =20 + @y )+ “’;(— ¢ +¢;)=0 27

which is nothing but equation (22).
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D* is called the coefficient of artificial diffusion or balancing diffusion
(keinotekoinen diffuusio). This term sometimes also means the case where the
use of a certain numerical method can be interpreted as a procedure where the
real physical diffusivity of the problem is altered by some additional
computational diffusion.

As is discussed in Section A.3, diffusion tends to smooth the solution and
especially in the model problem (9) and (10) the solution for large diffusion is
nearly a straight line determined by the boundary values. By studying Figures
6.3 and 6.4 one can now say that in fact the Galerkin method or the use of
central differences means that the method is underdiffuse (alidiffuusi) and that
on the other hand the use of full upwinding leads to an overdiffuse (ylidiffuusi)
method. In the model problem it is presumably possible to select such an

optimal value for D" that the Galerkin method gives exact values for ¢ at the

nodes; in other words the finite element interpolant to the exact solution is
achieved. The optimal value is, Brooks and Hughes (1982),

p* =uh| LeomEer_ L (28)
2 2 Peh

In the limit cases Pe, =0 and Pe, — oo the values D* =0 and D" =uh/2,
respectively, are obtained where the latter means full upwinding.

The difficulties associated with convection in the finile element method are
based on the fact that non-zero convection means that the problem is no more
self-adjoint (see Appendix D). Let us consider the weak form (4). The first two
integrals on the left-hand side are together a bilinear form a(w,¢) in w and ¢.
(see Appendix C). Unfortunately, it is not a symmetric bilinear form —
a(w,¢) # a(¢,w) — because of the convection term. (Integration by parts of the
convection term does not help the situation.} This means that we cannot generate
here an inner product and an energy norm from the bilinear form as was done in
Section 4.2.2. Similarly, such results as the best approximation property of the
Galerkin method are lost. A reasonable engineering approach in such a situation
is to strive for formulations giving accurate nodal values in the spirit of Remark
4.1. This means that the pure Galerkin method has to be abandoned and in C-D
problems it means that some kind of upwinding must be included.

Upwinding was applied obviously for the first time in the finite difference
method in Courant et al. {1952). The first application of it in the finite element
method is in Christie et al. (1967). The idea was to simulate the procedures
found to work in finite differences. One very simple way was to add suitable
amount of artificial diffusion and then use the standard Galerkin method as was
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explained in connection with equation (9). This procedure was found to produce,
however, in two-, and three-dimensional problems an intolerably large amount
of false diffusion (see Remark A.6). It was realized that the artificial diffusion
must operate only in the flow direction and thus the comresponding diffusivity
tensor must be anisotropic. With a non-zero source terms and in unsteady cases
even this version did not give satisfactory results.

The final systematic breakthrough was the invention of the so-called streamline
upwind/Petrov-Galerkin  method (SUPG-method). Reference Brooks and
Hughes (1982) gives an understandable explanation of the formulation. The
main idea is to write the weighting function in the form

w =wtp 29)

where w is a continuous Galerkin method type weighting function (shape
function) and p a discontinuous perturbation weighting function. Function p acts
inside each element on the full field equation residual, no integration by parts is
applied there on the diffusion term. Prescriptions on the selection of proper p is
given in the literature.

Remark 6.5. The SUPG-method could be translated in Finnish as "virtaviiva-ylivirta /
Petrov-Galerkinin menetelm4”. The terms in the name of the method refer to the following.
The word "upwind" emphasizes that the weighting functions have from the point of view of a
given point stronger weighling on the upwind than on the downwind side. The word
“streamline” indicates that this directional weighting must operate expressly in the direction
given by the streamline through the point in question. Finally, the term "Petrov-Galerkin® is
nowadays often employed in cases where the trial functions and the weighting functions are
from different function sets. 0

A later generalization the SUPG-method is the so-called Galerkin/least squares
method {GLS-method), Shakib and Hughes (1991). Even this formulation has
been extended. As suitable names start easily to get out of hand, we will rely on
the concepts introduced in Chapter 5 and mainly speak about sensitized weak
Jforms. Describing in each case the structure of the sensitizing terms fixes the
formulation.

6.2.2 Sensitized Galerkin method

The general ideas behind sensitizing have been explained in Chapter 5. We will
apply them here first on the steady one-dimensional D-C equation

R(#)=L(¢)-f= 5[ if]+a(u¢) f£=0 (30)

with some boundary conditions. We write a preliminary sensitized weak form
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J.ﬂ(:: c(lifdﬂ-i-j w— uqb d.Q J wfdS2 +bt

+[ o L(w)T°R( )d.(2=0 @1

The first line contains the standard weak form left-hand side. Only the equation
residual (no gradient terms) has been included in the sensitizing term. There is

just one sensitizing parameter 7° to be determined.

Remark 6.6, As has been done already in Chapter 5, we often use the symbol bt in an
expresston lo indicate that this lerm comes from the boundary of the domain under
consideration. In this manner general relations can be discussed without complicating loo
much the formulas. With the specific boundary conditions used, the "bi-lerms” obtain specific
expressions, which can be easily deduced by considering the derivation of the weak form
under question. It should be emphasized that appending sensilizing terms do not change the
boundary condilions and not the bi-lerms appearing in the standard forms. For instance, if
boundary conditions (2) and (3) are used, we have in (31)

bt = wy¢ . (32)0
N

Remark 6.7. In (his lext we are going to use the sensitized formulalions in connection with
the simplest type of clements and similarly as in Chapler 5 we assume constant values for the
sensitizing parameters in an element; the values can of course vary from element to element.
For more complicated elements the values of the parameters should obviously vary also inside
an element for optimal results. As the theory in this respect seems nol to be quile fully
developed, we do not treat this theme here, [J

Remark 6.8. By expanding the derivatives in (30) we obtain

d2¢ _4Ddp  do du

R=- 33
dxz o a Y dx¢ f (33
or
2
R=-Dl—f+ﬁ%+€¢—f (34)
where
E=u—£-‘2. E:d—u (35)
dx dx

Form (34) is a full D-C-R equation and this could be used for added accuracy. However, we
again here and in the following always simplify and assume constant operaior data in the
differential operators in the sensitizing terms. Based on the comments in Section 5.3.2, no
error is introduced with respect ta convergence. The formulation is then not any more strictly
consistent if D or u depend on position. If the error is considered too large we can always if
necessary employ the more complicated expressions {and replace the data finally in practice
wilh some representative values). However, as in two or three dimensions we usually cannot
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in any case quite achieve the goal of exact nodal values, we should perhaps not exaggerate too
much in the evaluation of the contributions. 0

Following the remark above, when sensitizing, we replace (30) by (superscrift ¢
is used just to indicate the difference with (30))

d%  d¢

RU)=L(@H-f= D?‘;—*'“dx f=0 (36}

where D and u are some constant focal representative values (we do not
introduce new notation for this) and the final sensitized weak form becomes

dw dg d
Iﬂdx dxd£2+_|' w (u¢ )AQ~ [, wfd+br+ -

[, L(w)T°R° (9 )dQ =0

or written in full

dw _d¢
jﬂ deEdQ+ w—(u¢ dsz—_[g wfd& +bt

d’w  dw) . d’¢  d¢ _
+ ﬂ[—D?-I-ua]T {—Dgz"i'ua"f de2=0 (38)

Although we can consider sensitizing just as a mathematical device by which
some tuning parameters {cf. Section 5.3.2) are introduced into a formulation,
here the underlined terms give a physical interpretation for the beneficial
behaviour as explained in Section D .4.1; the term

e (39

can be inlerpreted as an additional diffusion term damping the oscillations.
However, differing from the artificial diffusion concept the formulation here is
now consistent (at least for constant operator data).

We next determine the reference solutions following Section 5.2.1. The
governing simplified field equation according to (36} is

d’¢  d¢
—DE-}-H-&;—_f:O (40)
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This is a second order linear differential equation with constant coefficients. Its
solution is of the well-known form

¢(x)=Ae"" + Be? + ¢, (x) {41)

where # and r, are the roots

=0, n =-5 {42)

of the characteristic equation
-Drf+ur=0 (43)

and ¢, is a particular solution for the non-homogeneous equation. The source
term is developed into a Taylor series

f=f0+(fx)ox+';_(fxx)ox2+'" 44

and the local origin of x has been taken at the generic point under study. We
obtain in detail

- D 1
¢(x)=A+Be ”’+f—x+(fx)0( x+ﬂ-x2]+ (45)

Using similar representation as in formula (5.2.4), we have thus the reference
solution

HR

V- 2 Ly
R ey

The patch test is performed in Example 6.1 for the two-noded line element. It
gives the optimal value

= 4 lcothﬂ—L (47)
ul 2 2 Pe,,
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where Pe, is the elementwise Peclet number (21). The study performed in

Example 6.1 shows that with this sensitizing parameter value, nodally exact
results are obtained up to a linear source term if the mesh is uniform and the
operator data is constant at least with essential boundary conditions. With

variable data and mesh, 7° is evaluated for each element from (47) using some
representative values.

We define a dimensionless sensitizing parameter ©° by

ko 48)

o Pe,[

Figure 6.5 Dimensionless sensitizing parameter £° as a function of Pey,.

It maybe noted that for a given u and D, the sensitizing parameter evaluated
from (47) indeed approaches zero when the mesh size i goes to zero as in

addition £° also approaches zero with vanishing Pej,. The diffusivity %% in
(39) obtains the forms

D¢ =14 = #°uh =£°Pe, D (49)

It is seen that this remains always (with non-zero u) positive. If u is negative, so
is also 7° (see Figure 6.5). Thus positive artificial diffusivity and damping is
always introduced by sensitizing. (We will call D from this on damping
diffusivity and not artificial diffusivity to discern it from {28) in general as here
the concept is based on a consistent formulation.)
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The evaluation of #° for a small value of Pe, by computer is somewhat
awkward as both coth(Pe, /2) and 1/Pe; become separately unbounded. For

efficiency of calculations, a doubly asymptotic approximation, Brooks and
Hughes (1982),

s

_{Pe,,nz, | Pe |<6 (50)

" |1/2-sgnPe;,, |Pe,i>6

can be used. It is indicated by the dashed line in Figure 6.5. It is obtained from
the tangent at the origin and from the tangents at + infinity.

As 2 comment on the order of magnitude we may notice that vsing (50) we
obtain corresponding say to the cases of Pe, =6 and Pej =12 the damping

diffusivities are D®=3D and D°=6D respectively. So the amount of damping
needed in these cases is considerable.

Remark 6.9. Following the logic discussed in Section 5.3.2, the sensilized weak form (38)
can be simplified so that the sensitizing integral is just

dw d%  d¢

J’al«laf ("'DF-FH—CE'“I‘ dg (51)
that is, the second derivative term has been dropped from the weighting. Then the formulation
is no more purely of the least squares type bul the important term (39) s still included. In fact,

for two-noded elements the discrete equations become the same as with the least squares form
8s the second derivatives vanish in any case. [

Figure 6.6 is connected to formula (29). We see from (37) that when a typical
original finite dimensional continuous weighting function w=N; is acting on

the standard part of the weak form, the weighting in the sensitizing integral takes
the form (for two-noded elements)

() =uD oo 2 pu D oy N (52)
dx dx dx

The interpretation is that the original continuous weighting function w= N; has
been amended to the form W' =w+ p; where p is given by (52). Figures (c) to
(f) have been drawn assuming full upwinding (7°u=h/2 -sgnPe;). The
amended weighting function clearly has a directional preference and provides

upwinding. This interpretation is different from the additional diffusion
explanation described in Section D.4.1 and gives another point of view.
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__/'\ a I/a
|_a i _» | x _
@ ' —
p=T°ud— (u>0) p=Tu— (u<0)
_— 12 —_—12
© _— 12 @ —=1/2
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Figure 6.6 (a) Continuous (Galerkin) weighting function. (b) Its derivative. (c)
Discontinuous perturbation weighting function {u>0). (d) Discontinuous
perturbation weighting function (# <0). (e) Total weighting function (u>0),
(D) Total weighting function (1 <0),

Remark 6.10. As mentioned already in Remark 6.5, the term Perrov-Galerkin method is
sometimes used when the weighting functions are not taken from the set of trial basis
functions. Similarly the Galerkin method is sometimes called the Bubnov-Galerkin method to
emphasize the difference. But if we agree to call the symbol w or the finite dimensional
symbol W here as the weighting function, we are in this text actually always using the
Galerkin method or to maoke the terminology more specific we can speak about the sensitized
Galerkin method. 0

When the Galerkin method is applied in (38) (using two-noded elements which
means that the second derivatives vanish both in the weighting and in the
residual), we obtain the system equations

[K]{a}={b} (53)

with
K; = IQ%D%dQ+I9 N (uny )

: d, '
of Wee 2N 40w (54)
2 dx dx
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b=[ NifdQ+|, %r“ufd.@ +bt

These can be compared with the corresponding expressions (8) without
sensitizing. The two bt-terms in (54) have naturally different interpretations. (If
the boundary conditions are for instance (2) and (3), the bt is the one appearing
at the end of the last expression in (8). A possible Robin boundary condition
gives a contribution bt for the coefficient matrix term.)

As 1° is assumed to be elementwise constant (and u in the sensilizing terms),
the element contributions are

ang | dNj d
K§ = Iﬂ,?’D?dQ +oe N,-"a(uNf,-)dQ
e

, ¢ dN¢
+7%2 Q,di' jdg +bt (55)

dNy
dx

b = [ . Nf fdQ+7° [ fa@+nt

It is again easy to see that the sensitizing is injecting diffusion into the system
equations.

Example 6,1, We derive the formula for t° using the patch test as explained in Section
5.2.2. The notations for the patch (Figure (a) are the same as in Example 5.2.

m ® o @ o
[1 h 2 h E

Figure (a) s

The element contributions are according to {55) (constant data}

1 - = 21 -1
IR
hl-1 1 21-11 h |-1 1

(@)
£ £ d.l:
pr={_. NS dQetuf Wil S|y
P \Ns s 9% |ang rdx f
1
| In the system equation for node 2:
Ky + Kppty + Kyygy —b, =0 (b}
c 2
K2l=K%l=_£_"—‘_T :

h 2 I
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u 4 D n T"u2_2D+21'°u2

D
Koy =Kl + K =—+—+ == c
2EERTMTLTSY TR 2 h h h 42
D u ‘rcuz
Kp=Ki=-—4+%_
= = h 2 h

v} dn?
b=ty +b =  NyfaQ+[ N fd2 +T°ufﬂl¥2fdﬂ +r=ujn,T‘fm

Equation (b) is thus in detail

D u tul 2D 2%yl D u 1%u®
[7"5‘ h ]""’{T* p ]*"2*(‘?*5‘"},—]"3“‘2“’ “@

The First specific reference solution in (46} (A =1) gives the nodal values

=1, =1 #=1 (e)
with zero source term. Equation (d) is

R x ke ) L
or

0=0 (e)

so the patch lest is passed automaticalty.

The second specific reference solution ( B =) gives the nodal values
o = g Ui 0 =1, ¢y =etD (h)

wilh zero source term. Some manipulation of (d) (5, = 0) gives first

°u? D .
(-t + 2y )= (h+ 28 - 4) 5 (- 9) 0
and further
AL\l T -
N 2u "¢|+2¢2'—¢3 uz U)
Substitulion of the values (h) gives finally
~wh!D _ _uhlD
z* =_h_ e e .D._ (k)

Tu _c-llflfD+2_e!1flfD uz

This can be brought into a cleaner form by using the local Peclet number

1h
Pe, =P = D 1))
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which produces

e h e F-ef D h -2sinhP D

= — e ——— —
2u e P42-eP K 2w 2-2coshP 2
‘ _ h —4sinh(P/2)-cosh(P/2) D _ h cosh(P2) D
2 2-2-4sinh®(PR2)  w® 2u sinh(P2) uF
h D
=— coth(PR2)-— m
2u (Pr2) ul (m)
or
T°=£ lco[h.Pe_"__l. (n)
ui2 Z  Pegy

Some use of certain standard formulas for hyperbolic functions are needed in the
manipulations.

The third reference solution { fy =1) gives the nodal values
¢ =—hlu, ¢, =0, $y=hiu (0)

and the source term f =1. The term

1 2
- 1 2 c dw. c dnj
by= [ NWQ+ [ NidQ +T uj'ﬂl—lddx Q41 uJ-R.l—-—ddx 2

=%+%+t“u-l+t°u-(~1)=h ®
Equation (d) becomes
¢ 2 < 2 ?
D _w W BN [ D u Tu kL1, Q@
h 2 h u h 2 hju

This is also seen 1o be satisfied automaticaily. Centinuing similarly, it is found that even
in the case ((f,)p =1) the paich test is passed but no more in the case ((firdo =1
Actually. the cases (A =1) and ( fy =1) are of the type to be used in the standard patch
test of Section 4.1 to verify convergence,

Some numerical results are shown in Figure 6.7 for a problem

2
-jx—fus%:i—so:o in 2=]0,1] (56)
9(0)=0, ¢(1)=1 7

presented in dimensionless form.
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The behavior is according to the theory. Accurate nodal values are obtained with
the optimal sensitizing parameter value even with the irregular mesh. The global
Peclet number is Pe=25 and the elementwise Peclet number for the regular
element mesh elements is Pe, =35. According to Figure 6.5, for this value of

Pe,, the approximate £° overestimates the optimal T © rather much leading to

some overdamping. However, the sensitivity of the results on the value of the
parameter seems not to be very strong.

(a) 0 02 ad 0.6 08 1 (b) 0 02 0.4 0.8 08 1

1 z
15 5 15 kY
'I
1 1 i
05 05
(c) 0 0.2 0.4 0.6 08 1 (d) 0 02 04 0.6 0.8 1
7 2
15
1
0.5
{e) [ 0.2 04 0.6 08 1 ) 0 0.2 04 0.6 (¥} 1

Figure 6.7 On the left-hand side regular five element mesh, on the right-hand
side irregular five element mesh. (a) and (b) Standard Galerkin method

solution. (¢) and (d) Sensitized Galerkin method solution with £° according to

formula (48). (e} and (f) Sensitized Galerkin method solution with £° according
to the approximate formula {50).

6.2.3 Boundary patch considerations
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The possibility to study sensitizing in connection with natural boundary
conditions was mentioned in Remark 5.11. We continue on this theme here. Let
us consider in one dimension the left-hand side of a domain, say, with the
notalion used in Figure 5.2 (b) and with a given flux boundary condition

d -
—nxD(f}ow" (58)
or
9] _5¢ 59
D(dx)o ’ &

Here the value of the x-component of the unit outward normal vector is —1 and
the meaning of the notations are understood from (6.1.27). In addition to the
general solution (41):

¢ (x)=A+B"P 19 (x) (60)

we must obviously introduce the boundary condition from (59):

d 1 -
(—"’] =—7 (61)
dc jy D
Taking this into account in (60) gives the reference solution
- d
¢=A+|:ljd—2[-ﬁ] }“”’wp (62)
H wl odx J

This is applied in some detail in Example 6.2. The optimal z° is found still to be
according to expression (47). However, the constant source case f =1 does not

any more pass the test.

The calculations can be repeated for the Robin condition
d¢
-n.D|— | =apy+b (63)
‘ ( dx ]o %

Again it will be found that expression (47) is valid.
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Example 6.2. We use again instead of the notation of Figure 5.2(b) that shown in Figure
(a) for simplify the presentation. The case of given flux discussed above is considered

and the task is to find the optimal sensitizing parameler value £°.

() ® o
1 h |2
X

Figure (a)

The element conlributions are still according to {55} but we must now include in detail
the term due to the flux. Consideration of, say, the weak lorm (6.2.4) shows that the left
hand contains the term

—-dl = w7

Wi, =™ (a)

x=0

and thus the lefl hand side of the first (and here the only) system equation obtains from
this the contribution

M7 =T ' ®)

The element contributions of the first element are thus (see formulas (a) of Example 6.1)

=20 sl =2 )

(©
N dN} /dx 7
) =, tf d@+7uf 1 ) Maa-{
@\ f @ |avyrex f 0
In the syslem equalion for node 1:
Ky +Kpaa -5, =0 (d}
D ou
K=Kl ==-=
UEEHT 2 7
D u %4
K|2=K112——,—l+5‘ - (e)

dn! -
by =8 =.[a‘ N| fd +'r°uJ-glE'fd.Q -7

Equation (d} is thus

D u 14 D u tu? _
.

The reference solution (62) can be written in more detail as

¢l 1] —e [1ueen? xlu—=Din? &0
e T
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The source lerm has been developed again in Taylor series.
The first reference solution { A =1) gives the nodal values
¢1=1. ¢2=1. ¢3=l (h)

wilh zero source term and zero flux. (Here the given flux is a "forcing" term similarly as
the source function and their influence comes through the second and following specific
reference solutions in (g)). Equation (d) is

c 2 c,62
D w w2 u T oy (i)
h 2 h h 2 h

0=0 @

or

so the patch test is passed automalically.
The second reference solution { 7% = 1) gives the nodal values
¢y =llu,  ¢y=1/u-c"D (k)

with zero source term and with a unit flux. Equation (f) is

c 2 c 2
2-2.}.1 ad l+ _.24.5_1_" ie“h"‘uq.l:(j )]
h 2 h u h 2 h |u
We obtain
Pey
rebfle2rl 1 (m)
u 20 e —1 Pe"

where Pe, is the etement Peclet number. Seme further manipulation shows that this is
aclually just equal to the optimal expression (47) foumnd by the two-element patch test.

The third reference solution ( (f; =13) gives the nodal values

d=-Diu*  ¢y=hiu-Diu*.e*MP {m

with the source term f =1 and wilh zero Mux, The term
dn} h
= 1 c 1 — 2 _ Lt
=] Md2+r uJ’Q,Ed.Q—Z °u (0)
Equation {f) becomes

D ou ttu? D D u tu*Yh D h 4
2 Bn S | 2 E R Ao kD LB a2
[h 2" h ]( ,,2] [ 2 TR a2 2 " ®)

Further manipulation shows that the paich tesl is no more passed,
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6.3 TWO DIMENSIONS (unfinished)
6.3.1 Sensitized weak form; general considerations

Introduction. The goveming field equation is

Ol p 91,9 sy ro
R(¢)# Oxg Dap dxg +axa(v°‘m = o

in £ with appropriate Dirichlet, Neumann and Robin boundary conditions as
given in Section 6.1.2. Similarly as in Section 6.2.2, we employ here for
sensitizing purposes the simplified equation

RE(P)=L(8)-f =| ~Dpg ———+ vy f =0 2
(#9)=L(8)-f e v S )
The sensitized weak form is thus
ow d¢ g
IQEDaﬂEdQ+IQwE(va¢)dQ—Iﬂwfd.Q+bt o
+JQ L {w)r°R°()d2 =0

The steps needed to obtain (3) should be obvious from the earlier derivations.

Remark 6.11. The sensitizing integrand in (3) is in detail (to avoid emonecus application of
the summation convention, different indexing is used herc in the weighling term and in the
residual)

L (w)t°R (9) =
3w ow 3% ¢
D ——— 4t — || - Dy vy —— 4
{ o g ax,,] 7 dxdxs | 0%, b
The important term from the point of view of convection comes from the underlined terms:

ow . dg
— —_— 5
o, T VaVy o, (5)

or using matrix notalion in two dimensions:

dwiox)| tfuu tuv|(d0/0x )
dwloyl| ropy 15w |00/ 0y
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This term has been discussed in Section D.4.2 (without the parameter 7°). Comparison with
the first integrand in (3) shows that sensitizing can be interpreted as injection of anisoiropic

damping diffision into the formulation. The damping diffusivity tensor is Tvg¥y . Firstly, the
real diffusivity tensor Dgpg is normally for physical reasons positive definite, the tensor

T°gvg is, however, only positive semidefinile (the delerminant is zero). According to

Crandail (1956, p.355), the corresponding pure diffusion problems would be elliptic and
parabalic, respeclively, Second, if we momentarily take for example the x-axis to coincide
with the local flow direction, the damping diffusivity matrix becomes

huu 0
o

o 0
as in this coordinate system v=0. This can interpreted physically, say, in connection with
heat conduction so that the conductivity is zero perpendicular to streamlines and the
information can proceed only along the streamlines. (To make the case more concrete, we
could imagine an isotropic bulk malerial consisting of separate fibers of highly conducting
material embedded in a highly isolating matrix. Temperature measurements are performed in
the conducting material only.) Aliogether, the least squares sensilizing is seen Lo mimic in an

admirable way the pure conveclion behavior. 0

Remark 6.12. In the discrete equations 1o follow, we always further simplify by neglecling
the second order derivatives possibly appearing in RE(¢) and I°(w). This is correct for
three-noded triangular elements but not in general for four-noded quadrilaleral elements. It

can be shown, Freund {1996), that the resulling consistency error does not affect the rate of
convergence. [

Remark 6.13. Recalling expressions (5) and (6) in Remark 6.11 we will use the following
nolation for the damping diffusivity tensor

Dig =1 vvg ®)
and in two dimensions for the damping diffusivily matrix
c c
[DC]E Tuu T uv ®
v W

It seems that in numerical determination of the appropriate damping, it is more

straightforward to determine directly the damping terms than first the parameler £°. In fact, it
is the damping diffusivities, which are needed in the final elemenl contribution calculations.
We therefore write (8) and (9) in the forms

ps, =pslath (10)

and



=
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H

o o
[

2Lope b
vl[v

(1

|< l=

1T

where the scalar damping diffusivity

D Df

D=1t |\a'|2 (12)

The terms vy /| v| or u/|v]| eic. are direction cosines of the velocity vector. We remember
from Remark 6.11 that the damping diffusivity tensor “acts only in streamline direction”. This
means in other words Lhal in a coordinate system with one coordinate axis in the velocity
direction, there is only one non-zero lensor component in that system and it has the double
indices corresponding to the axis in question. This component is here the scalar D®. This can
be seen in detail by transforming this very simple tensor to the present coordinate system by
well-known tensor transformation formulas, Formulas (11) and (12) are found to follow. In
sensitizing patch test calculations we therefore concentrate on determining directly the scalar
DF and then finally use (10) or (11). D is more transparent than 7° as we can compare D°
directly in values with D or in the general case with Dg.0

Application of the Galerkin method in (3) gives the set of system equations
(take Remarks 6.11 to 6.13 into account)

[k {a}={b} (13)

with

oN; . ON; 9
Ky = Lzax Dep axjd‘Q"'J- Lt a(HNJ')d‘Q
Q_N_i va vﬁa J O
+Iﬂaan |V||"| axﬁd +bt (14)
b=[ N, faQ+[ ai-}—j—v—"‘fd.§2+bt

a [V]1¥]

The element contribution expressions are usually no more given in what follows
as they should be obvious on the basis of Remark 2.11,

We have now to determine the sensitizing parameter t° (or D) in a
considerable more complicated situation than in the one-dimensional case. New
features to be dealt with are connected to reference solutions, to element cloning
for the sensitizing patch test and to the directional property of the convection
term. We will discuss them each separately.
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Reference solutions. The series form reference solution strategy described in
Section 5.2.2 could be applied. However, a more straightforward procedure
seems to be here to make direct use of the one-dimensional reference solutions
of Section 6.2.2. We assume what we call here cylindrical solutions (or just one-
dimensional solutions) in different directions described by the line s in Figure
6.8 (a). That is, we take

¢=0(s) (15)
where
S=@eX =X, = €X) +ExXy =COSY) - ) +COSYy - Xy (16)

Here e is the unit vector along s and the rest of the notations are understood
from Figure 6.8 (a). This means that ¢ is assumed to be constant on any line

perpendicular to e. (We employ here still mainly indexed notations x; and x;

instead of x and y so that a possible extension to three dimensions becomes
more transparent.)

8,(6)

(a) ®

Figure 6.8 (a) Cylindrical solution direction and some notations. (b) Flow
velocity vector.

Chain differentiation gives

B¢ _d¢ ds d¢

T W 17
axa ds 9z, ° ds e
and similarly
9% d%
axaaxﬁ = eaeﬂ E;z- (18)

Field equation (2) becomes
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—d%  _d¢
—DE*'HE-f:O (19)

with
D= eqep Dy = cosy coswyy - Dy +cosy cosyp - Dyp
+cOsY/, cosly, - Doy +cosy; cosyry - Doy (20)
U = €V =COSY) -V + COSYy - Vg (21)

In the normal case with fluids we have isotropic diffusivity, i.e., D) =Dy =D,
Dy, =Dy, =0, and we obtain from (21) simply D=D. Using the notations of
Figure 6.8 (b), we can further write

v1=cosﬂllv|, v2=cos62|v[ (22)
and we arrive at a more transparent formula for & (Y, =y, 6, =6):

i = cosy; - cos8; | v|+ cosy, -costhy | v|
=(cosl}!~cosl9+sinuf-sin6)|v|=cos(w—9)lv| (23)

Equation (19) is exactly of the type we have dealt with in one dimension. Thus
the corresponding reference solution is (cf. (6.2.40) and (6.2.46))

i UEyX, u {cosy, - x; +Coslq - X
expE_‘i=cxp “ata =exp (cosyy 1 ¥ CosVz 2)
D D D

(24)

How we should select the direction of s to obtain the equation needed for the

determination of D° by the sensitizing patch test is discussed somewhat later
on.

Let us consider as an example the four-noded quadrilateral element shown in
Figure 6.9 (a) in the xy-plane. Quite a lot of data is needed to describe the

element: the overall orientation, the size, the aspect ratio, the skewness, etc. In
the element’s natural coordinate system (Figure (b)) the situation is greatly
simplified: the orientation is aligned along the coordinate axes, the size is 1x1,
etc. This leads to the obvious thought that the properties of the element should
studied and the possible patch test be performed first in the natural coordinate
system. After that the results can be transformed back to the physical plane. In
some of our earlier efforts, efforts, e.g., Freund and Salonen (1995), we have
indeed proceeded in this manner to obtain as far as possible closed form
expression for the sensitizing parameter. This has, however, meant in practice
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some additional assumptions during the manipulations. Also, the transformation
formulas become very unwieldy and complicated to explain. If we decide to
abandon the analytical approach and try to determine the parameter values only
numerically, the situation becomes much simpler to follow and new practical
advantages are likely to emerge. The price one has to pay is that a number of
equation sets have to be generated and solved with the sensitizing patch test for
each element to find the parameter values. In the diffusion-convection problem
under study, only one equation is needed.

Element cloning. In one dimension the cloning of an element to produce a
patch for the sensilizing patch test contains no problems. Contrary to this, let us
consider again the four-noded quadrilateral element (Figure 6.9 (a)). If we
replace the element by a substitute parallelogram element (say by replacing the
isoparametric mapping from the reference element by a linearized mapping in 4

and 7 applying a Taylor expansion at the midpoint of the element) indicated by

the dashed line in the figure we can produce a patch of four elements which has
no gaps or overlaps.

) x=x(&n)
\ IT
X x [—
(a) [ (b) T ¢
#]
X2
Yy
(C) X x

Figure 6.9 (a) An element in the xy-plane. (b) The element in the natural
&n-plane. (¢) xy-plane and a patch.

It shoutd be emphasized that this replacement is done only for obtaining the
sensitizing parameter value for the element. The actual form of the element
should naturally be used in the final calculations. However, in Section 6.3.2 we
suggest a further modified version of the patch test for the four-noded
quadrilateral element, which is in more accordance with the procedure used for
the triangle element.
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Directional property of the convection term. The two- or three-dimensional
diffusion-convection problem is different in nature from the one-dimensional
case in one important respect. the strength of the convection term depends now
also on the angle between the flow velocity direction and the (initially
unknown) solution gradient direction. In one dimension these directions
coincide. Let us look in more detail the convection term in (1) (for simplicity of
presentation in the incompressible case dv, /dx, =0):

d
.é—-(va¢)=vaﬂ.=v-v¢ (25)
Xy 0x,

The convection term is seen to consist of the scalar product of the velocity
vector v and the solution gradient vector V¢ . For instance, if the angle between

v and V¢ happens to be 90 degrees, the convection term vanishes and we in

principle need at such a point no sensitizing as we have there a pure diffusion
case. This feature automatically means that to obtain really good sensitizing, an
iterative method is necessary to feed in information about the originally
unknown gradient direction. (This is now a case in contrary to the discussion in
Section 5.2.1 about the possible need for a preliminary solution.) The natural
procedure here seems to take the cylindrical reference solution in the gradient
direction. Then the actual solution and the reference solution are as far as
possible similar in the sense that they both have the same gradient direction. The
local data for the element (and the new gradient direction) are evaluated from
the values at the element midpoint coordinates. When numerical solutions are
used, the specific cases appearing with the local Peclet number small or large
etc. need a careful study. This is considered next.

Computational aspects. In the numerical determination of the scalar damping

diffusivity D®using the sensitizing patch test, certain points must be taken into
account to avoid ill-conditioning. Some of these points have been found from
experience with the simple case considered in Example 6.3, where a
“semianalytical” approach sheds some light on solution behavior. Two obvious
difficult situations appear: the velocity field is very weak or it is very strong.

We consider first the weak velocity case. We define here for each element an
element Peclet number

[¥]#m
o (26)

Here hg, is a linear measure of the element, in two dimensions, say hy, =JZ !
where A is the area of the element. With anisotropic diffusivity, Dy, could be in

6-36 6.3 TWO DIMENSIONS

two dimensions, say (D +D,,)/2. In the isotropic case this is D. If (26)

becomes small, we have numerical difficulties. The reason is that the velocity &
in (24) is then also very small and the reference solution is nearly a constant (or
more generally nearly linear in x and y) and we then know that the multiplier of

D® in the discrete equation obtained by the patch test nearly disappears. (The
patch test is passed for convergence reasons irrespective of the value of the
sensitizing parameter.) Thus if

b,

m

@n

where €, is a small positive number obtained by numerical experiments by a
computer, we put simply

D=0 (28)
as the situation is in practice of the pure diffusion type.
We consider next the strong velocity case. We define the quantity
h
- (29)
D

=

where h is in principle the utmost measure in the patch in the y angle

direction. If (29) becomes large, we encounter numerical difficulties, as some
nodal values in the patch test from the reference solution can become then
extremely large. If

B (30)
D 2

where €, is determined again by numerical experiments, we reckon as follows.

In the one-dimensional case we see from Figure 6.5 and from formula (6.2.49)
that the quantity

c
2" (3D
ih
remains nearly constant with large element Peclet numbers. Let us say that we
have obtained for a reduced rather large u =# the corresponding D = D°. Then

we know the ratio D° /(Gih)and putting
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c nec
2.2 (32)
uh  uh
we obtain
pe="pe (33)
u

Here & represents a reduced velocity by which we can still safely evaluate
numerically D°®. This reasoning described above for the one-dimensional case is

applied now also here. We reduce the velocity ¥ in (29) to a smaller value i
(in magnitude) so that

B e, (34)
D

We then determine the corresponding damping diffusivity D° = D¢ using the
sensitizing patch test. The final damping diffusivity is taken to be

pe=Lpe (35)
H

An additional numerical difficulty appears when the gradient direction angle ¥
becomes nearly perpendicular to the velocity vector direction angle 8, that is,
when | —8|=90° (see Remark 6.14). Contrary to what one would expect from
the continuum case discussed earlier, rather suprisingly, the following was
found in most cases studied in Example 6.3. When |y —6|=90°, the damping

diffusivity D does not usually tend to zero, but in fact obtains larger values
than when the directions are parallel. Now if |y —8|=90°, the velocity &
becomes nearly zero (see (23)) and the numerical solution does not succeed due
to ill-conditioning. However, here we cannot any more proceed realistically
using (28). Thus we change the gradient direction slightly to y:=w +Ay,

where Ay is a small angle making |y —@ | to differ more from 90°so that D°

can still be evaluated with reasonable accuracy, Of course, for this to work, we
again need some limits for practical calculations.

Remark 6.14. Ii can be seen from Formulas (16) and (23) that if the direction of 5 is changed
opposite, that is, if ¥ is changed to ¥ + 7, the reference solution (24) does not change. We
can therefore select the direction of the reference solution from the two possibililies always so

that | —8 [£90° when applying the sensitizing paitch lest. [
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The obvious starting direction for w for lack of any further information is to
take simply w=0. The new directions for ¥ in each element are taken

according to gradient directions obtained from the solutions to follow. If the
magnitude of the gradient is rather small (compared to a predefined reference
value), there seems to be no strong point to try to update the directions.
Otherwise even small “stochastic” changes would demand new irrelevant
changes.

6.3.2 Quadrilateral elements

Figure 6.10 (a) shows a generic quadrilatera] element and Figure 6.10 (b) the
corresponding cloned patch, Now we not even care to use the substitute
parallelogram concept discussed in connection with Figure 6.9. Each of the four
nodes of the element is connected to the central patch node so the situation is in
this sense impartial with respect to the element nodes. The patch is no more
conventional as there are gaps and some parts overlap. We are ready to accept
this kind of ad hoc procedure to simplify the treatment. The remarks in Section
5.3.2 justify all kind of “crimes™ in connection with sensitizing parameters as far
as their values tend to zero with vanishing element size.

-

(a) {b)
Figure 6.10 (a) Quadrilateral element. (b) Sensitizing patch.

Example 63. We try to obtain some knowledge sbout the behavior of the damping
diffusivity as a function of the cylindrical solution direction in a simplest possible
situation. We consider the case of square element shown in Figure (a). The
corresponding sensitizing patch is shown in Figure (b).
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Iy
7 8 9
@ @ @
1@
PRI O]
@ o @ =

O @ @

Figure (a) Figure (b}

The element contributions are from (14) applied at the element level

N N, N aN
K;=D ,[ﬂ—Hai—)m e Ni=taa v N—Ldo

9 dx dy dy ox dy
Dt “J‘ pe A vI BN BN
]vl jv’a ax ax v]|v| o 9y ay
pev H BN;BN per Y aNBN
MMJ.Q' By Bx v||v|'[ﬂ’ oy ay (@)
P aN;
b: -_‘Ian‘.fdQ ] II |ID' 'f IVI] ]J‘a: Ifd-Q
We have resorted to lhe conventional notation x —x, X —y, vy u, ¥ 3V,

Further, isotropic diffusivity and constant D, u, v have been assumed.

Wilh reclangular four-noded elements aligned along the coordinate axes it is not
necessary to make use of isoparametric mappings ctc. as we can find closed form
expressions directly using formulas (F.2.3). We obtain in detail

e _pt il alipru2 uvl vul vv2
Ku=Pgrmag ™y +D[|v||v|6 MM MM MMG]

1 2 1 uu2 uvl vul vivl
K¢ =—D—4ua—-va—+D°| —— =24 2o T T
iz 6 12 12 | [v”v[ﬁ |v| |v|4 [v“v[4 |v| |v|6]
£t =-Dleuslivglopf gyl 8yl vul vyl
6 12 12 ]v”v|6 Vl¥v|4 |¥|[v]4 |¥||v| 6
1 1 2 ruuluvl vul vv2
Kf =—D——ua— e ) e e v SN
u SRR TR YT MME MM MM IVII"IG]
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1 c

Ke =Di+uai—va—2—+ D*
2 12 1

' =—D——ual+vai+D°
u 212 i

K’ =—D—2-—mi—vaL+D°
el 6 12 12

1 2 ¢
—tug—-va—+
12 12

K¢ =Di+ual+va£+D°
3 6 i2 12

K’ =—Dl—uaz-+va£+Dc
el 6 12 12

6 12 12

K& =-D2+ua——va-l-+D"
6 1 12

. 1 1 c

K =—D—tua—+va—+D
6 i 12

K¢ = Di—ua—z—+w1£+Dc
& 6 12 12

=—D—+ua-l£2-+vai+D°{“ ul

[_LLE_LLL Jruly LLL]
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v 2
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‘The system equation for node 5 ( f = 0) of the mesh in Figure {(b) is

with

K5\ + Ksofy + Ksapy + Ksgy + Ksss + Ko + Ksay + Ksgfy + Kooy =0

1 1 u
K5, =Ky =-—D-

Ksp = Kjp + K3, =-3—D~Em

1 4 vlvl

[vla-lvaq- __l..'f..'.‘______li ¥V lne
37 12|y 12 6Vl 2P 6¥M

a(Zuu 4va
s 6MM

(<)
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1
Ky =Kp=--D+

luuw luv 1lvw
e et D B R A D<
3 12[||| uHM‘”[ i ]

s 2NV SMM
- 3 __lp u 2v V|
Ry =K+ Ky ==3D - e [ MM 6hHﬂ]D
3 8 3
K55=K;3+K§4+K32+K14] =§D [6|:||:I+Eﬁ'l%l‘]Dc (d}
g2 art L _Aduu 2vvi|e
DM DlﬂNI[GMMVMMF
luv 1v v
K. -K 2 -~ Ip*
s1.= K3 = lzhﬂ' *gpe { SP 2] 6hHﬂ]D

3L et
Kyg=Kn+Kjy=-~

Vidas{ 2L H SV pe
1211 8[¥(Ivl 6[¥| 1M

=xt=-1p, dau luv 1vvie,
Ko =Ky =3 uH““lﬂNﬂ“(GWWIZMM spiM )

Equation (c} is presented in Figure (c) using self-evident “mathematical molecules™,
Salvadori and Baron (1961). The field equation corresponding to the weak form (3) after
all the simplifications mentioned earlier is given glso in the figure. Readers familiar with
central difference formulas can detect the connections between the field equalion and the
molecules.

mb
2
o
J-p
3'1 by

. d¢ _pe|uu 929 + _
IR

By T MM MM axay MMay*
Figure (¢)
It is first easily secen from the mathematical molecule of Figure (c) that in the cases
¢=1,¢=x with f =u, § =y with f=v, that the patch tesl is satisfied for any valuc
of Df{when f =0, a corresponding term by must be naturally included in equation (c))
as demanded by convergence according Lo Section 4.1.
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The reference solution (24) is

¢ (x‘ }') - cl?(cnsw-xd—sinw-y)iﬁ ()

For this solution the source lerm £ = 0. The coordinates of the nodes in the paich in
Figure (b) are easy to read and we obtain thus the nedal values

¢l =¢ (—-a —a) - ci(-ooswu-sinvoa)lﬁ

$,=¢{0,~a)= o (-siny-a)/D 0]

Using Mathematica, these are substituted in (c) and the damping diffusivity D° is
determined from the resulting equation. For a given velocily direction @, all this is
repeated for a number of values of the cylindrical solution direction .

We show here some results in (hree cases. In case (1) the flow velocity is in the positive
x-axis direction: 8 =0, In case (2) # =15" and in case (3) the flow velocity is in Lhe

diagonal direction:@ =45". The data has been selected so that the Peclel number
|via/D=5.

Figures (d), (¢} and (f) show the distribution of D®/D. for the cases (1), (2} and (3},
respectively. In more detail, the length of the segment from the origin to the curves gives

D/ D in the assumed cylindrical solution direction.

The results obtained in cases (1) and (2) arc in contradiction with the discussion in
connection with the continuum case where it was speculated Lhat no damping diffusion
is needed when the gradient direction is perpendicular to the flow velocity direction. In
fact, experimentation with several flow directions gave similar type of behavior as
shown in Figures (d) and (e). Thus aclually, the damping diffusivity is usually higher
when V¢ L v than when V¢ || v. Case (3) happens to “obey the theory”. A heurstic
explanation for this at the first sight odd behavior could be that the mesh introduces
some kind of anisotropy into the discrete model not present in the (here isolropic)
continuum.
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Figure (d) (8 =0)

0.5 1 1.

Figure (¢) (8 =15")

.25 0.5 @

Figure () (6 =45°)

Tt is realized from the figures — as is seen on the basis of Remark 6.14 — that the
distributions are symmetrical with respect to Lhe origin, that is, D° is the same for W
and foryw +x.

6.3.3 Triangular elements

Figure 6.11 (a) shows a generic triangular element and Figure 6.11 (b) the
corresponding cloned patch.

644 6.3 TWO DIMENSIONS

-
X
(a) (b)
Figure 6.11 (a} Triangular element. (b) Sensitizing patch.

The three elements (without the “star’” mark) are clones of the original element.
Each of the three nodes of the element is connected to the central patch node so
the sitvation is in this sense impartial with respect to the element nodes.
However, large gaps remain in the patch. To fill the gaps we employ in lack of
anything better the original element rotated first 180 degrees three times. The
rotated elements (with the star mark) are now not quite correct clones of the
original element as they have a different orientation. When forming the system
equations (equation) associated with the central node we have roughly two
choices. First, we can equip also the rotated elements with the same unknown
parameter values (value) as assumed for the original element. The parameter
values are then determined from the system equations associated with the
central node and obtained using the reference solutions. Second, we may assume
from the beginning that the total contribution to the system equations from the
rotated elements is approximately the same as from the original cloned
elements. Thus by multiplying by two the contributions from only the cloned
elements and equating this to zero we get the approximate system equations.
Finally, dividing these system equations by two, we realize that we can form the
final system equations for the patch equally well just by using the cloned
elements. Numerical experiments performed in Example 6.4 showed that the
second alternative speculated on did not work well and produced ???. Using the
first alternative means that the same sensitizing parameter value a element

Example 6.4. We continue with similer experiments as recorded in Example 6.3 now
with a simple right-angled equilateral triangular element (type 1) shown in Figure (a)
(left). The corresponding three element patch formed by elements 1, 2, 3 is named here
palch 1 (Figure (b)). The element (type 2) is cblained from the original element by a
rotation of 180 degrees and is shown on right in Figure (b) and equipped with a star for
casy recognition. The corresponding three element patch formed by the elements 4, 5, 6
is named here patch 2 (Figure (b)). Finally, a six element “full” patch consisting of
clements 1,2,3, 4, 5, 6 and named paich 3 is considered. The local nodal numbering to be
used has been indicated only in Figure (a} for Lhe two element types to avoid the patches
becoming too filled with data. We perform some sensitizing patch calculations with

these configuralions to gel some information about of the damping diffusivity behavior.
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(6] 2) ) 6 7
4 5 X
W_a & o
) Patch 1
| o 1 .
Figure (a) 2
6-y 7 6 ’ 7
Patch 2 ® Patch 3 ®
- L]
3 /@106
4 x 4
® ® 5 @ ® /5 *
. ®
2 1 %)
Figure (b)

The element contribution expressions are repeated here for compieteness from Example

6.3

3N, aN; aN.aN» oN oN;
Ki= NS SuE Sy ¥ To Ld0 —4
,,Dj (ax P ay] +u ,ad+vj N;ayd.Q

cuu‘[ aNBN +=uvI aNaN
M |v| “ox ax |v|[v]’=* Tox By
per X pe an; BN
]vl ]v]jﬂ' B'y Bx |v||v|ID' dy ay

aN.:
be= Ni d"Q ] — '
=l hed 02+ T IL’ Sef e |L=

With three-noded triangular elements it is again not necessary lo make use of
isoparametric mappings etc. as we can find closed form expressions direcily using
formulas (F.2.2). We obtain in detail first

(a)

K,;-=D2-1+(bfbj+c,cj)+u%bj+v%c}
+D°4f«(n||~ MR * BN ﬁu‘:l“"f] ©
b,.'=LN,-fdA+%ﬁ:—;LfdA+?TH%]-%LfdA
If the source term fis constant, we have
S AT LT TN ©
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When applying formulas of (F.2.1), we associale the symbols &, I, m in Figure F.3 now
consecutively with internal nodes 1,2,3,and 2,3, 1 and 3, 1, 2 of an element:

b=y-». b=y -y, b=y~
X2, 2 =5~ X3,

(d

O3 =Xy =X

Type 1 element. We consider first the original (Lype 1) element. The coordinates of the
internal nodes 1, 2, 3 of the element are in general (¥ and § arc arbitrary values)
n=x, =X+a, x3=X+ta
1 X2 g 3= ©
n=¥, »n=Y5, Va=yta

Formulas (d) give

h=-a, by=a, b=0 ®
=0, o =—d, 3=a

The area of the element is {(se¢ formula (d), Example E.2 as a check)

' 1 1 1 :
A==y x x|==d*
1 I (&
N Y2 N
‘We oblain by Mathematica

l u u e

=20 5o T °

e __lp A ¥ v i ww uvine
iz = 2‘”5( tv|*|v|]""“z{ M v|]”

‘ | | l g V
e T
[ MM |v||v|]
1| u v u v v oy
K5 =D+=| =——|v =t |D° th)
f G[M lvl]” [MM I |||v|}

z
b -0 e 3{fF R
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q 1 u Y b
5 == -2
l
K3 hem|l e e D*
a= [lvl ||]” [Ivllvl |v||v|]
e 1 1y v p
K =3 D+ g 3>

Type 2 element. We consider next the rotated (1ype 2) element. The coordinates of the
internal nodes 1, 2, 3 of the element are in general (X and 7 are arbitrary values)

-=| HI

X
N

0]

-a
-a

Formulas (d) give (from this on unfinished)
? )]
The element area is naturally again (g). We equip the element contribution symbols by

an overbar o discern them from the contributions of Lhe original element. Mathematica
gives

K =

k=

Kj =

I?El =

K3, = ®

K

Ezf 1=

k5 =

k5=
The system equation for node 4 { f =0) of the mesh in Figure (b) is

Ky + Kgaa + Kabs + Kyy@g + Kyss + Kyss + Kia97 =0 M
With paich 1:
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K =K1 1[ luv c
wemh GM 2M°
=kl =__I. gy vV ne
Ky =K;5; 2D’ [M II]H {[v”v] MM]D
Ky
= £h=-3P 61 |M ( Ivllvl Ivllvl]
LU
Kas = K lD—l == |v|a+
$TMTTETE M || "||"| |"||Vl
cpr=_lp v, druwv v
“osas 2D+6|V|Ma+ (MM Ivllvl}
_ 2 lu v
Ko =K =gyt 2
With patch 2:
Ky=FKp=
Ky =K} =
K=K =
Ky=Kh+Ky+K$=
Kys=K3) =
K=K =
Kgy=K5 =
With palch 3:

|, e
Ky =Ky tKp3=
1, 55
Kg=Kp+Knp=
2, =4
Ky=Ky+Kp=
I e - T
K=Ky + Ky +K{| + K+ K3 + Ky =
KB =
Kys=Kip + K3, =
2 . 56
Kg=Kn+tKy=
e L
Ky =Kz + K35 =

The coordinates of the nodes in the patches in Figure (b) are
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xy==-a, y=—a, X3=0, y=-da, x=-a, y=0
X =0, y4=0 0
=4,  y=,  x%=0, y=a, x=a,. y=a

The standard tests cases ¢ =1, ¢ =x with f=u, ¢ =y with f =v, are found again to

be passed for any value of D°(when f # 0, a corresponding term b; musl be included)
for all the three patches.

The reference solution (24) is
¢ (x, }') =e" {cosy-xesingy)/ D (-;r)

For this solution the source term f =0.
The data is sclected so that the local Peclet number | ¥ |a/ D = 5.

We record some resulis obtained. We slart with the case @ =0, that is, u =| v| and
v =0, Table (a) gives values of the ralio D°/ D versus the cylindrical solution direction
angle .

Table (a) D°/D

The odd behavior near the troublesome cese i = 90" for patches 1 and 2 can be
understood on the basis of formulas () and (). Exactly at yr = 90", ¢, = ¢y, ¢ =4 = ¢s,

¢ = ¢; and we sce from () and ( that the coefficient of D® in () disappears leading in

the limit to a division by zero. With patch 3 no such  happens. The results of this simple
case definitely  and in the rest of this example we thus continue only with patch 3.

Table (b) gives values of the ratioc D®/D versus the cylindrical solution direction angle
W in the cases 8 =157, 8 =45", 8 =90°. The singular cylindrical solution direction

angles corresponding to these are, W =105°, y =135", w =180°. Solutions around
these direclions are recorded to detect the detailed behavior.

Table (b) D°/D
6.3.4 Numerical results

Some numerical results are shown in in the following obtained for the equation

¢ 3% 0p 09
—_ D__ —_— jani —_—
waldw’ tu=—tv 3 0 (36)
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represented in dimensionless form and valid in the 1x]1 domain of Figure 6.12.
Dirichlet boundary conditions are used with zero data except the value one on
part 0.2<y<l1 of the side x=0. The velocity components 4 and v are

constants, The sides x =0 and y =0 form the inflow boundaries.
?

Figure 6 .12 Solution domain and an irregular triangular mesh.

?

Figure 6.13 Medium convection: D=1072, u=2, v=1 (left), u=1, v=2
(right). Quadrilateral elements. On the first row standard Galerkin method
solution. On the second row sensitized Galerkin method solution.

The Standard Galerkin method solution shows oscillations already with these
moderate convection values.

?

Figure 6.14 Medinm convection: D =10‘2. u=2, v=1 (left), u=1, v=2
(right). Triangular elements with irregular orientation. On the first row standard
Galerkin method solution. On the second row sensitized Galerkin method
solution.

?

Figure 6.15 Large convection: D=10'6, =2, v=1 (left), u=1, v=2
(right). Quadrilateral elements. On the first row sensitized Galerkin method
solution. On the second row sensitized Galerkin method solution with gradient
direction correction.

In this case of large convection the exact solution consists nearly of two level
surfaces with the values one and zero due to the inflow data (as explained in
Section A.3) divided by the streamline starting at x=0, y=0.2, Thus a strong
internal boundary layer and some strong boundary layers are present. The
standard Galerkin method results cannot be drawn any more due to the wild
oscillations. The gradient direction correction procedure does not change the
solutions very much, Rather strong crosswind diffusion (see Remark A.6) is
present with this crude mesh.

?
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Figure 6.16 Large convection: D= 1079, u=2, v=1 Qeft), u=1, v=2
(right). Trangular elements with regular orientation. On the first row sensitized
Galerkin method solution. On the second row sensitized Galerkin method
solution with gradient direction correction.

Remark 6.15. The numerical resulis have been obtained using roughly the procedures
explained in the theory part of this text. The triangular element details and the gradient
direction correction procedure are slill under development and experimentation and the
results presented should be considered as preliminary. Especially the behaviour with
elongated elements must be studied before any reliable conclusions can be drawn. O
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7 DIFFUSION-REACTION
7.1 ONE DIMENSION

Strong reaction produces also unrealistic oscillations attached to internal and
boundary layers if the conventional Galerkin method is used although this
problem is not so severe as the one with large convection.

7.1.1 Standard Galerkin method

We repeat here the beginning of Section 6.2.1 now for the one-dimensional
steady diffusion-reaction problem. It is described by the diffusion-reaction
equation (later D-R equation)

R(¢)= a( d¢)+c¢ f£=0] inR=]ab| m
and for example by the boundary conditions

¢=0 on I'p ={a} @)

D%=Td on I'y={b} (3)

The convection term is missing and the reaction term c¢ is now present. The
standard weak form corresponding to (1), (2) and (3) is

j i‘l’ud—‘”dgq wep dS2 — j wfd2 +wjd =0 @)
Taking again the finite element approximation
¢ (x}=2N;(x)¢; ®)
i
and employing the Galerkin method in (4) gives the system equations

[£){a}={p} (6)

with

7-2 7.1 ONE DIMENSION

aN,
K =j Wi p a0+ NeN,dQ

Ted e et )
b=[, Nifde —N,-de_N

The coefficient matrix is thus found to remain symmetric with the inclusion of
reaction.

Similarly as in Section 6,2.1 a simple special case

d’
—D—+c¢ 0 in 2=]0,L[ (8)
dx?

$(0)=0, o(L)=0 9)

is used to explain certain solution behavior. This is a steady D-R problem with
zero source term, constant diffusivity D, constant positive sink factor ¢, and
Dirichlet boundary conditions.

Equation (8) is a second order linear differential equation with constant
coefficients and the exact solution is found to be

sinh(v/Ce x/1) —
10
P(x)= = \/@ ¢ (10)
where
- ch
Ce= _1_5_ (1 1)

is a global "Ceclet" number (see (A.3.18)). If Ce is small, diffusion dominates
and the solution is nearly linear between the values determined by the boundary
data (9). If Ce is large, reaction dominates. From (10) or directly according to
(A.3.17), the solution tends to zero except at the neighborhood of the right-hand
boundary x=L where a boundary layer is developed due to the condition

$(Ly=9.

The weak form (4) simplifies to

dw _d¢ ) _
Lz( 5 DE+ wbq)]d.Q =0 (12)

The discrete equations are obtained correspondingly from
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J'g[%D%+@]dQ =0 (13)

With large reaction the diffusion term practically disappears compared with the
underlined term due to reaction. We would again like to obtain a nodally exact
solution. We can draw some conclusions without any actual calculations. Let us
consider Figure 7.1. A uniform mesh of two-noded line elements (length = k) is
used. The nodes and the elements are numbered from left to right. The exact
solution is practically zero except for the thin right-hand side boundary layer so
the interpolant to the exact solution is essentially non-zero only in the last
element (Figure (a)). Figure (b) shows the corresponding residual cqﬁ . Figure
{c) shows the weighting function w=MN,_ ; used to generate the system
equation corresponding to node n—1. These two terms are positive. Thus
multiplying them and performing the integration gives a positive left-hand side
in (13) and the equation cannot be satisfied for the assumed interpolant
solution. The Galerkin method must have negative residual in the second from
right element to satisfy the discrete equation. What happens is shown in the
figure. The Galerkin solution oscillates with diminishing amplitude so the
behaviour is unsatisfactory but not so bad as in the convection dominated case.

The ratio 2-+/3 =0.268 correspends to the limiting case of an infinite Ceclet
number.

$.0.¢ F

N [™E
- /E . ._"I ~G

(a) G~ X
b, ch -0.268-¢

)

(©
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Figure 7.1 Reaction dominated case, (a) Exact solution ¢ (= E), interpolant

to the exact solution 95 (£ 1), Galerkin solution qE (2G). (b) Residual for the
interpolant and for the Galerkin solution. (¢) Shape function N,_,.

As the problem is now self-adjoint, the Galerkin solution is according to
Section 4.2.2 the best one in the energy norm, which is here

112 du _du . 1z
|]u||a=a(u,u) = IQ EDa-l-ucu dQ (14)

From an engineering point of view this result is however not satisfactory since
we like to consider the nodally exact solution as the ideal one.

Remark 7.1. In the pure reaction case the finile element solution is in Fact the least squares
fit (weighted by !g) 1o the exact solution, that is, the Galerkin method solution minimizes the
expression 3

1 ({a})=5 ], Q‘r‘(qo ~§)aq as)

with respect 10 the nodal parameters. The discrete equalions comresponding to this condition
are

;2(¢~6){-%-]d.(2=—_[DN,(:(¢-—6)d.Q=U (16)
Using the corresponding weak formulation, we have a typical discrete equation
jaN,-(e':d—f)d.Q=o a7
For the exact solution, similarly:
[ Ni(co—f)ae =0 (18)

By subtracling these last lwo equations from cech other gives (i16) which shows the
connection. The behaviour of the Galerkin method solution in Figure 7.1 (a) can be roughly

underslood also in the light of expression (15): the square of the difference ¢ —¢ should be
small in an average sense.
Similarly as with (15), it can be shown that in the pure diffusion case the finite element

solution is the least squares fit (weighted by D) between the derivatives, that is, the Galerkin
method solution minimizes the expression

a({ah)=2], D[%’-%} 4a (19)
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This is one way of explaining why accurate flux values are obtained by the weak formulation.

1]
7.1.2 Sensitized Galerkin method

Appending the least squares weak form of the field equation is readily found
not to alleviate the oscillatory behaviour of the standard Galerkin method, As
explained in Section D.5.1, we have now to use the gradient least squares weak
form. Similarly, as explained in Section 6.2.2, when sensitizing, we employ the
simplified field equation

2
R'((p)EL'(q))—fE —D;ix—¢+c¢ f=0 (20)

and its differentiated form

r 3
dR'(¢) _dL'(¢) df __,d¢  d¢ _df . e
dx dx  dx dx®  dx dx

where D and ¢ are some local representative constant values. The corresponding
sensitized weak form becomes thus

J' D%d.(zﬂ' wopd 2 — _[ wfdS2 +bt+

(22)
drf dr*
+f () 4R ()45 -
2  dx
where 77 is the sensitizing parameter. Written in full, this is
d¢
J’ D—-—dﬂ +j wepdQ ~j wfd€2 +bt
3
+j D—“’+ Wl _pd?, 90 lia-o (23)
dx dx3 dx dx
The underlined terms, multiplied together, give the contribution
w240 (24)
dx dx

This explains similarly as in connection with formula (6.2.39) how oscillations
can now be damped.
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We determine next the reference solutions following Section 5.2.1 or 6.2.2. The
govemning simplified field equation according to (20} is

d%¢
-D— 0 25
2 tep—f= (25)

Its solution is
¢(x)= Ae" +Be"" +¢, (x) (26)

where 1 and r, are the roots

q:\[%, ,2=_J% @n

of the characteristic equation
~Drl+c=0 (28)

and ¢, is a particular solution for the non-homogeneous equation. The source
term has been developed again into a Taylor series

f=f0 (fx)0x+ (fxx) ) 29

and the local origin of x has been taken at the generic point under study.
We obtain in detail

¢(x)= AcVeIDx 4. peeiD=x

1 1 D 1
+foE"’(fx)oz.'x"'(fxx)o(;i""zxz]*'"' (30)

We can write the reference solution thus as

eiD-x —~eiDx .
{.;(;}:A{CJ__—ID }+B{° /D }+f {llc} (fx)o{llc x}+_“ a1)
f 0 0 X

The sensitizing patch test for a two-noded linear element is performed in
Example 7.1. It gives the optimal value
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r=£ 1coshyCey +2 1 (32)
¢ | 6 cosh,/Ce;, -1 Ce,
where Ce,, is an elementwise Ceclet number:
ch?
Cey = ) (33)

The study performed in Example 7.1 shows that with this sensitizing parameter
value nodally exact results are obtained up to a linear source term if the mesh is
uniform and the operator data is constant at least with essential boundary

conditions. With variable data and mesh, 7" is evaluated for each element from
(32) using some representative values.

We define a dimensionless sensitizing parameter 2" by

_ 7" _lcoshyCe+2 1
h?fc 6 cosh,/Ce, -1 Cey

,fl'

(34)

Figure 7.2 shows the graph of this parameter.

=300 -200

Figure 7.2 Dimensionless sensitizing parameter £* as a function of Cey,.

It is interesting that the value of " at the origin — meaning the pure diffusion
case — does not quite vanish. As in this case we obtain according to Section
4.2.5 exact nodal values for any source distribution by the standard Galerkin
method, the inclusion of sensitizing for very small values of Ce, may thus in

fact make the results more inaccurate in general.

7-8 7.1 ONE DIMENSION

Again we note that for a given ¢ and D, the sensitizing parameter evaluated
from (32) approaches zero when the mesh size goes to zero as in addition '
remains finite with vanishing Ce;. The diffusivity 77c? in (24) obtains the
forms

D'=1"ct =1"ch? =¢"Ce,D (35)

Similarly as in Chapter 6, it is more illuminating to operate with the damping
diffusivity (here D') than with the sensitizing parameter alone. Then we may

directly compare the magnitude of D" with the real diffusivity D as is seen
from (35). For instance, for a large Cej,, we obtain using (37) the magnitude

D" =1/6-Ce; D.

Remark 7.2. We have this far considered the case where ¢ is positive {(we always take D as
positive). If ¢ is negative, the D-R equation is of the type familiar say from one degree of
freedom lincar oscillalor: ¢ comesponds to displacement, x lo time, D lo mass, | ¢| lo spring

constant. The solulion of this type of equation is quite different from what we have considered
earlier, consisting of harmonic oscillations in space. A detailed study shows that expression

(34) is still valid. As Ce,, is now negative, the term /Ce, is complex and use of well known

formulas between hyperbolic and trigonometric functions shows that (34} can be presented in
the form

o loosy|Ceyl+2 1 (36)

6 cos f[Ce, -1 Cey
when Ce,, is negative. Part of the graph of this is shown in Figure 7.2. Use of this expression

can give nodally exact solutions by construction bul the problem remains that the
denominator in the first lerm becomes zero at | Cey, |= at(2m)?, (n=0,1,--.0

A computationally convenient approximation to (34) and very roughly to (36) is

r—

<
{Cf:,.r 108, |Ce; <18 a7

1/6-sgnCey, [Ce,(>18

The approximation is indicated by the dashed line in Figure 7.2. A somewhat
different approximation is given in Franca and Dutra do Carmo (1989). As
mentioned in Section 5.3.1, the idea of the Galerkin Gradient Least Squares
method (GGLS-method) taking care of the reaction type term was apparently
presented for the first time in this reference.

When the Galerkin method is applied in (23) (using two-noded elements which
means that that the third order derivatives vanish both in the weighting and in
the residual}, we obtain the system equations
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[k {a}={b} (38)
with

AN, -, o AN
Wi pZY 40 + [ NieN;d@+ Wi 2540 4 b
A de a Qdr  dx

%i=lg (39)
dv;
bi=[, Nifd@+[ —Fe

cidﬂ + bt
dx

As T° is assumed to be elementwise constant (and ¢ in the sensitizing terms),
the element contributions are

¢ dN‘
ﬂ—idQ +bt
dx

&

dN¢ _dN$
Kj=|, *D—’-dg+ [, NfcN5dQ+77c? |
dx “ (40)

=J’Q, NEfdR +r'cjﬂ

¢

[
MY 504 be
de dx

Here the upwinding interpretation described in connection with Figure 6.6 is
not relevant due to the symmetry of the formulation. The explanation of
additional diffusion to damp the wiggles can, however, still be used.

We repeat in the following the counterpart of Example 6.1 to find out the
optimum value for 7.

Example 7.1. We derive the formula for " using the patch shown in Figure (a).

w0 on @ o
|l h 2 B 13

Figure (a) *

The element contributions are according to (40) (constant data)

1 ~1 re?1 -
[Kr -_.-2. +£{'. 2 1 +.____T c 1
hi-1 1 611 2 R |-1 1

(@
oL [, 0
dn; fdx-df /dx
In the systemn equation for node 2:
Ky + Kby + Kybs —b, =0 (®)
Ky = Ky O &

h 6 h

7-10
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D 2ch ' D 2ch t'c? 2D  4ch  2'¢t

2wk 17 _2D  Ach
P A A
D ch '

-—-+—_

h 6 h

Ky =Kp +Ki| =

?
Kn=Kjp=-

dwvl df dv}
=B+ = ) 2 o Y2 rof SV
by = bl + b -Inlszdﬂ+Iﬂ1N, fdQ+t cj'n, —dQ-f-rcL:,

Equation (b) is thus in detail

D ch 7 2D d4ch 27t D ch 1t
-—+ )+ —+—+ o+ ——F——-—
R 6 h h 6 h h 6 h

The first reference solution in {31) { A =1} gives the nodal values

~VelDh b=1, & eV Dk

¢ =e

with zero source Lerm. Some manipulation of {(d) (b, =0) gives first

2
T (b 2= ) == (- + 2y —80)- S (6 + 40+ )

and further
T,=h_2¢]+4¢2+¢3_2_
6c ¢ — 20+ 2

Substilution of the values (¢} gives finally

hz oedeIDh g NelDh
ool Dk N 02

,r.l.'
1—2+e

This can be brought into a cleaner form by using the local Ceclet number

2
Cey aC:i
D

which produces
hz "F+4+c’r D h2 2coshJE+4 D
6c o~VC _9 4 oVC > 6c 2cosh+/C -2 2

"¢ 6coshyC—1 ch?

ar

¢ W lcoshi/C+2 1
¢ 6cosh/C~1 C

©)

df2

{e)

(4]

(b

®

()

k)
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The second reference solution { # = [) gives the nodal values

¢2 =1, ¢3 =e—~f675-h (])

which are the nodal values (e} just in the opposite order and the same value for 7° is

arrived at from the patch test.
The third specific reference solution { f =1) gives the nodal values

p=le, $=1c, ¢;=1/c (m)
and the source term f =1, The term
1 2
_ I 2 rr dN i dNj
bz_jnldeQ-i-_fﬂlN]dﬂ—i-rcIQl-—ldx 04@ ¢+ 'cf , ~ 1042
h h
=-—+—=h
2 2 ®
Equation (d) becomes
D ch A\ (2D 4ch 2 \L [ D ch Y1 2
—— | ==+ — —t| === —=h= (@)
B 6 h ¢ h 6 ke h 6 h e

This is found to be satisfied automatically. Continuing similarly, it is found that even in
the case ((f,)p =) the patch test is passed but no more in the case ((f,.)o =1). Again,
passing of the lest in Lhe cases { fy =1} and ((f,)p =1) (meaning constant and linear
solulions) are seen to correspond (o the slandard patch test requirement of Section 4.1 for

achieving convergenge.
Some numerical results are shown in Figure 7.3 for a problem

d%p ,

~—+5009-250=0 in £2=]0,1] (1)
¢$(0)=0, ¢(1)=1 (42)

presented in dimensionless form. The global Ceclet number valuee is Ce =500

and the elementwise Ceclet number for the regular element mesh elements is

Ce,, = 20 thus implying according to Figure 7.2 again a rather large difference

between the optimal and the approximate i,

Figure 7.4 shows the results for a problem
2
d¢ 400=0 in 2=]0,1] (43)

dx2

7.1 ONE DIMENSION

7-12
$(0)=0, o(1)=1 (44)
presented in dimensionless form and having a negative sink factor discussed in
Remark 7.2.
1 ¥ 1 ’
05 o omemae 0.8 B 4
(a) 0 02 04 0.5 08 1 (b) 0 0z b4 0.6 o8 i
1 1
o5 .. o 05| pa————a—a g
(c) 0 02 04 0.6 08 1 (d) 0 12 0d 0.6 [ 8] 1
1 ! l
0s - 05 e A
a4 LY I Y | 1 ) o 0: 04 0.6 08 1

) o 02

Figure 7.3 On the left-hand side regular five element mesh, on the right-hand
side irmregular five element mesh. (a) and (b) Standard Galerkin method
golution. (c) and {(d) Sensitized Galerkin method solution with " according to
formula (34). (¢) and (f) Sensitized Galerkin method solution with %"

according to formula (37).
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7.1 ONE DIMENSION

(b)

Figure 7.4 Regular five element mesh. (a) Standard Galerkin method solution.

(b) Sensitized Galerkin method solution with £ according to formula (36).

Both solutions are for obvious reasons far from the truth but the sensitized

solution again rather miraculously hits on the exact solution at the nodes.
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7.2 TWO DIMENSIONS (unfinished)
7.2.1 Sensitized weak Form; general considerations

Introduction. The governing field equation is

a '
R(¢)= %[—Daﬁ%]+c¢—f=0 (1

in Q with approriate Dirichlet, Neumann and Robin boundary conditions as
given in Section 6.1.2. Again, for sensitizing purposes we employ the simplified
equation

2

R ($)=L(¢)-f= ~Pes g, n

+c¢-f=0 2)

and its differentiated forms

R™(9)_OL(P)_ __ o’ 00 _of _
ox, ox, ox, Pap 0xg0xg0dx, +Cax), ox, =0 &

The sensitized weak form is thus

ow ¢
IQE » Edﬂ +jﬂ wed 42 —fn wfdQ+bt+

IL(w) « OR"@) ., _
+f R dQ =0

4

The steps needed to obtain (4) should be obvious from earlier derivations and
from the discussion in Section D.5.2.

Remark 7.3. This comment is the counterpart of Remark 6.11. The sensitizing integrand in
{4} is in detail

AL (w) . IR(P) _

ox, oxs
’w aw bits 9¢ _ df
D9 | _p o8 o ZF_
[ & Ox.0x; 0%, e oy ]Tys[ o 9xdxgdixs e dxs oxg &

The important lerm from the point of view of reaction is
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dw . 2 09
kil e, 6
g%, fok dxg e

or using matrix notation, the term

. .
{aw/ax]{r}.;cz TLCZ] {a.p/ax} -
2 W)
awlay T;'.l:c -r;yc 8¢Iay
Comparison with the first integrand in (4) again shaws that sensitizing can be interpreted as

injection of anisotropic damping diffusion into the formulation. Here, however, no specific
physical properties can be easily associated to the sensitizing term. O

Remark 7.4. Similarly as commented on in Remark 6.12, in the discrele equalions (o follow,
we always further simplify by neglecling Lhe second or higher order derivatives possibly
appeaning in the sensitizing terms. 0

Remark 7.5. Recalling expressions (6) and (7) in Remark 7.3 we will use the following
notation for the damping diffusivity tensor

Dgg = r&ﬂcz (8)
and in two dimensions for the damping diffusivity malrix
DL DU | [7e? it
(2] o PFlere se2 ©
Dy Dy, Ty€™ Tyt

As the damping diffusivily components are more illuminating than the sensilizing parameter
slone, we will introduce the components D{,ﬂ from now on to be used in the numerical

calculations in connection with the sensitizing patch test. [

The system equations are (see expression (5) and take Remarks 7.3 to 7.5 into
account)

(K1(a) = {b} (10)
with
KU= ﬂa—xa-Daﬁs;;dQ‘i'IﬂNlCNj a2
1 oN
+ Qﬂpfﬁ —LdQ+bt (1D

20x,  dxg

_ aN; Dep of
bl' _.[_Q N[fd-Q +Iﬂ'aTa—E—a—xﬁ'dQ +bt
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Reference solutions. We employ cylindrical solutions similarly as in Section
6.3.1. We make the assumption

¢=9(s) (12)
with
§ = 85X, = COSY | - X +COSYy - Xy (13)

Field equation (2) becomes

_ a2
—Djs—f+c¢—f=0 (14)

with

D= €qegDap = cosy cosy - Dy +cosyycosy - Dyp
+CoS Yy COSY, - Dy +cospy cosyy - Doy (15)

Equation (14) is exactly of the type we have dealt with in one dimension. Thus
the corresponding reference solution is (cf. (7.1.25) and (7.1.31))

exp \/%s=cxp|:\/%(coswl-xl+cosw2-x2)] (16)

The situation differs here in nature from the convection case. No directional
character can be associated with the reaction term and now in two dimensions
four sensitizing parameters have to be determined. We simplify the treatment
from this on assuming symmetry both in the real diffusivity and in the damping

diffusivity; thus D, =Dpg, and Dyg=Dp,. The former relation is the

common one due to physics and the latter relation makes it simpler to try to
determine appropriate values for the damping tensor components. So in two

dimensions we have to determine the three constants Dy, Dj,, Dy, =D}, for

each element. Some numerical experience obtained especially in connection
with semianalytical studies performed in Example 7.2 indicate the following.
For safety of achieving a solution and to have a reasonable direction
independent solution, we should take at least four different cylindrical solution
directions in the sensitizing patch test as shown in Figure 7.5. We then obtain
four discrete equations and determine the diffusivities using the least squares
method for solving the overdetermined system as commented on in Remark
5.12 (see Remark 7.7). The at first sight apparent bias of the directions in the
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figure is justified by the fact that a direction obtained from a given direction by
adding angle 7 (showed by the dashed lines in the figure) gives an equivalent
reference solution. Our experience this far has been mainly with isotropic
diffusivity. Usnally it is then natural for lack of any better knowledge to take
one cylindrical direction in a coordinate direction (say direction 1 in Figure 7.5
in the x-axis direction). See, however, Remarks 7.6 and 7.7.

2
4
A
--'-‘ -
e ,I\‘ \_“‘ Py

v
1
! 1

Figure 7.5 Four cylindrical solution directions following each other with angle
difference /4.

Remark 7.6. For very clongated elements there might be reasons for some preferencial
directions to be used in the patch test. For instance, the principal directions of the element
inertia tensor connected to the clement geometry could have some meaning. Similarly, the
principal directions of the real diffusivity tensor in the anisolropic case is another possibility.

0

Remark 7.7. Although we stated above that the diffusion term hes no directional character as
such, use of one-dimensional reference solutions introduces some directional cffects in
connection with the sensilizing patch test. It seems obvious similarly as in diffusion-
convection problems that the onc-dimensional reference solution (16) is nearest lo the actual
solution if its direction coincides with the gradient direction of the actual solution. If we are
prepared also here to use an iterative procedure, we could put more emphasis on the
directions near the gradient direction. Cne possibility to proceed could be to take the
directions differently from that shown in Figure 7.5 so that they form more or less a “fan”
around the gradient direction. Anolher possibility, considered in more detail here, is to weigh
the equations obtained in the patch test differently depending on the dircctions associated
with them. Let us consider as an example the case shown in Figure 7.5. We have obtained
from the sensitizing patch test the discrete equations

thsl=0, [hs2=0, Ihs3=0, lhsd=0 an

where the meaning of the notations is obvious. In the least squares solulion method we form
the expression

E(D}. DYy DYy ) = (1hs1)’ +ay (1hs2)” +a (ths3)” + ay (thsa)’ (18)

and determine the damping diffusivily components from the system
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OE o PE o  9E _y (19)

aD;, ab, aDr,

The weight factors & are selected so that the gradient direction is favored, If we assume Lhat
direction 1 is put in the gradient direction, we may cxperiment, say, with the selection

a]=]00, a2=u]=a4=l (20)[]
Computational aspects. Similar points as discussed in Section 6.3.1 need to be
taken into account in the numerical determination of the damping diffusivity

components using the sensitizing patch test. The two obvious difficult situations
are: the reaction term is very weak or it is very large.

We consider first the weak reaction case. We define an element based Ceclet
number (cf. (6.3.26))
2

Dm
If this is small, we put damping diffusivities to zero (yksityiskohdat kesken).
We consider next the large reaction case. We evaluate (cf. (6.3.29))

ch?

— 22

5 (22)

If this is large for any of the four directions, we take a reduced ¢=c and
determine the diffusivities Dy, =DJ,, D;.y =D;}., D;y = Dj}, using this. Then
the final diffusivities to be used are obtained from

D} (23)
The logic behind this can be obtained by considering first the one-dimensional
case similarly as was explained in Section 6.3.1.

7.2.2 Quadrilateral elements

We try to obtain some understanding of the behavior of the damping diffusivity
components from Example 7.2. It is a counterpart of Example 6.3.

| Example 7.2. We consider the case of squarc element shown in Figure {a). The
] corresponding sensitizing patch is shown in Figure (b).
i

With conveclion missing, the applications might also be in solid mechanics and then the
real diffusivity tensor can well be anisotropic. To be ready for such sitwations in full
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generality, we therefore initially write the expressions here assuming the (unusual)
general case Dy, =D, and also similarly DT «# Dj,. I may be noted that if
Dy=D

e+ Lhe corresponding field equation contains the term

2%¢ 3%
-p ¥ _p e
Doy dxdy 7 dyox ( &

2%
'r) dxdy c

which is different from

9%
axdy

-2D,,(=-2D,,) (b)

@ @B G
a @ @&

4 —

T ) (3)5{4) (3) 6 *

) @A) @

&5 1 2 3
Figure (a) Figure (b)

The element contributions are from (11) applied at the element level

an, oN AN, oN;
K§ = a0 4+D
D f e 50 49 Dol 5 5y ay
N, aN; AN, aN;
D a4+ b Rl T
*Pnlge Ay ox *Pplar dy dy
+cf o NiN;d2

aN; ON; AN, ON;
T on;
+D,I f9x ox 42+ Dy o 9x ay

oN; oN aN; N
T .r
DF_[ar a A2+ J:l' ot ay

(c)

—Lan
dy
D N Dy ¢ 3N, of
Yao+2[ ZOHY 40
2 3x ax ¥ I * dx oy
+D,, EL +DL W o
c 9 ay ay c ‘a By By

b_[,Nfd.Q

We obtain in detail (cf. formulas (F.2.3})
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2 1 1 2 4,4 . 1 1 1 2 42
® =Dy =+D,—+Dy~+D, = +ca’ — K =D, —-D_—+D,——-D Z+cat=
Ky = Do gt Doy 4 D g # Dy v 5 e G e e R
2, pr Lope L 2 (d el L2
+DLE+D':).Z+D;IZ+D;’E +D.u6 D.ry4+Dy.t4 Dyy6
2,p Lop Lyp 1,02 cop.2p tep Lip 2, 04
K:’;: Dy—+D,, Dyx—é-D”E-Fca 3% K, D_“6+DA.J,4+D”4+D”6+CG 3%
6 4 4
2 1 1 2
_D;,%m;y%—o;,%w;y% R s e
eep lplplpl, al e eop. 2ap lp Lip b2
KIJ _-D'“E—D”Z_DFZ_DJWE"'C“ 5-6- Ky D36+ny4 Dyx4+D”6+Cﬂ %
2 1 1 1
-D;,é-ngy%w;y%—p;y% -DZep opg Sa
| 1 1 2. 22 e_p lypl pl p 2, S
K =Dr g~ Do = D= Dy gteasg K= Pagt Py On =P+ 34
1 1 1 2 A PO R
+DL——D;),Z'-D;J,4— ;),6 +DHE+DJ),Z—D).XZ D)’)’E
e 2 1 1 1 22 ‘=-D—1-D1D1—Dl+zi
K“— Dn--'—D‘yz'l'Dyxzﬁ'Dﬂg'}'Ca R K42 n6+ Iy4+ yz4 ”6 ca %
2 1 1 i ol rl o 1
_DLE—DLZ+DL4+D;UE D-“6+DXY4+DJ'14 e
2 1 I 2 2 4 , 2 1 1 1 2
¢ =D, = St = K® =-D_~-D_=+D, ~+D,_ —+ca®—
Ko =PagPo = Du g g™ o 56 L A M R TS
2 [ B pr2_prlo ol 1
+D;'-6_—DI’I_D"Z+D”'E D”G DJ‘:,,“+D),,,4+DJ,3,6
! 1 L 2 22 L -%—D l_D l+D E.‘. 2 4
K =D‘UE+D”E—D’“-Z-D”—6-+CG E K“ Duﬁ oy 3 g ca 36
Y R Ry (2 pl pel g2
+D;'E+D;’Z_D;’E_D;°’E +D_u.6 DJ,L.),4 D},J,“-t-DJ,J,‘S
ke D 1+D 1+D I D l+ca21 The system equation for node 5 { f = 0) from 1he mesh of Figure (b} is
- I D S ) 1% _
16 14 | 216 K9y + Ky + K5y + Ksafy + Kssbs + K + Ksyby + Koy + Koy =0 ()
~DL —4 DL —+ D ——Tl c* =
T6 T4 Va4 76 with
1 1 1 .1 g 1 1 1 Il 5
;l— D2 D-‘)’z g Dﬂg+ca —3_6 KS]=K31_—EDH—;DJ)'_ZDN'ED”*’ECQ
1 1 1 1 @ 1 1 | 1
g Pa Py Py R A e
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2
K52=K3]2+K42|=—DR+O-DU+0-DyI—iD”+ica2
6 6 36
2 o 4
"i'gD_ru.'l'D'Djy-FO-D;‘—'g—D;y
w21 1 1 1 1 4
KﬁHKAZ——ED“+ZDU+ZD)'I_ED”+-3-ECG
U 1 1 1,
_EDn'i'szy'i'zD#—gDyy
1 4 2 4
KS4=K34+K§1=—EDH+0-D,,+o-D,,+gDW+-3_gm2
_3 D +0.D0 +0.D] +2pr
6 = £ ey
8
Kss=K§3+Kf4+K,3_2+K|41=ED_U+0-DD,+0-DJ,,+%DW+%ME
8 r r r 8 r
+—6-D”+0'DH+O'DJ“+ED”

Kss=Kh+ Kb =—%Dn+0-D,y+0-Dyx+%D”,+:;16ca2
—iD;ﬁ-O-D’ 4-()-10’1-:-—2-1_’)r
6 24 ¥ 6 »

®

1 1 1 1
Ksy = K3, =—EDH+ZDH +IDJ,_,—-€

L, L, 1 1,
_EDH+ZD”+ZD;I—ED'W

L 2
D, +—ca
» 16

3 o4 2 4 4
Ksg = K3y + Ky =ED“ +0-D,, +0-D), _ED” +§5-ca2

2 r \3 r 4 r
+2 D5 +0-Df, +0- D}, — =D},

1 1 I 1 1
Ky = Ki‘3 =—EDH ——ny —'4_Dyx —EDﬂ +£Ca2

4
1 1
-—Dl_-=Df ——
6 % 47 4

1 . 1.

Dy, - r Dy
Equation (c) is presented in Figure (¢) using mathematical molecules. The comresponding
field equation is also given.

7.2 TWO DIMENSIONS  7-23

a!¢ a!¢ 32¢ al¢
-D,=——D - -D —
= Ox & any D’" 3;5,: Yoy e
3%y 3% 2% 9%
_nr _nr _nf _n' -
D_ —!-ax D:y 5 ny -a—a—y = D” _Tay 0

Figure (c)

Again, it is rather easily seen from the mathematical molecules of Figure (c) that in Lhe
cases =1 with f=¢, ¢=x with f=cx, ¢=y with f=cy, the paich test is
satisfied for any values of the damping diffusivity components (when f =0, 8
comresponding term bs must naturally be included in equation (e)).

From this on we have assumed in general isotropic real diffusivity, that is
D,, =D, =D and D, =D, =0.In addition we always Lake D, =D}, The data is

selected so that the Peclet number ca®/D=25. The calculations are performed by
Mathematica.

(1) We cxperiment first taking just two perpendicular directions at a time and assumu
comespondingly D, =D}, =0 so that we have to determine only the two unknowns:

Dj, and D}, . Taking first y =0 and w = 90" gives
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DL =334D, D}, =334D (g)

Second, taking w =45 and =135", we obtain two identical equations and thus no
unique solution is found. So here the end result depends sirongly on the directions used.

- . - . - \3 3 \3
(2) We take (hree directions thus obtaining three equations to determine Dy, Dy Dy

Taking first w =0, w =60", ¥ =120° gives

Dl =334D, D}, =055D, D=0 (h)

Second, taking W = 45°, w = 105", y =165" gives
Di =206D, D;,y =206D, D;), =-041D (1)

These results are still not salisfactory as the values are seen again lo depend strongly on
the direclions used.

(3) We take according to Figure 7.5 four directions thus obtaining four equations to
determine Df., Dj,, D,. The equation system is now ovedetermined and it is solved
by least squares using (17) to (19) with equal weight factors. The solution is oblained
conveniently by Mathematica by a minimizing command. Taking first w =0, ¥ = 45°,

v =90, =135 gives

D, =168D, D;J,=I.6SD, D;y=0 4]

Second, taking taking y = 22,57, ¥ =67,5", ¢ =112,5", y =157,5" gives

DI =199D, D;.y=1.99D, D_:J,:O k)
Third, 12king taking ¥ =45, ¥ =90°, w =135°, w = 180" gives again (j) as was to be
expected due 1o symmelry. As results (j) and (k) are roughly of the same magnitude we
conclude that the procedure suggesied in connection with Figure 7.5 is reasonable at
least as a working hypothesis. ’
(4) We repeat case (3) now with the weightings (20). Taking first ¥, =0, ¥ =45,
vy =90, yy =135" gives

D; =331D, D;,yao.SSD, D;),=0 n

Seccond, taking ¥y =22,5°, ¥, =67,5°, ¥y =112,5°, w, =157,5" gives

Dl =199D, D}, =199D, D=0 (m)

7.2 TWO DIMENSIONS ~ 7-25

This is the same as in (k). Here it happens Lhat all the four equations are satisfied by (m)
so different weightings do nol change the solution. Third, laking w, =45", ¥ =90°,

Wy =135, y, = 180" gives
D, =158D, D}, =158D, D, =-08D (n)

The weighting does thus in general have an effect on the solution.

{(5) In this final case we experiment with an isotropic case and with four directions
without different weighlings in least squares. The dala is D, =D, Dy, =05D,

D, =D,, =025D and the Peclet number ca® / D, = 25. We take the same directions

as in cases (3) and (4) above. First, directions y =0, w =45", w =90°, v =135 give
Dl =-005D, D;y =364D, D_:y =0.00D (o)
Second, directions ¥, = 22,5°, y, = 67,5, w5 =112,5", p, =157,5" give
D, =253D, D, =143D, Df=0.07D ®

Third, directions r = 45°, y = 90", w =135, y =180° give again {0).

?

7.2.3 Triangular elements.

?
7.2.4 Numerical results

Some numerical results are shown in Figure 7.6 for the equation

2 2
—10‘53%—10‘6a—‘z+¢-f=0 (24)

dx dy
with

=1, y>02+0.5x

f (25)
f=0, y<02+05x

?

Figure 7.5. Large reaction. Quadrilateral elements (left). Triangular clements
(right). On the first row standard Galerkin method solution. On the second row
sensitized Galerkin method solution. On the third row sensitized Galerkin
method solution with gradient direction correction,
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The domain and the boundary conditions are the same as in the numerical
examples of Section 6.3.4. In this large reaction case the exact solution behavior
can be understood again from the discussion in Section A.3. Sensitizing is
clearly seen to improve the solution behavior.
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8 DIFFUSION-CONVECTION-REACTION

The sensitized weak forms needed in connection with complete D-C-R
problems are obvious from the preceding chapters. It is enough here to write
down the relevant expressions and to give just some comments on the
determination of the sensitizing parameter values.

8.1 ONE DIMENSION

The complete governing field equation is now

d dg) d
0)=| o DL |l reo-s 0
and the equation forms used for sensitizing are
- _{_pd’e, d¢
RT(¢)=L"(¢)-f= —Dgz-+u-d—x+c¢-—f=0 @
and
dRCl‘ dLC[' 3 2
dx de  dx de®  dx?  dx dx
The corresponding sensitized weak form is thus
dw _d¢ d
[a D580+ [, w—(u9)de + [, wedd@— [ wfdg +bt ©
c dLCl’ (w) rdRCT(¢)
_]_J'Q Lcr(w)frcR r(¢)d.{2 +L} ™ T = d2

This version might be called Galerkin / least-squares / gradient least-squares-
method (GLSGLS-method), Harari and Hughes (1994).

The system equations and the element contributions are also obvious from the
earlier chapters.

The reference solutions are obtained from the solution of

d’¢  d¢
—DE+HE+C¢—){=0 (3

8-1

8-2 8.1 ONE DIMENSION

This is similarly as before
$(x) = Ae" + Be™ +¢,(x) (6)

where r and r, are now the roots

u;\,‘u2+4Dc .

7 M

Ha2=

The one-dimensional patch test to determine 7° and 7° for a two-noded
element described earlier, is too tedious to be performed by hand. General
formulas have been generated by the Mathematica program. The resulting

graphs for 7° and " are shown in Figure 8.1. The curves with Ce; =0 in
Figure (a) and with Pe, =0 in Figure (b) have appeared earlier in Figures 6.5
and 7.2, respectively.

@

{b)
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Figure 8.1 (a) Parameter ©° as a function of Pe, =uh/D and Ce, =ch*/D.
(b) Parameter 7 as a function of Pe; =uh/D and Ce, =ch®/D.

Remark 8.1. The graphs in Figure 8.1 have been obtained in fact by simplifying the

presentation by neglecting the term ¢w in L7 (w). This is again allowable as discussed in
Seclion 5.3.2.0

Figure 8.2 shows some results obtained for the problem

2
—:_x%+30%+30¢—30=0 in Q=)0,1] ®
9(0)=0, o(1)=0 ®

The term "simplified” in the text of Figure 8.2 means that £° is evaluated with
Ce, =0 and £" with Pe, =0. In other words, we evaluate £° as if there would
not be no reaction included and £° as if there would be no convection included.

This practical procedure makes the evaluations considerably cheaper and at
least in this example the accurary is not much affected.

The term "simplified/simplified” means that in addition to the above
simplification, the asymptotic approximations described in Chapters 6 and 7 are
employed. This step has more effect on the accuracy than the previous one.

The calculations with an irregular mesh gave quite similar results as with the
regular one and they are not reproduced here.

1

1

sl feT "

Y 05 T

@) S ®)
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05

0 02 04 0.6 08 1

(c)

Figure 8.2 Regular five element mesh. (a) Standard Galerkin method solution.
(b) sensitized Galerkin method solution with the parameters according to
optimal values of Figure 8.1. {¢) Sensitized Galerkin method solution with

simplified parameter values. (d) Sensitized Galerkin method solution with
simplified/simplified parameter values.

8.2 TWO DIMENSIONS

For completeness, we write down the essential formulas. The differential
equation is

d a¢ d
R(¢)=| — —Dpg — [+ — ~-f= 1
®) axa( » ax,,]* s (ad)rep =<0 0
and the equations for sensitizing purposes are
or er aztﬁ d¢
= —f=|=- = -J = 2
RE(¢)=L"($)—f =| —Dup axaaxﬁ+v“axa+c¢ f=0 )
and
R 7@ O __, % . %
ox, ox,  0x, o dxgdxgdx,  Oxydx,
o ¥ _
3 )

The sensitized is weak form is thus
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'[an "”axﬂ <1215 wax (Va¢)

+jﬂwc¢d9—_|'gwfdsz+bt : )
& oo oL (w) . 9R'(8) ., _

+[ LT (w)r°RT (9)dR+ [ T o dQ=0

Based on the experience of the one-dimensional behavior, the parameter values

7% and 1" are selected according to the simplified or simplified/simplified
procedure explained in the previous chapters.

REFERENCE
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9 TIME DEPENDENCE
9.1 INTRODUCTION

In this chapter some features of the effect of time dependence in connection
with the finite element method are discussed. The presentation deals mainly
with one-dimensional problems in space.

9.1.1 Some notations and a model problem

If a problem is in space one- or two-dimensional and if it depends additionally
on time we can have in principle the solution domains indicated in Figure 9.1.

t 4

(@) ()

(c)
Figure 9.1 Space-time domains and boundaries and some notations.

The left-hand side figures (a) and (c) describe the general case where the spatial
domain $2(¢) and the spatial boundary I'(f) change with time. Examples could
be for instance one-dimensional gas flow in a tube controlled by a moving
piston or two-dimensional unsteady fluid flow with a free surface. Quite often
the simpler cases of the right-hand side figures (b) and (d) with non-varying
spatial domain £ and boundary I" appear. We deal in this text with the latter
simpler case. In three space dimensions we can no more draw figures like 9.1
but the ideas remain the same.

9-2 9.1 INTRODUCTION

The origin of the time coordinate can be selected at will and here it is taken as
the instant of time we start to consider a certain phenomenon. The time t=T
refers to that instant of time we end our study of the phenomenon.

Remark 9.1. As discussed in Patankar (1980), time is a one-way coordinate (yksisuunlainen
koordinasuti). "A one-way coordinate is such lhat the conditions at a given location in that
coordinate are influenced by changes in conditions on only one side of that location,” Time
clearly salisfies this definilion as il is common belief — principle of causality — that only
past events and not future ones can influence the presenl. In some cases also a space
coordinate can be a one-way coordinale; conventional approximations used to obtain the
boundary layer equations of flutd flow, lead, Far example, to such a siluation. [

The boundary conditions on the space-time domain boundary at r=0 are
usually called initial conditions (alkuehto). It is clear from Remark 9.1 that no
boundary conditions can be given on the space-time domain boundary at =T

Remark 9.2. A space-lime problem could be solved in principle by covering the whole

solution domain $2' at once by a mesh and by proceeding similarly as before in space
problems. But because lime is a one-way coordinale this is not computationally feasible. The
space-time domain can be divided by lines or planes or hyperplanes of constant time in two,
or lhree or four dimensions, respectively, into as thin as we want slices or space-time slabs
(paikka-aika kaistale). The solution is advanced through the first slab using the initial
conditions. Then the solulion is advanced through Ihe second stab employing the end resulls
from the first slab as the inilial conditions, etc. [

To make the presentation concrete, we consider the following model problem.
The field equation is the unsteady one-dimensional diffusion equation

% 9 0 .
a_cf,ra[_pﬂ_f:o in @' =9x1=]a,b[x]0.T[ W

with the boundary conditions

_Dg_¢=}d (£)| on I'f=TyxI={p}x]0,T[ @)
X

and with the initial condition
¢=do(x)| in 2=]a,b[ at +=0 (4)

The unknown function to be determined is ¢ (x,?) in Q°.
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Figure 9.2 shows the problem in pictorial form. Space-time slabs Sy, S, .-, S,
are also indicated.

t
T
o¢ o ¢ 0P  _
= _—t— DL |—f=0| - ——d
=41 35 ax[ ax} ! D=
SJI
tn
1
S 2
5o L
a ¢=60 b x

Figure 9.2 The goveming equations and the solution domain.

Remark 9.3. In this text we consider cases where only the first order time derivalive appears
in the field equations. This is typically the case in heat conduction and in fluid mechanics
problems in general when the Eulerian description is used. In these situations the initial
conditions are of the Dirichiel type: the function value is given. In dynamic solid mechanics
problems treated by the Lagrangian description, also the first order time derivative appears in
the initial conditions. This is familiar from particle mechanics where the equations of motion
demand as inilial condilions both Ihe position and velocity of the particle. [0

Remark 9.4. The model problem is essentially the one-dimensional heat conduction problem
of Section 2.1.1 enlarged to the unsieady case. According to (6.1.21), the corresponding heat
cenduction field equalion is

gt al+i[-k-al]-s=o ®)

We derive below the finite element formulas employing the mode! problem (1) -+ (4) bul Lhe
changes necessary to consider heat conduction are obvious. 0

There are two main ways to deal with time dependent problems;
semidiscretization or partial discretization (osittainen diskretointi) and full
discretization (tiydellinen diskretointi). These are explained in the following
two sections. A method, called time-discontinuous Galerkin method (ajan
suhteen epéjatkuva Galerkinin menetelma) has gained recently much popularity.
This belongs to the full discretization category but is explained separately in
Section 9.3.

9.1.2 Semidiscretization

94 9.1 INTRODUCTION

The starting point is the weak form

39 AN _
Ia w(x)|:at+ax( Da} f]d.Q—O (6)

obtained from the field equation (1) in the usual way. It should be noted that
here we select the weighting function to depend only on x and integrate only
over the space domain (the x -axis).

As earlier, the diffusion term is integrated by parts to lower the order of
derivatives on ¢. The Neumann condition (3) is made use of on the right-hand
boundary. On the left-hand boundary we put again w(a) =0 and obtain the final
weak form

a¢ ow d¢ d
jﬂ[ o ax]dﬂ wad.Q+w1 i = )

We have assumed that the admissible ¢ in (7) satisfies in advance in addition to
the Dirichlet boundary condition also the initial condition. Comparison say with
(2.1.28) shows that the only change (apart from notation) due to time
dependence is the appearance of the term wd¢/d¢ in the integral.

The discrete analogue of (7) is

a(b aw a¢ - ~=d _
I/, [ Shee= E]dﬂ—jﬂwfd.(2+w; | =0 8)

The following form of the finite element approximation

‘f’(x"):%f"’j (x)¢; (1) 9)

is essential in semidiscretization. That is, the given trial basis functions N;{(x)

depend only on space coordinates (here on one space coordinate) and the nodal
parameters ¢;(t) are unknown functions of time to be determined. The term

"semidiscretization" is obvious from the form of (9).

Remark 9.5, Approximalion (9} resembles the separation of variables methed or the product
form often used in analytical efforts to solve partial differential equations where
representations of the type @(x,r)= F(x)G(r) are employed. Here, however, form (9)
implies no restriction on the ability lo approximate any reasonable conlinuocus function
¢(x.r) with an arbitrary accuracy. To see this, let us consider any fixed value of time. The
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approximation in space would be % N; (x)¢; where the nodal parameters would be suitable

constants and with mesh dense enough an arbilrary accuracy can be achieved at this instant of
time. When the instant of time is changed, the approriate values for the nodal parameiers alse
change and we in fact end with Lhe representation (9). 0

Remark 9.6. In classical mechanics with originally finite degrees of freedom systems — say
in connection with rigid body mechanisms — one usually operates with generalized
coordinates {(or with generalized displacements) g, see e.g. Lanczos (1970). In dynamics
these become funclions of time: g = g(r). When solid continuum mechanics problems are
discretized by the finite element method using a displacement formulation, the nodal
parameters have in fact the role of generalized coordinates. We have had an application of
this in statics in connection with the Timoshenko beam in Chapler 5. The nodal deflections
and nodal cross-sectional rotations can clearly be interpreted as generalized coordinates
associaled with the model having now a finite number of degrees of freedom. If we extend the
applications 1o dynamics — which we did not do in Chapter 5 — it is then obviously quite
natural just lo assume lhe time dependence to take place in the nodal parameters, that is, to
assume a semidiscetization. In heat transfer and fluid mechanics one does not have narmally
any originally obvious {inite degree of systems and the comresponding terminology. Therefore
in these areas one may be more ready to think also about the full discretization to be
discussed in Section 9.1.3. 00

The weak form (7) and its analogue (8) have been generated keeping the partial
form (9) in mind. Even if the field equation is valid in a domain in the
x,t -plane, we strive to "kill" the residual only on a line along the x -axis.

From (9),
% 09 _ do; (1) _ -
a:”a:"g‘Ni(") & —.?Nj(x)‘?’j (10)
3 3 _IN;(x),
x 3.):_% dx ¢i(‘)—§NJ(I)¢j(‘) )

where some new notation is introduced.

The Galerkin method is now again applied. Here this obviously means that the
discrete weighting functions are taken from the set of trial basis functions in
space, that is, they are the functions N;(x). Substituting (10) and (11) into (8)
and using the Galerkin method gives the system equations (the reader might go
through the details similarly as in Section 2.3.1)

| [Ma}+[K {a}={b}] (12)

where

9-6 9.1 INTRODUCTION

My=[ NNdQ

dN, dN;
K. = —pD ds2
Yo Ja dx T dx (13)

b; =.[g NifdQ_NJd y

Equations (12) are a linear system of first order ordinary differential equations
with time as the independent variable. This set has been referred to in Section
1.1 as formula (1.1.9).

System (12) must be completed with the discrete initial conditions
{a)}={a)}® at =0 (14)

The components ¢; of {a}® are obtained simply from the values of function
E}O(x) in {4} at the nodes or altemnatively say by determining the spatial finite
element least squares fit to ¢y (x).

The coefficient matrix [M] multiplying the column matrix of nodal parameter
time derivatives (@) is sometimes called the mass matrix (massamatriisi) as

similar structure is obtained say in fluid flow problems in connection of inertia
forces. The same type of matrix arises also from the reaction term, see for
instance formula (7.1.7). In heat conduction, the mass matrix obtains (see
Remark 9.4) a form with entries

Cy = jg pc,NiN; dS2 (15)

The corresponding matrix [C] is sometimes called the capacity matrix
(kapasileettimatriisi).

The assembly of the system equations from the element contributions
Mi= P NiNjdQ

e[ NP dN;
K% la P (16)

b = [ NifdQ-N{7|r,

goes similarly as before also with respect to the mass matrix.
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The solution of the system equations (12) demands normally a new separate
discretization; numerical time integration by some method. This is considered in
Section 9.2,

Remark 9.7. The formulas needed in time dependent problems are derived sometimes in the
literalure by basing the derivalion on formulas obtained in the corresponding steady cases.
For instance, the governing field equation {1) can be generated from the steady field equation

S _po)_,_
Bx[ DaxJ f=0 an

using the substitution
2 .
fi=f-2e -3 )
! ]

where the notation “:="means: replace the left-hand side expression with the right-hand side
expression. Substitution of (18) into the lerm

b= N:fd2 - N, (19)

valid in the steady case, is seen to produce the entries of the mass matrix. The procedure
described is familiar in nature from basic dynamics in connection of the inertia force idea: the
equation of motion can be cbtained from Lhe equilibrivm equation by the replacement
F:=F-ma.0

Example 9.1. The sysiem equations {12) corresponding to the model problem (1)--- (4}
are developed in more detail. We employ a crude mesh of three uniform two-noded line
elements and four nodes in the x- axis direction shown in Figure (a}.

@

v O oo @ oo @ o

L & [2 n I 4 x
’ L

Figure (a)

Diffusivity D is assumed io be constant in space and time and f =0. The boundary
conditions at a=0 and also at b= L are taken o be of the Dirichlet type and to be
simply

¢(0,1)=¢(0.1)=0, ¢(L.)=¢(L.1)=0 (a)
This means that at the nodes | and 4 "moving" parallel to the ¢- axis,

¢|(r)=0

b
b(1)=0 ©
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The element contribulions are according to (16)
M= [o NENGAR,  Kj= D[, NFNT 2 ©

As the elements are identical, we obtain for all of them using formulas (F.1.1) and
matrix forms:

1) w2l ]

Assembling the syslem equations and taking into account the given nodal data (b} gives

il sl ST
61 4]lg] nl-t 2]le] o
This is a simple illustration of (12).
If the initial condition (4) is for example
¢(x,0)=¢o = constanl 0

the corresponding initial conditions (14} for the nodal variables are

{%] = {f"} at 1=0 (®
#] %o

The analytical solution corresponding to boundary and initial condilions (a} and (f) —
obtainable by the separalion of variables method — is

P(x,0)= E‘, B, sin ?exp (~Alr) )]
n=l
where
A, =D % G

and

4 —
=— is odd
B, $g, nis 0

=0, n is even

Po

Figure (b)
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The solution decays monotonicly in lime since the exponents ~A,f1 are negalive. The
lerms in the series where n is large (= A, is large} decay fastest. Figure (b) shows
schematically the distribution of ¢ along the x-axis at the initial time =0 and at a
later time t>0. It is realized that the solution is due to the boundary and initial
condilions discontinuous al points (0,0) and (L,0). This obviously leads at the
beginning near these points to large values of 3°p/dx? and thus through the field
equalion (1) to large values of d¢/ar, that is, the solution must change at Ihe beginning

near these points also rapidly with respect to time. These features arc demanding on a
numerical method,

9.1.3 Full discretization

Partial discretization has been the most common way to deal with time
dependent problems. Lately it has been replaced, however, more and more by
full discretization, The main idea is to conceive time just as one additional space
coordinate; but not in every respect as time in any case has the special property
of being a one-way coordinate.

We consider again the model problem (1) ... (4) and concentrate on a typical
space-time slab S =S, = 2x I, =)a,b[x1t, . tyul in ' (Figure 9.2). We take
as the starting point the weak form

op 0 a_¢ _ B
fy ')[a: ax[ Dax] f]ds“o (20a)
or using a somewhat different notation, the form
IR j w(x,1) [a¢ 9 [-Dg—q)]—f}dtd.(?:o (20D)
x

This can be compared with the starting point (6) for semidiscretization. It has
again been assumed that the admissible ¢ satisfies in advance the Dirichlet

boundary condition and the initial condition at f=¢, produced from the
previous stab.

Integration by parts is applied now in two dimensions for the diffusion term. In
detail

L dw a¢ o¢
s ax{ ax}dS [s5,P5,95[,5 wP35_ned@$) @)
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We have applied the first formula (B.2,1a) with x£x, y=¢, gZw,
h2-Dd¢/dx in the space-time slab § with boundary JS. As seen from Figure
9.3, the component n, of the outward unit normal vector n disappears at the
sides t =t and t=t,,, and has the values —1 and +1 on the sides x=a and
x=b, respectively. As w is taken to vanish on the Dirichlet boundary and
making use of the given data on the Neumann boundary, we obtain the final
weak form

8¢ Bw 3¢ —d 2
IS[wa: - x}dSJ' de+Ias)Nw_; d@5)=0 (22)

The notation (35)y refers here to the right-hand side edge of the slab, that is, to
[p} x1,. This weak form looks like form (7), obtained through semi-
discretization, but there the domain was in space and here it is in space-time.

I =1I,+ Tn
/
n —-—— S=Sn —=— 11
‘t \ l 95
t=t, n

Figure 9.3 Space-time slab S and its boundary dS§.

The discrete analogue of (22) is

.0 oOw 3¢ ~d
IS[ T ax]ds wads+fa) #j74(05)=0 =

Instead of (9), the finite element approximation is

0(x.1) = ZN; (x.)8; (24)

The nodal parameters ¢; are now wknknown constants and the two-dimensional
shape functions N; (x,t) are at simplest those of triangular or bilinear elements.

Application of the Galerkin method in (23) with N;(x,f) as weighting functions
generates the system equations
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[Kl{a}={b} (25)

with

dx ox

I{ aN; O, DBN ] is
(26)
_ —d
b,-_jSN,. de—_[(aS)N N, 74d(35)

The system equations are now again a linear system of algebraic equations.
Figure 9.4 could illustrate the situation.

The length of the time step At =¢,; —f, should be so small that one layer of
clements is enough to give the accuracy needed. It is seen that many known
nodal values (roughly half of the total number) appear in the mesh. After the
unknown nodal values have been determined from (25), they appear as given
values for the next slab,

4
» known value « unknown value

At

| L *

1 I

Figure 9.4 One layer of elements in a slab.

Remark 9.8. It can be realized from Figure 9.4 that full discretization contains in principle
more flexibility than semidiscrelization. As example consider a sharp internal layer advancing
with time along the x-axis. In space-time this means a skew discontinuity line and if a two
element interface is ammanged to coincide with this line, good accuracy is 1o be expected. 0 )

Remark 9.9. Full and semidiscretization have been considered above only in the case of one
space dimension and without convection and reaclion. The exlensions of the formulations to
more general situations are, however, rather obvious and are not treated here. With three
space dimensions full discretizalion means the use of four-dimensional elements which is
difficull 1o visualize and one must rely on pure mathematical extensions of the sieps familiar
from the transfer between two and three dimensions. [

Example 9.2. We treal the problem of Example 9.1 now with full discretization. The
extremely crude mesh used for slab §; is shown in Figure (a). It consisis of three

identical four-noded reciangular elements. Figure (b) gives the Jocal nodal numbering of
the element.
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Ll 2,1 3.1 4.1

@ @ @

1
0, |2.0 i 10 . ]4‘0 x | a
T L}
X

Figure (a) Figure (b)

The element contributions are from (26)
Kf =) NiNjdS+D[ NINFdS (®)

This is in matnx form

-2 -1 1 2 2 -2 -1 1
1 -2 21 -2 2 1 =1
(K] =2 +22 (b)
12|-1 2 2 1| 6a|-1 1 2 -2
-2 -11 2 1 -1 =2 2

Formulas (F.2.3) have been applied with appropriate inlerprelations.

The nodes of the mesh of Figure (a) have been numbered here with a double index
system much used in the finite difference method so (hat the first index increases with
position and the second with time. The nodal values are denoted similarly in the finile

difference fashion as ¢}' where the subscript refers to position and the superscript lo
lime.

Assembly gives the system equations
afs 1], Ds -27Y ¢
12|11 4 6a -2 4 ¢31
0
Ja ~4 -1 +££ 2 -I|Yey . 0 ©
12[-1 -4] 6a|-1 2] }0 0

The information
o’ =0)=0/=¢l=0 (d)
from the zero boundary conditions have been made use of.

System equations (c) are of form (25). Here we have only grouped the nodal varigbles in
the "past” and "future” sets and taken the boundary conditions already inlo account. The
representation (c) would be in general of the form

[Al{a}™" + [B){a}" + {C} = {0} @



9.1 INTRODUCTION  9-13

where {a} contains on each time level only those nodal parametrs which are not
prescibed direcUly from the boundary conditions. The formal solution would thus be

(e == (A7 ({8 }a}" + {c}) ®
This gives the algorithm: value of [a}o is known, we obtain [tzll from (f), ctc. A similar

situation is considered in more detail in Section 9.2.

In time dependent problems it is important (o ry define some relevant characlerstic time
interval 1o be in general able to say that a time step is small or large, Here we take a
reference lime

1_2
A12 Dnl

r

(g)

The fysical meaning of this is as follows. The slowest decaying lerm in formula (h) of

Example 9.1 has decreased 1o the value ¢~ ! = 0,37 times its original value,

The initial condition ¢y = conslant gives the initial nodal values

o =0 =0 (h)

We take the slep size At = b =0.51,. Then the coefficient
== @

Because of symmelry, ¢y =¢7. It is then enough to consider either of equalions {c).
Generalizing, there is obtained first

a Db a Db .
Bl PRy N VL [, ety ) L)
[12+6a]¢2 +[ 12 +6a]¢2 @
and finally
¢! = 0.599-¢F (k)

This is a simple special case of formula (f).

Results evaluated by (k) are shown in Figure (c). To shorten the time step does nol
change the results apppreciably because the crudeness of the mesh in space generates
errors which do not disappear if Ar tends separately to zero. The analytical solution is

cvaluated from formula (h) of Example 9.1 at x=L/3.

¢/

9-14 9.1 INTRODUCTION

¢ 1o
0.8 N ——  Analytical
N,
N ——.  Finite element
0.6
0.4
0.2
0.5 1 1.5 2 it
T
Figure (c)

9.2 TIME INTEGRATION
9.2.1 General

We consider the linear constant coefficient system of ordinary first order
differential equations written in the form

| [M{a}+[K [{a}={p} | (1)

As initial conditions we have

{a(n)} ={a}0 at t=0 @

This setting has been described already in Section 9.1.2 where it emerged as a
result of partial discretization of a continuum problem in space and time. But
this kind of problem arises in many physical systems directly without any
discretization.

The solution of system (1) ... (2} means the determination of the column matrix
(a()) as a function of time. Column matrix {b) is a given function of time and
matrices [M] and [X] can in general also depend on time. If they depend in
addition on {a}, the system is non-linear. The numerical treatment of problem
(1} --- (2) is often called time integration (aikaintegrointi). Due to the early
appearance and importance of this kind of problems in physics — movement of
heavenly bodies, ballistic problems — the literature contains a confusing
number of algorithms dealing with time integration; see e.g. Mikeld et al.
(1982).
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The finite element method can be applied to system (1) ... (2) to generate
different time integration algorithms, Zienkiewicz and Morgan (1983). As here
the solution domain boundary consists simply of two points: =0 and =T, the
geometric flexibility of the finite element method probably has not much new to
add to the older algorithms. Many old versions can in fact be generated by the
finite element method. We therefore do not present the application of the finite
element method to this problem as we concentrate later on the time-
discontinuous Galerkin method applied to space-time continuum problems.

Some main concepts on time integration are now touched upon. We denote
different discrete values of time or time levels (aikataso) as follows

t =0
t =t; + At
L =+ A=ty +2AtL 3)

L, =t thAr=t,+nAt

The time step (aika-askel) At between the time levels need not necessarily be
constant as has been indicated for notational convenience in (3). In fact, in
adaptive time stepping, the step length is constantly monitored for optimum
efficiency.

Corresponding to (3), we denote

{atio)}={a}’
{at}={a} @

{at)}={a}’

The terms single-step method (yksiaskelmenetelmi) and multistep-method
(moniaskelmenectelmi) are used according to if the algorithm determining

quantity {a)"*' contains only the value of (a}" or more levels, respectively.
Alternatively, the terms two-level method, three-level method, etc. are used.
Here we only consider single-step (two-level) schemes.

An important concept is the stability of a time integration algorithm. In some
methods the errors can under certain conditions tend to grow exponentially with
time. If this is the case, the method is called unstable (epistabiili), otherwise it is
stable (stabiili). In certain algorithms there exists a so-called critical time step.
The method stays stable if the time step remains smaller than the critical time
step. The method is then called conditionally stable (ehdollisesti stabiili). If no
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conditions are necessary to guaramtee stability, the method is called
unconditionally stable {(ehdoitta stabiili). We refer to Zienkiewicz and Morgan
(1983) for details.

A classification connected closely with the text above is the following. A
method is explicit (eksplisiittinen, avoin) if the unknows of the new time level
are obtained directly as certain expressions without solution of a system of
equations. A method is implicit (implisiittinen, suljettu) if this is not the case.
Explicit methods are usually conditionally stable and implicit methods are
usually unconditionally stable. Thus even if the computational work needed per
time step is much less in a former method compared to the latter, the limitation
of the critical time step length may make the number of time steps so large that
the total computational effort may become larger. On the other hand, the time
step length of an unconditionally stable method cannot be taken arbitrarily large
because the discretization errors naturally grow correspondingly. Bathe and
Wilson (1976) is a classic text dealing with these themes from the point of view
of the finite element method.

Remark 9.10. In mathematical texls a more general setting than (1) is often given in the so-
called explicit form

{a}={fC.latan} )
A comresponding linear or linearized form would be
{a}=[A){a}+{s} ©

where [A] and {g} are mostly functions of time. If matrix [M] in (1) is repular, we arrive al

(5) in principle by operating with [M1~' in (1). Because application of the finite element
method (in space) produces normally form of type (1), it is natural to start the time stepping
directly from it and not from the form conventional in numerical mathematics textbooks. O

9.2.2 9-method

Introduction. We only consider here one rather widely used difference method
type procedure, which might be called the 8 -method to discretize in time.

Equation (1) written at the instant of time ¢=1, +6 Ar where 0<6<1 gives a
yet exact result

[M]{ay™ +[Ka}"™* ={6}""* M

We apply now the finite difference approximations

{(-!}n-{-a =AL' ({a}nﬂ _{a}n)+ O(AI) ®)
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and
{a}™? =(1-6){a}" +6{a}"" +0(ar?) ©)

This means that for each component of {a) and {a}, the approximations of the

type shown in Figure 9.5 are used. The true function is simply replaced by linear
interpolation between the end values and the derivative and the function value is
evaluated from it.

¢

¢n+l
¢n

At
Iy L+0At 1

Figure 9.5 Finite difference approximations.

It should be mentioned that when 6=1/2, the order of the error in (8) is
O(Ar?), Zienkiewicz and Morgan (1983, p. 288).

Introducing (8) and (9) into (7) gives

ol < oo ey +pr | ao

Thus the discretization has again transformed a differential equation system into

n+l

an algebraic systerm. The unknowns (z}"" are solved from this set. Formally

{a}"*‘=[E‘;-[M]+9[K]]_l-([gwl-(l—e)[x]]{a}"+{b}"*“] an

The resulting algorithm is of very simple nature. When n=0, (a }0 is known
from the inititial condition (2) and formula (11) gives [a)l. Next step gives

{.:1}2 and so on. If the time step is kept constant the coefficient matrix
[M1/ At + 8[K] is also constant and new solutions can be obtained relatively

cheaply. Depending on the value of & different versions of the & -method are
obtained.

9-18 9.2 TIME INTEGRATION

Forward difference scheme, forward Euler scheme (etudifferenssi-
menetelméd, Bulerin menetelmi, eksplisiittinen Eulerin menetelmi). Here we
put 8 =0 to obtain

-ggwl{a}"“=[§[M]—[K]]{a}"+{b}" a2

If the [ M] - matrix is diagonal, the scheme is really explicit since no solution of a
system of equations is needed. In addition, it is not necessary to assemble the
[M]- and [K]-matrices as the contributions [K1{a}", etc. can be evaluated at
the element level. In connection with the finite element method the [M ]- matrix

is not in peneral diagonal (see Example 9.1) — contrary to what is obtained
when the finite difference method is applied to the field equation. To ease the
calculations, the [M]-matrix is however often transformed artificially inio a
diagonal form by lumping (keskittiminen, "moykyttiminen") the matrix
elements on the diagonal by taking for instance

M;; =2ij (13)
i

Reference Hughes (1987) contains malerial on lumping.

Crank-Nicolson method, central difference method (Crank-Nicolsonin mene-
telmi, keskeisdifferenssimenetelmi). We put @ =1/2 to obtain

(1t < -0y + &

This is an implicit method, as the [ K]-matrix cannot any mere be lumped into a
diagonal form in a reasonable way. The method is very popular and has good
accuracy. This is partly explained by the text following Figure 9.5.

Backward difference scheme, backward Euler scheme (takadifferenssi-
menetelmd, implisiittinen Eulerin menetelmi). We put @ =1 to obtain a strongly
implicit method

{-;—,[Mh[rc]]{a}"*‘=§[M]{a}"+{b}"“ a5

Example 9.3. We consider the problem
qi +cp=0 {a)
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with the initial condition

$(0)=¢ (b)
The analytical solution is

$()=c"¢ ©

When ¢ is posilive — as is assumed here — the solulion tends to xero the faster the
larger c.

The problem may be considered as problem {9.1.1) with no diffusion and no source term
and reaction included (unsteady reaction problem). Alternatively, we may consider it as
equation (1) with only one component. This lalter interpretation with [M]£1, [K]2c,
(b} 2 0, transforms (10) into the form

[L+ac]¢n+l :(-‘-ﬁl—l—(l—ﬁ)c]eﬁ" @

At
The algorithm is thus

¢°=¢
o = ar-(1-0)c (e)
T Ar+8c

Figures (a) and (b) show some results obtained by the three discrele schemes described
above. In Figure (a) the time step length Ar=0.5/c and in Figure (b) Ar=22/c.
Crank-Nicolson method is clearly the most accurate in Figure (a). With the longer time
step the forward difference scheme exhibits already unstable behavior so the critical lime
step length has been surpassed. Especially the results by the Crank-Nicolson method
clearly show that even in implicit methods the step length cannot be too large for
accuracy reasons.

9-20
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Figure (a) ¢/¢ 85 a function of ct. Ar=0.5/c. FD = forward difference, CN =
Crank-Nicoelson, BD = backward difference.

/¢

Figure (b) ¢/¢ as a function of ¢r. Ar=22/c. FD = forward difference, CN =
Crank-Nicolson, BD = backward difference.

Example 9.4. We obtained by semidiscretization in Example 9.1 the matrix system
4 1][¢é 2 -l
h 21,0 Pl _J0 (a)
611 4]lg] ni-1 21les] o
with the initial data
I¢’} = {f"] at 1=0 ®
%l 9o
We solve this now by the Crank-Nicolson method.

As here from symmelry, ¢y =@, and ¢3 = qiz , we could get from (a) a single equation
5h. D
— P+ —¢y=0 c
=ty ?, (©)

for ¢, and similarly for ¢;. However, to demonstrate the matrix formulas we start from
{a). Formula (14) pives

(Sl 420 (T 45T 2

The initial values are
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D —

4 o
We use the same characteristic titne interval as in Example 9.2:
ey

and also the same time slep size: At =0.5¢,. The term

System (d) simplifies Lo
2[4 17, 1[2 -1 02" (2[4 1] 12 -1])[¢4]"
27(1 4] 2|[-1 2]||les] | 27|t 4] 2|-1 2]|les
Using Mathematica, we manipulale this by inverting the coefficient matrix lo
9" [0.207523 036287 ][9,]"
¢;] 1036287 0207523 ]|¢y
Taking the symmelry into account gives further the relationship

o5 =0.57047

921

®

n

(&)

(h)

0

Comparison with formula (k) of Example 9.2 shows thal a similar but a little lower

running graph than that in Figure (¢} of Example 9.2 is obtained.
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9.3 TIME-DISCONTINUOQUS GALERKIN METHOD
9.3.1 Introduction

To use discontinuous approximation for quantities, which are known to be in
reality continuous may seem at first sight rather odd. This idea has, however,
proved to be very useful, Johnson (1987).

One main ingredient in the time-discontinuous Galerkin method is that the
initial Dirichlet conditions are not satisfied in advance (in strong sense) — as we
have been accustomed to deal in connection with Dirichlet conditions — but
only in a weak sense.

We try to explain the nature of the weak form appearing in the time-
discontinuons Galerkin method using a simple example. We consider the
differential equation

a9 _ cino
- f@)=0 M

with the initial condition
9=9=¢" atr=0 @)

Equation (1) is seen to be a very simple special case of the D-C-R equation
considered in Appendix A. Only the unsteady term and the source term are
included.

The exact solution is
()= -+, £ (r)ar )

Figure 9.6 shows a schematic solution and some notations. The time axis is
divided as before into time intervals or time slabs

In=]tmtn+l [ (4)

We are prepared for possible discontinuous behaviour at the time level
"interfaces" by equipping ¢ and the weighting function w with plus- and minus-
subscripts at the time levels 4y, 4, etc,

-
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9.3 TIME-DISCONTINUOUS GALERKIN METHOD
9.3.1 Introduction

To use discontinuous approximation for quantities, which are known to be in
reality continuous may seem at first sight rather odd. This idea has, however,
proved to be very useful, Johnson (1987).

One main ingredient in the time-discontinuous Galerkin method is that the
initial Dirichlet conditions are not satisfied in advance (in strong sense) — as we
have been accustomed to deal in connection with Dirichlet conditions — but
only in a weak sense.

We try to explain the nature of the weak form appearing in the time-
discontinuous Galerkin method using a simple example. We consider the
differential equation

9 _r)=
~~f()=0 )

with the initial condition

¢=0=¢" arr=0 @)

Equation (1) is seen to be a very simple special case of the D-C-R equation
considered in Appendix A. Only the unsteady term and the source term are
included.

The exact solution is
o(t)=8+ [, f(r)ar o)

Figure 9.6 shows a schematic solution and some notations. The time axis is
divided as before into time intervals or time stabs

I, =]tn':n+l[ )

We are prepared for possible discontinuous behavior at the time level
"interfaces” by equipping ¢ and the weighting function w with plus- and minus-
subscripts at the time levels £, 4, etc.
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Figure 9.6 Some notations.

We consider one typical time interval 7, and obtain general expressions, which

can then be applied consecutively for each interval. The starting point is the
obvious weak form,

d¢ _
Ln w(;—f]d!—o (5)

We integrate by parts:

I w— t——L —¢dz+ a1 wgb——L i—’:gbdmwf“tﬁf“—-w:qﬁf (6)

It is seen that the limiting values approached from inside of the interval are used
in the notations. However, as the exact solution is continuous, ¢} = ¢Z, which is
taken into account in (6) to give

j wﬂdm-j dw¢d:+ rHlgntl_ngn (7

Now we integrate back by parts on the right-hand side of (7) to give
_d_Q — Q_Q n+l n'H n n+l ntl _omgn
J-’"wdtdt—an di-wl Wl Wl g

=J, %?dr s (07 9") @®

When this is introduced in (5) we end up with the weak form

n

Lﬂw[—(ji—?-—f]def (¢:—¢f)=o 9)
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Knowing the one-way nature of the time coordinate, we have succeeded in
introducing through the manipulations an additional term to {5), which concems
quantities at the initial instant of the time interval. At ¢ =1, =0 we associate

9=¢"in(2)as ¢°.

Remark 9.11. We could have written down a weak form like (9) directly from (1) and (2)
say as

Lw[%%-f}dwwp(cp—qT)L:ﬂ:o (10)

A similar starting point was described in Section 2.1.2. However, it is immediatcly not
obvious which is the appropriate relationship between the weighting function w and the
weighting constant wp Lo achieve accurate results. The forward and backward integration by

parts manipulation generates here the rule; wp = w(0).0
The discrete analogue of (9) is
Ir,. ﬁ{%-f]dzw:(a: —¢':')=0 (11)
Let the approximation in [, be say the beginning of a Taylor series at 1 = 1,
p()=a+B(t-1,)=a-1+B-(t-1,) (12)
where & and f are unknown parameters to be determined. This is the first case
in this text where we encounter so-called nodeless discrete unknowns in the

finite element method mentioned in Remark 3.9. The trial basis functions are
indicated in the last form of (11) to consist of functions 1 and ¢ — ¢, (Figure 9.7).

e

t, the) f t, ey F

Figure 9.7 {(a) First trial basis function. (b) Second trial basis function.

(1) We consider first just the case ¢ {t)=a. Then
dé "
Lo, §=a (13)

and the discrete equation when using the Galerkin method is obtained by taking
as the weighting function the trial basis function, that is, w = 1. This gives
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f, 1-(0= F)de+1(e—gr)=0 (14)
or

a=¢t+] fdt (13)
(2) If we use the full approximation (12),

4 _g

5 =B di=a (e

In the Galerkin method the discrete weightings are now w=1 and w=r¢-1,
giving the system equations

Lnl-(ﬁ—f)dt+1-(a—f§f)=0

J, (=1)(B=1)ar+0-(=42) =0 an

or

a+Ar-B=¢-j'+L fdt
1, ’ (18)
E(Ar) 'ﬁ=.[f,,('_'t")fd'

For the first interval Iy, we take 59 =¢. It is readily seen that the value 51
obtained at ¢ = - happens to coincide with the exact one for both formulations

in this simple example case. This value is used as a new initial condition for the
second interval I; and again exact value is obtained at right-hand endpoint, etc.

It is a general property of the time-discontinuous Galerkin method that in
general accurate values are obtained at the "future” end of the time interval. This
is naturally advantageous for the next time interval, as good initial values are
available.

Figures 9.8 (a) and (b) show results with three time steps for the case
=2,/ trz, ¢ = 0 where the exact solution is according to (3)

1‘2

o(t)==5¢ (19)

(¢
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where @, is a reference value for ¢ and #, similarly a reference value for «.

Especially from Figure (a) it is clearly evident that the initial conditions for each
time interval are satisfied only in a weak sense.

¢/ ¢ .
e
1.2 -
L4
4
1 —_—
” ,”
0.8 e
BD - i+
0.6 L o
- s
e A
0.4 LT
- -
- P
0.2 T
—_——‘—--‘—
1] -—_—’-: ------ Tlfr
0 0.2 0.4 0.6 0.8 1
(a)
¢l/e ?
0.8
0.6
0.4
0.2
D -
0 0.2 0.4 0.6 0.8 1t
(b)

Figure 9.8 (a) Constant approximation. (b) Linear approximation.

Figure (a) shows also the result obtained by the backward difference (BD)
scheme, which has in this case the form

¢n+l — ¢Il + Arfﬂ"'l (20)
9.3.2 Space-time application

We consider again the model problem of Section 9.1.1:

ELi[ p%

in Q' 21
ar ox a)fo"' e
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¢=9¢(:) on I'p (22)
3 _- 5

-022=7() on rf 23)

p=po(x) in 2 at =0 (24)

The appropriate weak form can be generated as a combination of the
manipulations explained in Sections 9.1.3 and 9.3.1. We obtain for a slab

I[Wa¢ ow 9
S,

n ot
+f Wl (¢: —¢" )d.Q =0

=d
}dS j' fds+j(as \, Witd@sy) 05

where the admissible ¢ has now only to satisfy the Dirichlet boundary
condition. The change compared to (9.1.22) is the addition of the integral over
£ at the initial time ¢, of the time interval I, =]¢,.1,,,[ . It may be noted that in
the forwards and backwards integration by parts manipulation of term wdg/or
over the slab depicted in Figure 9.3, the component n, of the outward unit
normal vector n disappears at the sides x =a and x =5 and has the values —1
and +1 at the sides 7 =1, and 1 =1,,,, respectively.

The discrete analogue of (25) is

Bcp aw at}) - -=d
J'Sn >, ax st J' de+.[(as,,)N wj9d(ds,)

+[ (07 —¢f)d9 =0 (26)

In the time-discontinuous Galerkin method the simplest finite element
representation is achieved by using a product form somewhat similarly as in
Section 3.2.2 where two-dimensional shape functions were obtained for
quadrilateral elements by multiplying together one-dimensional shape functions.
Here the multiplying functions in the space "direction” are simply conventional
space shape functions but in the time direction a power series approximation is
employed. Thus we may write (we denote £, =1, )

5(x.t)=F(x)G(r)=|:5éij (x)q;k]|:a+ﬁ(t—r+)+y—;-(r—t+)2 +] 27
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This may be written also as
6 (x.0)= SN, ()90 + N, (x)(t -1, )0f"
k &

+ENk (I)%(!‘—Q_)Zqﬁﬁz)—i-... (28)
E

where the resulting unknown parameters a; are ¢,§°) =0:q5k , ¢£l) = ﬂgﬁk,
¢,f2) =ytﬁk. (We have used the symbol @ in (27) so that the term ¢,§°) has now
the physical interpretation of being the value of ¢ ata spatial node k at £ =¢,;

consider (28) at r=t¢,. The terms ¢,£D and ¢£2) have no more any transparent
interpretations as they are of different physical dimension than ¢.) We can thus
finally write

¢{x1)=EN; (x.1)a; (29)
J

where the trial basis functions are of the type
1
N (e =Ny (<) (-0, ) (30)

and where the meaning of the notations should be obvious. (We do not give the
detailed connections between the different indices in this rather cursory
introduction.) It may be further remarked that the product type basis functions
(30) are rather easy to comprehend even in the case of three space dimensions.
The three first global trial basis functions (30) comresponding to a node in
connection with the use of two-noded line elements in space are sketched in
Figure 9.9.

(a i

(b) F=tpe1
(© t=1,
Figure 9.9 Trial basis function (a) constant in time, (b) linear in time. (c)

quadratic in time.

Remark 9.12. The finite clement approximation presenled above can be approached from an
alternative point of view. As the space-time slabs can be laken arbitrarily thin in the time
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direction, the possibility of dimension reduction (dimensioreduktio) is always available.
Dimension reduction means that in a continuum prablem the dependence of a quantity an one
(or more) coordinate is reduced inlo a finite dimensional dependence. A typical example in
structural mechanics in two dimensions is beam analysis when Lhe beam is thin, that is, the
thickness is small compared to the length of the beam. The displacement field is expanded in
power series in the thickness direction and usually only the constant and (maybe) the linear
term are included. This means that the conlinuum problem is reduced to the determination of
two or more functions of only one coordinate: the beam length coordinate. These functions
can then be determined by some further discretization process. (The dimension reduction
itself is clearly a discretization procedure but of a somewhat different nature than the
conventional finite element method.) Here we may refer 1o the kinematical assumptions
(5.1.2):

u(ey)=6(x)
o(z3)=v(x)

used in the Timoshenko beam theory, These can be considered to have been obtained from
the Taylor expansions in the y- direction:

ou(x,y) B
3y |y:0 ytsu(x)+@(x)y+-- -

v(.r,y)=v(x,y)]y=0 PR v(1)+...

(30

u(x,y)=u(x y)|y=° +

with the further assumplion & (x,y)
]

y=0 = (x) =0 based on certain physics of the problem.

In the time-discontinuous Galerkin method we can start similarly as explained in
Remark 9.12 by expanding ¢(x,!) into a Taylor expansion in the time direction
to give

102 (xt)
2 o’

= 9O (x)+¢® (x)(r—r+)+%¢(2) (x)(e—t, )+ (33)

$(66) =0 () o, +39§_t’5”_)|,=,* (t-t,) oy (1=,

If we stop with the terms shown, we have three unknown functions depending
only on x to be determined. Now we continue with the approximations

0@ (x) =¥y (x)9f”
00 ()= Z Ny ()05 (34)
0@ (x)= TN, (x)¢?
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Substitution of these into (33) gives again form (29). *

Using approximation (29) and applying the Galerkin method in (26) wilh
N,(x,t) as weighting functions generates the system equations

[K){a}={b} (35)

for the slab with

Kij:jsn[N,-aN L/ PN ]ds+j () ag

ot dx  9x
-— — 7 "
b."Is,, Nif 43 I(asn)n MiJ d(as)+.fn(N‘)+¢" ae

(36)

Johnson (1987) advocates the usefulness of the time-discontinuous Galerkin
method especially with respect to the good possibilities to apply adaptive
strategies.

9.3.3 Space-time applications with constant in time approximation

Introduction. We employ now the theory presented in the previous section in
more detail taking the simplest case: only the constant term in the power series
in time is included. Although this option is admittedly crude and may sometimes
demand rather short time steps to achieve the accuracy needed, it leads to a very
simple and pleasant final formulation, which contains the earlier steady case
weak form just appended with some additional boundary terms.

The approximation (28) in a time slab is now simply

#(x,t)=EN(x)Y; (37)
7

We include here also the possibility of convection and extend the field equation
(21) to consist of (to simplify the following manipulations, we write in the the
convection term here so that the convection velocity is outside the derivative
operator)

R@)=L0)- 7= -pg a0 0

The weak form (25) enhances first to (a=0, b=L)

JJ[ a¢ aw gi uax—wf]dtdx+‘[ widdr

9.3 TIME-DISCONTINUOUS GALERKIN METHOD  9-31

[0t (7 -07 )ax+ [, f, L(w)eR(p)drdx=0 (39)

We have changed the notation from the more general to the more specific to
have a more transparent formula. Further, the index n referring to the time slab
has been dropped for simplicity; we are considering a generic time slab. Also,
we have now included the sensitizing term. The discrete analogue of (39} is

IJ‘( aaf awD£+'ugi wf]dtdx-[-.l- w;ddr

e e L - g _
+j0 (37 - )dx+j0 [ L(#)e°R(#)drdx=0 (40)
With (37), we can write here using our new notation in the whole slab
c,‘!?(x,t)aqg+ (x,t)=ZN(x)¢; 1)
j
and on the slab interface

¢ (x,6)=ZN(x)9} 42)
b

The approximation ¢ and thus the finite dimensional weighting w in the

Galerkin method do not depend on time. The term d¢ /9t vanishes and also
dw/0rin the sensitizing term. Further, the inner integrals

ow 3¢ awagp __;_aj
13r D35 % "oy ax i D04 =505 Dn (x)A0
g
[ # u—d! ¢ju( =2 a_*’ a(2)Ar
wadt=wa(x,t Yde= wfm(x) t
L wjsde = szL 7 (e)dr = wis Ar (43)
¢ L

[ L(m)r"R($)dr = Luar(ua—f(x,t)]dt

c 20w 09 oW .« 20W09 . oW
= = = — A =T u— fr, A2
o ax_[d ruafo(x,t)dt T t 'ruaxfm



9.32 9.3 TIME-DISCONTINUOUS GALERKIN METHOD

The given data D, 1, f depend in general on space and time and fd on time.
We have defined in (43) average values for them with respect to time. In
connection with the sensitizing term similar simplifications as described earlier
have been applied, Using (43) and dropping for simplicity the subscript m
referring to the average values transforms (40) after division by Az to

J’L(aﬁ’pa—‘(’wua—‘ﬁ-w]dxwf“

3x ox dx

0 x=L
LW . 200 LW
ID -a—x‘r u 3; - 0 ET ufdx
L el _yfze 2= —
+Ej0w (6" -4 Jax=0 (44)

Remark 9.13. The weak form (44) is interesting. The time dimension has disappeared and
we have a discrele weak form only in space. Further, Lhis weak form is in the first and secand
row complelely analogous to the weak form in the steady case as presented in Section 6.2.
(We could replace finally the operators 3/0x in (44) to d/dx if wanted.}. It is obvious that
also when we have a time dependent problem in two or three space dimensions, the constant
in lime approximation leads again back formally to a steady formulation. One could easily
conclude from this thal the same sensitizing parameiter values found good in the steady case
could work aiso here. Numerical experiments show, however, that this is not the case. The
Jast line in (44) changes strongly the situation. The writers have had this far only limited
experience on determination of the sensitizing parameter values in time dependent problems.
One result is described below. 0

The discrete system corresponding to (44) becomes

)}."(Kl‘sj*'Kilj)‘P; =bis+§j:Kilj¢; (45)
with

Kij =I:%D%“+I:Niu%dxi- :%rcuz%idx

Ky = fy Wiy &2 46)

b= [N fax- NTY I:%Tcu Fdx

Remark 9.14. Tt is realized from (45) that the time-discontinuous Galerkin method produces
an implicit scheme as coupled unknowns appear at the future end of the space-time slab. In a
purely hyperbolic problem — here the case (38) with D =0 — this may be a disadvantage as
explicit schemes are usually considered more appropriate in connection with hyperbolic
problems, .g., Anderson et al. (1984, p. 110). Example 9.6 is concemed with this hyperbolic

9.3 TIME-DISCONTINUOUS GALERKIN METHOD ~ 9-33

case. On the other hand, the lime-discontinuous Galerkin method generates systematically the
discrete equations over the full range of values of D and u. Further, we have not tried here to
make use of ail the possibililics in the time-discontinuous Galerkin method: mesh adaptively
changing from slab to slab, clements adaptively oriented in the slabs, etc., e.g. Hansbo (1994).
0

Reference solution. We consider the simplified field equation (38):
¢,—-D¢, vup,—f=0 an

We employ the series form approach described in Section 5.2.2. A short
Mathematica code is attached:

e = (1 —Duxtuge —1=0,
¢:1-D¢m+u¢“—f,= 0,
fu—Dden +ugu-fi=0}

50l = Solve [“Fi l¢lv #ul ¢ll}]

D (- fx+ ¢xc - D ¢ocx)
u

dee 2 fr - Ude * Ddyxter B -

{{(bt.—’ E-ugy-

~Ex + ¢xc - D Poox
et b Dlex )

1 1
Plx_,t)i=d+dex+dilt ;¢,.xz+¢“xt+ ;m t

Collect [ﬁ[‘l, f.] I- SOl, [ﬂ, ¢x, ¢xlp ¢tn; ¢x!h f, rl) f[}]

2 2
{ft+¢+t ft+[P._E.+i_] fx+(_tu+x)¢x+
2 u 2u
Dt t2u x"] 15 (th Dx?]
{' o T Tg tEXT g ) Gt g DE et {TUT T 9y Proce}

Ending as seen from the code, we have obtained the reference solution

¢ 1 x—ut LU LY
{f}=¢0{0}+(¢x)0{ 0 }"'(‘ﬁﬂ)o H 2u0 2
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-D—2t+£x2 Dp
HOuer)gl v 20 (B )y] 2 (48)

0 0
Actually, the last two specific solutions are no more exact reference solutions.

A study — not repeated here — shows that for two-noded linear elements the
“damping diffusivity” becomes

D¢ =1°? =—%Aru2 (49)

This is obtained by using the third specific reference solution in (48) in a patch
test with two elements. The result, giving a negative value for the damping
diffusivity is completely different from what was found in Chapter 6 in the
steady case.

An important non-dimensional quantity in numerical fluid mechanics is the
Courant number

|v|Ar
h

V=

(50

Here | v| is the speed of the fluid flow and A and / are characteristic time step
and mesh size respectively. In many explicit schemes the Courant number
around value | gives good results and further, this value cannot be overstepped
for stability reasons.

Example 9.5. We consider once again the unsteady pure diffusion problem of Example
9.1. We have the field equalion

2

%?_D.(;x_f':o, O<x<L, 0<«t<T (@
the boundary conditions

¢(0.1)=¢(0.1)=0, ¢(L.r)=¢(L.1)=0, >0 {b)

and the initial condition

¢ (x,0)=@g=constant, O<x<L ©)
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i-1 i i+1
R A R

Figure (a)

We have assumed a constant D and put x =0, f=0 in (46). We use two-noded line
elements, Formula (49) gives na sensitizing. A typical system equation inside a uniform
mesh (Fipure (a)) becomes

(_2 +li]¢ft| +(22+ii)¢? +(—2 +l"£]¢it-l =

h 6M R 6Ar h 6Af
1h - 4k - L h _
EEQ’fu]"’E‘X;@% +EE¢'+' )

If we consider the + and - values to situate the disiance Ar apari in the time direction
and use the “lumping type” replacements

Lh . 4h .o Lh. . _h 4
—_— +_._ A +.—— . =
s e teatinT ©
1h . 4k . 1h. . k.
———— +_._._» . +—— . :=— .
sm T Tt e

we have rederived the so-called simple implicit (Laasonen) method, Anderson et al.
(1984, p. 111).

Retuming to the case described by equations (a), (b) and (c) and using the spatial mesh
shown in Figure (a) of Example 9.1, system equations {d) laok

D 4k (D 1h\u 4k, 1h,
(2 + )¢2+[ h+6m]¢3 ¢y + 8

k641 6Ar " 6Af i
D 1hYy (LD 4k _Lh _ 4h
o 2= | = - —
[ n 6Ar]¢2 ( 2 em} o Ton®
with k= L/3.

A more realistic case with uniform mesh of ten elements in space and with the time step
At =1, /50 is calculated by MATHFEM. The code reads

d=1; $b = I; L = 1; tr = LA2/(d*Pi*2);

mm = §0; dt = tr/mm;

nn = 10; dom = {{0], {1}};

msh = MSH[dom, {nn}, 2];

apr = APR[msh, {$ b} &];

prb = PRB[

apr, {0, w[1]*d* ¢ [1] + (w[0]*(¢[0] -

¢ [0))ydl}L;

prb = FIX[prb, dom, {{0], {0}}};
SHOWID[PLOTINONSTATIONARY([prk, mm]}];
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Figure (b) gives lhe distribution of the exact and finite clement solution at ¢ =0.51,. As
the exact solulion is here very smooth, it is no wonder that the finite element solution is
very accurate even wilh a rather crude spatial mesh.

¢l¢ 0.5

x!L

Figure (b}

Example 9.6. We consider an unsteady diffusion-convection problem with constant
diffusivity and flow velocity and no source lerm, We have the field equation

2

3¢ Da—¢+ BQ) , O<x<L, O<r<T (a)
al’ a.l.' a.t

the boundary conditions

$(0,1)=(r/AT)¢, O0<r1<AT
¢(O,r)=5=constam. t > AT (b)

i (r)L:L =74 =0, >0

=L
and (he initial condition

$(x,0)=0, O<x<L (c)

This means that a linearly in time increasing Dirichlet data appears on the left-hand
boundary up to time AT after which the dala is consiant. The solution should thus
finally appreach a sieady state.

We put f =0 in (46). We use two-noded line elements and assume in the following that
u is positive.

i-1 i i+1

R R ——

Figure (a)

A typical system equation inside a uniform mesh (Figure (a)) becomes
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c 14
D#D° L ik, [,DED 4k,
K2 6M ho 6
+[_D+D° 1 Lh 1 h L

d—u —
h 2 6At]¢”' sai " ear’ 6Ar¢'”

(@)

We further consider here the case where the Peclet number is in practice infinite and put
D =0. We have thus an unsteady pure convection case (hyperbolic case). Equation (d)
becomes

D 1 1k D 4 h
{"T'E"*E'E]"ft'*[ —“+3§]¢=
Dt 1 i h _ 4h _ 1 h _
+{—'——+— Gm]'ﬁm GE¢i-1+EE¢i +ga¢.+1 (e)

Using (49) for the value of D°, we have further the detailed system equalion
2
aAr 1 1hj., u A.r 4 h
———ut—— |, + -——
[ 2k 2 6Ar]¢“ { h ]"‘

a1 11 4h _ Lh _
'{L"’— ]9’”1 B+, e ®

6 Ar 6 At

If we apply lumping the way described in formula (&)} of Example (9.5), we obtain from
formula (f) a scheme having much similarity with the Lax-Wendroff method, Anderson
ct al. (1984, p. 101). However, the Lax-Wendroff method is an explicit scheme and (f) is
implicit.

For comparison, it is interesting to write down the system equation, il we use the
damping diffusivity D° obiained in the steady case. With a large Peclet number,
“=1/2, and 0

1 uh
Dc TcPchD 2 3 1
k. n n 2" @

This corresponds to the full upwinding value discussed in Section 6.2.1. The system
equation becomes

(-u+%£)¢._l (g ot +{ g Joa =

4 h lh

¢;~1 p NG” ¢¢+| ()

Finally, a kind of compromise s obtained by putting simply D® = 0. This produces the
systemn equation
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1 1 h 4 h 1 1 h
(i o (3 “oa

1A . 48 _ 1h _ .
=em Tt a® ten i (i)

With lumping, this becomes exactly the Euler implicit method, Anderson et al. (1984, p.
98).

In flow problems one obvious characteristic time inlerval f is the time needed for a
fluid particle to cross a typical length measure of the problem with a typical flow speed.
Here we put

Ir =— (])

The exact solution behaves as sketched in Figure (b). Here the commenis at the end of
Scction A.3 help to see the character of the exact solution. As the “velocity components™
u and 1 in the xi-plane are constants, the “streamlines” are straight lines, The inflow
boundary consists of the lines t =0,0€x< L, x=0,051. As there is no diffusion and
0o source lerm, the boundary data is transferred unchanged into the domain as explained
in two space dimensions in connection with Figure A.2. To simulate such a behavior
with a discrete model is rather demanding, We also see qualitalively, why an implicit
scheme does not describe the physics very truly. A system equation associaled with a

nodal point with value ¢ contains terms ¢;,and ¢;,,. These latter terms introduce

effects, which should strictly not be present as the value of ¢ is in principle totally
determined just from the information on ils own streamline.

4

Figure (b)

This problem has been solved by MATHFEM taking AT =r, /2 and by using a uniform
spatial mesh of 40 two-noded elements. The time step length Ar =1 /320 has been

employed. This gives the element Courant numbert v =1/8, Some solutions are shown
in Figures (c), (d) and () at the limes =1, /4, r=2r/4,1=31/4,¢=1,1=5r14,
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t=61,/4 for the cases D =1/2(uh), D° =0 and D° =~1/2(Aru?), respectively,
discussed above.

Figure {(c)
919
xfL
Figure (d)
015 1.4
1.2
1
0.8
0.6
0.4
0.2
0
[ 0.2 0.4 0.6 0.8 1 x/L

Figure (e)
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|

! It is seen from Figure (c) thal the positive diffusive damping corresponding to the steady

i optimal value damps the solution too strongly. On the other hand, the negativeoptimal”
value oblained above for the unsteady case leads to unacceptable oscillations. The case
of no diffusive damping works here clearly best. The problem needs more study
especially with respect 1o possible Dirichlet outflow boundary conditions.

Truncation error. In the finite difference method it is usual to speak about the
truncation error (katkaisuvirhe) and of the order (kertaluku) of a specific
scheme. The idea is to develop the unknown function (functions) into Taylor
series about a convenient point and to substitute this evaluated at the gridpoints
into the governing finite difference molecule. For instance, doing this for
equation (f) of Example 9.6 gives the end result

(¢t)o+u(¢x)0+%(¢x!)oAr+%(¢.ﬂ)oh+"'=0 (50)

The terms with lowest powers of Ar and # emerging are shown. The truncation
error is all on the left-hand side following the two first terms, which give the
left-hand side of the goveming field equation at the expansion point. The order
of the scheme is 0(Ar) with respect to time and O(h) with respect to space. This

means that the leading terms in the truncation error are proportional to the first
powers of At and A. In obtaining (51), use has been made of the differentiated
field equations similarly as in obtaining the reference solution (48). For the
schemes (h) and (i) of Example 9.6, we obtain respectively the results

2
(@), +u(9:), +%(¢m b (At)2 +2—u4-(¢mt ) HlAL4--=0 (52)

and

(¢,)D+u(¢x)0+%(¢n)0Ar+%(¢m,)oh2Ar+---=0 (53)

Again the terms with lowest powers of At and h are shown. The orders of the
leading truncation terms indicate how the errors depend on the mesh size in
space and time. In principle, the higher the exponents of A and h, the better the
scheme as the errors diminish the faster with the refinement of the mesh.
However, the mesh must be “sufficiently” dense until the behavior suggested by
the truncation terms really work. With practical meshes the situation may be
such that the order considerations do not mean much. For instance, result (52)
corresponding to the Lax-Wendroff type scheme would seem to be preferred
because it has the highest order truncation errors.
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11 NON-LINEARITY

In reality the governing equations in heat transfer and especially in fluid flow
are often more or less non-linear. In attacking these problems linearization and
iteration are the conventional tools. The deitaform discussed in Remark 2.14 is
the basic expression to deal with the linearization. Similarities in the procedures
discussed in Section 13.1.2 can be found.

11.1 STEADY CASE
11.1.1 Introduction

Let us represent a differential equation formally as, e.g., Shih (1984),
F(9,0',97)=0 1)

This just means that the left-hand side is an expression containing an unknown
function ¢ and its first and second derivatives with respect to a space
coordinate. We have written (1) in the one-dimensional case but the extension
to more dimensions is obvious. Further, (1) can also describe a boundary
condition and if the derivatives are missing it becomes an algebraic equation.

Assume that we have obtained by guesswork or by iteration a preliminary
solution ¢, = ¢’, ¢” which does not satisfy (1) and using the deltaform we
try to get a better solution

9=9+A¢ @)

A truncated Taylor series representation of (1) about the preliminary solution
gives

=~ dF oF
F= F+%A¢+W(A¢)

a¢ (oY =0 @)

where the partial derivatives are to be evaluated at the preliminary solution
values. Also, (Ag)’ =A¢" and (A¢)” =A¢”. Equation (3) is a linear differential
equation for A¢. After A¢ has been determined, we obtain from the left-hand
side of (2) a new preliminary solution. Equation (3) is then applied again etc.
until the solution changes hopefully stay under certain tolerances.

The step contained in (3) is called linearization (linearisointi) of the problem.
In practice the determination of A¢ is of course done numerically; here by the
finite element method. Three example cases where non-linearities are present
are discussed in the following.

11-2 11.1 STEADY CASE

Approach like (3) may be called the Newton-Raphson method although this
terminology is usually employed in connection with a similar approach in the
solution of non-linear algebraic equations (see Section 13.1.2). An alternative
method not employing the deltaform is called in the literature the Picard
method, Also the names fixed point iteration, direct iteration, successive
approximation are sometimes used. This approach is explained below in
connection with the applications.

11.1.2 Variable diffusivity

Let us consider the diffusion equation

[-D@$)¢] - F=0 @)

Here the diffusivity is not constant as has been assumed earlier but depends (in
addition to possibly on position) on the solution itself. This is common in heat
conduction where the dependence k =&(T) may be quite strong. Reference
Stelzer (1984) contains large material data for heat transfer in readily
programmable form.

To obtain a more specific case, we take as an example the form
D =Dy (1+ pg) 5

where D, and f are constants even with respect to position. Developing (4)
gives

F(¢.9.¢")=-D'¢'~D¢"~ f =—Dof¢'¢'- D¢’ f

="113'oﬁ(¢')2 —~Dy(1+ Pe)e"~ 6)
and
aF oF R aF
— s — —_— - 7
a¢ —Dyf39", Y 2D,5¢', 30" D €))]

Application of (3) gives thus

[-D(7)#] - 7-DupFa6-2087 (80 -D(E)AO) =0 ®
or

-D(p)(A¢) —2D)BF (A9) —DyB AP~ F =0 )
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with

F=r+[p(@)7] (10)

Equation (9) is a D-C-R type equation for A¢, The second derivalive term is,
however, not quite in the form suitable for obtaining the weak form so we
manipulate the equation into the final form

[-D()(a0) | ~DoBF (40 ~DoBF A8 -F =0 an

The iteration can be started, say, with a E. a "suitable" extension of the

Dirichlet boundary data as discussed in Remark 2.15. However, see Remark
11.2. After discretizing, we arrive at a system

[« ({a}) {aa}={>({@}} (12)

with obvious meaning of the notations. A rather complicated updating is needed
in each iteration especially if sensitizing is applied.

An alternative self-evident linearization is obtained by writing equation (4) just
as

[-p(#)¢] - =0 (13)

Iteration is started with a suitable@ and the ¢ obtained from (13) is used as an
updated (,_b etc. This is an example of the Picard method and it is here
considerably simpler than the Newton-Raphson method. When discretized, this
leads to a system

[k ({@}) {a} =16} (13)

Remark 11.1, The modified source term (9) contains a diffusion (ype part. In obtaining the
corresponding weak form the second derivative terms are integraled by parts. This
manipulation should be applied also on the source term part. 0

Remark 11.2. In a linear problem the initial selection of the finile element representation of
the extension ¢ of the Dirichlel data does not have an effect on the final solution. In non-

linear cases the situation is different as the possibility of achieving convergence at all may
depend on a good initial guess. Thus say an initial solulion obtained using some constant
average diffusion data or in a convection dominated case a smooth initial solution obtained
without convection may be of value. O

Remark 11.3. A natural approximation for a variable diffusivity could be

11-4 11.1 STEADY CASE

D=Dy+a(¢—d) (14)
where Dy = D(¢g) and « =(dD/d¢);. However, Exampic 11.1 deals with an

application from heat transfer literature where expression type (5) 1s used and this explains the
selection used above. O

Remark 11.4. The MATHFEM program performs the linearization by itself. Thus, even
when hand calculations 1o produce the linearized equations are given in the main text and in
the three examples to follow to make the presentation more concrete, samples of the
comresponding MATHFEM programs are included to show how the program in fact operates.
g

| Example 11.1. We consider a one-dimensional heat conduction problem given by the
I diferential equation

[-k(T)T] =0, 0<x<L (2}
and by the Dirichlet boundary conditions

T(0)=T1,, T(L)=T, (b)
The temperature dependent thermal conductivity is
| k=ko {1+ BT) ©)

The term f is called the remperature coefficient of thermal conductivity. The exact
solution can be found in this case rather easily:

1 1 2k, x . 2
T=——2t | — 28 2 (r T )4 T2+ =T, d
.3\/.62 ﬂkol-(l 2+ gl (d)

The shorthand notation k,,, means the following:
kove =k0(l+ﬂ'¥] (e)

According to Cengel (1998, p. 107), the proper sign of the square root term in (d) is
determined from the requirement that the temperature at any point within the medium
must remain between T; and 7.

The differential equation corresponding to (11} can be written here as
[—E(AT)’] +T(ATY +TAT = f =0 )
with

K=k (1+BT), T=—kBT, T=-kBT" f:[ko(l+.37_‘)f']' (®

Thus the corresponding weak form with the Dirichlet boundary conditions is
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[o wE(aTYaQ+ [ wir(aTyd2 + [ weaTdR - wiaR =0 (h)
See Remark 11.1 with respect Lo the source term.

The weak form corresponding to (13) is here simply

J’Q WET'dR =0 0]
again with
=k (1+p7) ®

Following Cengel {(1998), we take the example data

L=0.m, k=38W/m K), f=921-10*K", @
T, =600K, T, =400K

Figures (a) to {c) give some results given by MATHFEM with a regular mesh of four
two-noded elements, No sensitizing has been applied. Results on the left (Figures (2} and
{c)) are obtained by the Newton-Raphson method and results on the right (Figures (b)
and (d)) by the Picard method. Different initial guesses (solid lines) are used in the upper
and and lower figures. The solutions for the initial guess and after the first and the final
iterationare shown by solid lines. The dashed line (hard 1o see) is the exacl solution.

800 890

TO0 700

600 600

500 500

aono 0.02 0.04 0.06 0.08 0.1 qunu 0.02 0.04 0.06 0.08 0.1
Figure (a) Figure (b)

600 600

550 550

500 500

450 450

4000 0.02 ¢0.04 0.06 0.08 0.1 4000 ¢.02 0.04 0.06 0,09 0.1
Figure (¢) Figure (d)

The non-linearity is rather mild and convergence is reached very rapidly. Table (a) gives
the results for the quantity

116 11.1 STEADY CASE

o=y

T

This 1s the relative rms-error in the nodal valies between the exact solution to the
! discrete problem and the iterated solution afier n iterations. The initial guess is according
to the case of the upper row (Figures (a) and (b)).

U]

Table {a)
Relative rms-error in the solution
lleration Newton Picard
1 2.9 10" 2.9 10"
2 4.8 107 8.4 107
3 2.1 10° 5.810*
4 4.6 10° 21107
5 2.4 10" 13 10°%

A sample of the MATHFEM program follows:

<< mathfem.m;

m=5;Le0.1;kp=38; fu 8.21410%-2; ¢ = 6D0; @2 = 400;
d=¢1 +Com(2«Pl=#/L} » ($2-¢D &

dom= ({0}, (L});

meh= M&H(dom, {m}, 2] 5

w=m[m a]’

ke ke (1+8+p[01}

fxbo FRBfapr, {0, will « ka¢[1]11]1;

prb = FIX(prb, dom, ((é1}, {¢2)}17
SHOWID{ PLOT[ NONLINEAR( peb, 0.0001)1] 5

11.1.3 Fluid flow momentum equation

A one-dimensional form of the steady momentum equation described Chapter
12is

(—,uu')l +puu'+p’ —pb=0 (15)

The convection term puu’ is the cause of the non-linearity. We consider a
simplified non-dimensional case, Shih (1984),

F(90.0'.97)=-¢"-26¢'=0 (16)

using here the boundary conditions
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¢(-09)=10, ¢(3.1)=1/4.1 (17

Equation (16) contains a convection type term and serves as a demonstration
case. The exact solution to the problem is found to be

p=""" (18)

Linearization of {16) gives

—§" 209" -20'A0 26 (Ag) ~1-(Ag) =0 (19)
or

—(a9) -2¢ (8¢) -2¢'A¢—F =0 (20)
with

f=0"+20¢ 21

Equation (20) is again a linecar D-C-R equation for A¢. The boundary
conditions are

$(-09)=10, ¢(3.1)=1/4.1 (22)
and
A¢(-09)=0, Ap(3.1)=0 (23)

The Picard type approach is not always apparent or unique. We could write (16)
here linearly for example as a D-R equation

— ¢ —20%=0 (24)
or as a D-C equation
—¢"-26¢'=0 (25)

The latter choice seems to be the governing one used in the literature.

‘ Example 11.2. The differential equation (20} can be written as

|
|

~D(ag) +7(Ap) +TA9—F =0 (2)

with

11-8
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D=1, #&=-2§, ©=-20, [=¢"+20¢ (b)

The corresponding weak form is without sensitizing
J’n wD(Ap)d2 +J'9 wit (A¢) dQ + jﬂ wEAP A2 —jﬂ wfdQ2 =0 ()

Again, Remark 11.1 should be taken into account when the contributions from the
source term are evaloaled.

The sensitizing lerms are using two-noded elements

.[n (7w +Tw)r" [F(Adb) +TAP— f] do *“L; Twr" [E(A¢) - f']dg (d)
For instance, equation {25) can be wrillen as

-D¢"+ug’ =0 ()
wilh

D=1, u=-29 {0

The corresponding weak form is without sensitizing

[ wD(aeYdR+ [ wiz(ag)dR =0 ®
The sensitizing lerm is using two-noded elements

[, v (ag)ae (hy

Figures (a) to (d) give some results given by MATHFEM with a regular mesh of four
{upper row) and nineteen {lower row) two-noded elements. Results on the left (Figures
{a) and (c)) are obtained by the Newton-Raphson method and sensitizing only with 7°
(GLS) and on the right (Figures (b) and (d)) sensitizing with both T° and 7' (GGLS).
The solid lines illustrate the initial puess and solutions afier the first, second and final
iteration. The dashed line gives the exact solution. Because the sensitizing parameter
expressions used are not smooth, they have been treated in a “Picard fashion” in the
program.

Figure (a)
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Figure (c) Figure (d)

Table (a) gives some results for the error quantity defined as in Example L1.1, formula
(1), for the case with four elements. Use of the GGLS-version increases the rate of
convergence. The difference in the table values with respect to the initial guess (n=0Q)
depends on the difference in the final discrete solutions.

Table (a)
Relative rms-error in the solulion
Tieration 20,27 =0 “#0,1"#0
1 0.54272 0.46027
2 0.21721 0.16041
3 0.07968 0.04835
4 0.02461 0.00826
5 0.00685 0.00069
[ 0.00183 0.00012

A sample of the MATHFEM program used is given:
<< mathfan.m;

mi= m;
Hye-0.93=3.0; ¢ = 10; é3 =« 1/4.1;
del.;ucs -2e¢[0]; v= -229[0]7 C=-2ep[l};
ha (-3 /(m-1);
tos 1/MEx(12+d/h*2, 2+ 2ba(v] /N 7
tr= h*2/ Mox[108+d/ hA2, 6« Aba[c] ] ;
eactix ] =1/ (L3
$agy+ (#-30) 7 (-3) = (da- 1) &7
dam= { (), (3J}) 7
meha MSH[dom, (o), 2] 7
epr = APR[m=h, 3]
Eba

PRB[gg, {0, W[1] » #[1) + Ww[O0] s we$[1] + tOw (vew[l]) » (Vvad[1]) + LT+ (Cxw[l]} = (Cx ¢[1])
prbe FIX(prb, dom, (($1}, ($2)}]7
SHOWID{ PLOT[ NONLINEAR | prdy, 0.00013 1] 7
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11.1.4 Radiation boundary condition

Thermal radiation heat transfer between communicating surfaces and
participating media is an extremely complicated phenomenon to analyze and
massive textbooks have been written on the subject, e.g., Siegel and Howell
(1996). We here consider one simplified example case. The heat flow rate
density g, by radiation from a surface of a body is given by the expression, e.g.,

Incropera and DeWitt (1996, p. 10),
g =co(T* T ) 26)

Here T and T, are the termodynamic temperatures of the body surface and the

surrounding surface, respectively, o =5.67- lO_sWI(m2K4) is the Stefan-
Boltzmann constant and € ([g] =-) is the emissivity (emissiivisyys} of body
surface. This expression is valid if the surrounding surface is large compared to
the body surface the and the medium between the surfaces does not participate
in radiation.

Using the deltaform and writing the right hand side of (26) as F(7T), we obtain
by truncated Taylor series

~ dF
F=F+=-AT 27
i 27)
or
g" =0 (T*~T, )+ 4607 AT (28)

The right-hand side corresponds to a Robin boundary condition term for AT,

A rather common Picard type approach is to use the relation

(T* Tkt )= (T + T (T2 + T (T Toar) 29)
and write (26) as

q" =h (T ~Ty) (30)
where

e =80 (T + T, ) (T2 + T3 ) @1
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The term A, ([h 1= Wl(mzl()) is called radiation hear transfer coefficient
(siiteilyn limmonsiirtymiskerroin). Using form (30), we have obtained formally
the familiar convection type boundary condition term; see formula (3.1.7).

Example 11.3. We use here again an example case of heat transfer taken from Cengel
(1998, p. 93). The problem can be described by the differential equation

~kT =0, O<x<l (a)

and by the boundary conditions
—kT'(L):EU’[T(L)‘ —Tsﬁr] )

On the right-hand boundary, heat flux by radiation is taking place which makes the
determination of the temperature distribution non-linear.

Using the deltaform and the Newlon-Raphson method the weak form in an iteration step
is

[o wk(aTYa@ + [ wiTaQ+weo[T* - T;,t,]|,=L +waga TOAT |, =0(c)
In the Picard method the weak form in an iteration slep is

[o WATAQ + wh T, —wh Ty | gy =0 (d)
with

hr=sa(7_‘+Tsur)(T2+Tir) ©

We lake the example data

L=006m, k=12W/m-K), e=085,
T,=300K, T, =0K M

Figure {a) shows resuits obtained by the Newton-Raphson method and Figure (b) by the
Picard method given by MATHFEM. A regural mesh of four two-noded elements has
been used. The solid lines illustrate the initial puessed solution (constant) and the
solution after the first iteration,

300 00
297.5 297.5
26 2025
292.5 290
2 287.5
287.5 2856
285 ~.| 2825
0 0,010,020.030.040.050.08

Q0 0.010.020.030,040,050.06

|| Figure (a) Figure (b)
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Table (a) contains similar information as the corresponding table of Example 11.1.

Table (a)

Relative rms-error in the solution
Iteration Newton Picard
1 33107 33107
2 5.2 10" 54103
3 12107 8.4 10*
4 6.8 107 13107
3 S 21107
6 . 3.310%

i Finally, a sample of the MATHFEM program used is again piven:

<< mathfem.m;

me 10;

L= 0.06:3=0;3maly ¢1 = 300; ¢ =07 Adal.2; ¢=0.85; 0=5.67+104-By
$agy+ Onfla;

don = ({3}, ()}

msh o MER[dm, (my}, 2] ;

&g o APR[meah, 3] ;

b FRB{ag, (0, W[1] +ds ¢[1], W[0] ecvo« (¢[0] *4d—¢2*4}}]7
rrbe= FIX[ b, {3g}, {(¢1))]7

b (2, 2, m-1, 3]] a3;

SHWID{ FLOT{ NONLINEAR] zrb, 0.0001]1] 7

11.1.5 Some comments

The above example cases indicate that the way to apply the Picard method is
not unique. In non-linear cases the convergence of a procedure is never sure.
Combinations of the Picard and the Newton-Raphson methods are sometimes
advocated in the literature.

11.2 TRANSIENT CASE (missing)
11.2.1 Introduction
11.2.2 Applications
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12 FLUID FLOW
12.1 MOMENTUM EQUATIONS

This far we have dealt mainly — except in Chapter 5 — with problems
concerning only one field equation and one unknown function o be
determined. Problems with fluids in motion usually mean that a few (say at least
three or more) unknown functions with coupled field equations have to be
considered simultaneously.

The general local form of the principle of balance of momentum (liikemiirin
taseen periaate), e.g., Malvern (1969), is

aO'ﬁa
*8

+ pb, = pa, (1)

|Vea+pb=pal

where © is the stress tensor, p the density, b the specific body force
(massavoiman intensiteetti) ({b]=N/kg), and a the acceleration (kiihtyvyys)
([a]:mlsz) of the medium. Equation (1) is usually called the momentum
equation {or equations) or the equations of motion (liikemédrliyhtils, liike-
yhtils). If the continuum is at rest, a =0, the equilibrium equations (tasapaino-
yht#ls) are arrived at.

The stress vector or traction t (jannitysvektori, traktio) ([t] = N/m?), acting on a
differential surface element with the unit outward normal vector n, is connected
to the stress tensor through

o =N505a @

This relationship also follows from the principle of balance of momentum. As
mentioned in Section 3.1.1, the relationship is analogous to (3.1.3).

From the principle of balance of moment of momentum (liikeméirimomentin
taseen periaate) follows the result

o' =0| Op=0q 3)

or the stress tensor is symmetric.

In the Eulerian description the kinematic relation

ov v av
a=—+veVy Ay =—%+v o

— 4
a1 a  Poxg S
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is valid, where v is the velocity of the medium. The latter term in (4) — the
convective acceleration — is the main cause of complexity in fluid mechanics
generating non-linearity into the equations.

In fluid mechanics the stress tensor is usually decomposed into an isotropic part
and into a deviatoric part:

o=—-pl+6°", O,5=-pbyg+0gs 5)
where the multiplier in the isotropic part is called the pressure (paine):

P= _5 Oy (6)
The deviatoric stress is often called the viscous stress (viskoosi jinnitys) as in
fluid at rest it vanishes so it is caused by friction or viscosity when the fluid is
in motion. In the ideal fluid flow model it is assumed to vanish also when the
fluid is in motion.

Substitution of (4) and (5) into (1) gives the form

paa—:—V-a'+pv-Vv+Vp—pb=0 (7a)

or

dv, 00, dv,  dp
Lo _TT82 oy, Pa L PP oy =0 b
o dxg Pva dxg Ox, P s

These differ somewhat from equations (A.2.6). They can be armrived at from
(A.2.6) by some manipulation with the continuity equation (A.2.1).

The equations above are exact. To proceed, we have to make constitutive
assumptions.

The constitutive law for the pressure is generally of the type p=p(p,T) such
as the ideal gas law p = RpT. Here we assume the mechanically incompressible

fluid model discussed in Remark 6.1 so the pressure is a constraint force and it
has no constitutive expression.

For the viscous stress we employ the conventional Stokes’ viscosity law
(Stokesin kitkalaki)
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where the meaning of the notations has been cxplained in connection with
equation (6.1.8) and where the deformation rate

1{ dvg g
dooe—| Lo 78
af 2{axﬂ+axa] ©)

In the fully incompressible case the dilatation rate d,, vanishes. In our slightty

incompressible fluid model we ignore the dilatation rate in (8). Substitution of
expressions (8) and (9) into {7) gives the momentum equations

v, 9 Ovy . 9vg dv, dp
& —— | —E+—= [+ pyg -+ —-pb, =0 10
P Oxg ‘u{axﬁ axy P dxg Oxg 2 S

These are the famous Navier-Stokes equations (Navier-Stokesin yhtalot). They
are written here using the incompressibility condition in the Stokes' viscosity
law. The Stokes' viscosity law is known to be accurately valid for many
common fluids such as water and air.

In the fully incompressible case with a homogeneous fluid the density 0 is a

given constant for the fluid. This is an often-used model for liquids in forced
convection.

To be able to treat natural convection, see Remark 6.1, the density changes
generated via temperature changes must be accounted for. In this connection the
so-called Boussinesq-approximation is often used:

The density of the fluid is assumed to be constant in all the
govemning equations except in the body force term in the
momentum equations.

The validity of this approximation can be shown by making the equations
dimensionless and by studying the order of magnitude of the different terms.

Equation (6.1.15) gives the constitutive relation
p=p" —y,p AT (11)

which can be used here. When this is substituted in (10) we obtain (The
superscript « is removed and p now denotes the constant reference density
associated with the reference temperature.)

124 12,1 MOMENTUM EQUATIONS

dv, 0O ov,  Ovg dv,  dp
o | =4+ |+ Lt ATb, - pb, =0 12
P "o “[axﬂ o | Py O (PP PR S0 (D

The part ¥, PATb, is often called the buoyancy term (nostetermi) especially if

the body force is due to gravity in which case b = g. The buoyancy term is seen
to couple the momentum equations through the temperature with the energy
equation; see Remark 5.3. Further, if the dependence of viscosity on
temperature is taken into account, additional coupling is introduced.

The mechanical boundary conditions associated with fluid flow consist usually
of given velocities:

Vg =V, on T, (13)
and of given tractions
te =ty on Iy (14)

The velocity boundary T, and the traction boundary I'; form together the
whole space boundary I'. Using equations (2) and (5), the latter condition
obtains the form

"ﬂoia —nap=1ig (15)

Finally, employing the constitutive law (8) in the incompressible case, the
condition transforms to

2 _
nﬁp(—vfuraﬁ]—nap:ra (16)

The conditions (13) and (16) are clearly analogous to the Dirichlet and
Neumnann conditions, respectively, used in problems with only one unknown
function.

The boundary conditions (13) and {14) are the conventional ones but many
alternatives have been used. The theory seems mot to be quite complete
concerning all the possibilities. Especially the inflow and outflow boundaries
(see Section A.3) are usually synthetic surfaces decided on by the applier
dividing the fluid domain rather arbitrarily without any real physical basis. To
guess realistic boundary conditions for them is often difficult,

Remark 12.1, The velocity and traction boundary conditions (13) and (14) have been

presented above in a simplified form. The more general forms are for any point on the
boundary
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From each row eilher of the conditions (but not both) is taken. The notations refer to a local
rectangular coordinate sysiem with one coordinate axis usually in the normal direction 1o the
boundary. The application of these forms demands use of certain transformation formulas
between the local and global coordinale systems. O

12.2 GOVERNING EQUATIONS FOR FLUID FLOW

We collect here a fairly general set of governing equations for slightly
compressible fluid flow,

Field equarions:
Momentum equations
dvg _ 9 A avﬁ 0vg 9P
—E———u| = —— [+ pvg—+——+Y, pATh, — pb, =0 1
P Tox “{axﬂ ol ML R M ek e o
Continuity equation

dx,

Energy equation

oT
p

d

dx,

3

aT aT
—t—| —kgg— |+ —=—s-P=0
<y » axa[ aﬁaxﬁ] PcpVa s

Mechanical boundary conditions:
Given velocity
vy =%, on I, (4)

Given traction
ad dv _
nght [_ﬁ"'_a]'"m”: x on I'g (5)

Thermal boundary conditions:

Dirichlet

12-6  12.2 GOVERNING EQUATIONS FOR FLUID FLOW

T=T onlp (6)
Neumann
oT
-n k. g——=1q I 7
Ry afl axﬁ q on N ( )
Robin
—nakaﬂ;—T=h(T-—Tw) on| I ®
]

Initial conditions:
Given velocity

Vg =(Vg), in £ at t=0 (9)

Given temperature
T=T, in Qatt=0 (10)

The equations have been presented in such a form that the basic unknown
functions appearing are v, p, T. In three dimensions there are thus 3+1+1=35
unknowns. Most of the equations have appeared earlier in the text. The
Boussinesq approximation for slightly compressible fluids has been used so that
for example the continuity equation is in fact the incompressibility condition.
These equations must be solved in the general case coupled, that is,
simultancously.

The equations are valid for laminar flows (and also for turbulent flows but the
minute details of these latter flows cannot yet in practice be simulated with
present computers). In turbulent flows turbulent modeling is practised which
means that typically at least two additional diffusion-convection-reaction type
field equations emerge, e.g., Wilcox (1994). Flow of mixtures also demand
additional equations describing concentration of species.

In fully compressible fluid flow as in gas dynamics a constitutive law
p=p(p,T) such as the ideal gas law must be introduced and the density is no
more a given constant but one of the unknowns.

12.3 STOKES PROBLEM

12.3.1 General considerations
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By the Stokes problem is usually meant the case where the inertia forces due to
fluid acceleration can be neglected in comparison to the viscous forces, that is,
a very low Reynolds number flow (see Section A.2). This case is a suitable
simple starting point for looking at the formulations needed.

We have from Sections 12.1 and 12.2 here the field equations

don, 9
Ry (Ve P)= Ly (Ve P) = P = —méﬂ+—p—pba=0 in 2  (la)
Iﬂ Bxa

R(vg)=L(v,)= —g%= in (2a)
(#4

{cf. Remark 12.2) and the boundary conditions

Vg =V, | on I, (3a)

”,50':30; -n,p=iy| on Iy (4a)

It is again convenient to introduce the constitutive relation

% av ﬁ
o) = —
Pa: H a).’a Bx B

ov
e (52}

later into the formulation. The unknown functions to be determined are vy (x)
and p{x).

Remark 12.2, From this on we write the continuity equation often with a negative sign on
the left-hand side. By this choice it is found that the resulting discrete equations following
from the weak form become symmetric without later changes of signs for the corresponding
weighting function; see Remark 12.5.0

To make the formuias perhaps more familiar we further write down the two-
dimensional version with the notational changes x;, = x, x, =y, ¥ 2§,
vy — v, similarly as in Section A.3:

Re(uw,v,p)=Le(u,v,p)-p xE‘T—FJfg—Pb;ﬂJ
(1b)
dor. do.
Ry(u,v,p)=L,(u,v,p)-pb,=- a»‘T 3;y+?; pb, =

12-8 12.3 STOKES PROBLEM

du ov
R(u,v)=L(u,v)s—-—/—-—=
(u.v) (u.v) 5% 3 0 (2b)
u=nu
v=y (3b)
NyOue + MGy —Nep =1y (4b)

the unknown functions to be determined are u(x,y), v{x,¥), and p(x,y). The
analogues of (5a) are

o;=p(a—u+iti], o =,u[a—u+91]

ox odx = dy ox

0-; =#[&+%], o =‘u[ﬂ+2‘i]
" dx dy 4 dy Oy

These must be considered to be introduced in (1) when the arguments in the
residuals are listed. We will consider in the following even when using the
index notation only the two-dimensional case. There are three field equations
and three residual expressions. The ideal situation would obviously be the case
where in a problem with certain unknown functions, each field equation would
the populated from terms of only one of the unknowns, that is, the equations
would be uncoupled. Here, the situation is far from this ideal one. In any case,
the Xx- and y-component momentumn equations can be rather clearly
considered to have as their "main variables” the x- and Y-axis velocity
components u and v, respectively, and we would thus want to associate the
pressure with the continuity equation. However, the continuity equation is seen
not to contain the pressure at all. In compressible flow the continuity equation
contains the pressure when the constitutive law p= p{(p,T) or p= plp,T)is
made use of. The fact that the pressure is missing in the incompressibility
equation has caused much trouble in solving incompressible or nearly
incompressible flow problems numerically and rather complicated formulations
have been developed to somehow take care of this feature.

(5b)

Remark 12.3. In the finite element method it has been necessary until quite recently, Hughes
et al. (1986), lo select the type of approximation between the velocity and pressure very
carefully to obtain a working formulation; the approximation for the pressure has had to be of
lower order than that for the velocity. By introducing certain sensitizing terms this problem no
more exists and equal order approximation can be used. O

Remark 12.4 One way to deal with (he problem of p missing from the incompressibility
condition is the so-called penaity formulation (sakkoformulaatio). It is based on replacing )
with a perturbed (hiiritty) form
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1 oy
—2=-0
rial o, (6}

where A is a given large number with appropriate dimension, the penalty parameter
{sakkoparametri). The pressure has now been introduced artificially into the formulation. (In
fact, to see this result o be valid, a study based on a variational formulation of the problem is
needed.) As the pressure is for physical reasons bounded and if A is taken to be very large,
equation (6) is nearly the same as equation (2). From (6) follows a fictilious constitutive
relation

dg
ax,

p=- Q)
with A as kind of dilatational viscosity. By substituting (7) into the momentum equations the
pressure is eliminated and only the velocity components remain to be determined. The penalty
formulation has been employed quite widely in connection with the finite element method.
However, although the formulation is very simple, it has some disadvantages and is not
considered further in this text.0

We now proceed to derive a weak form corresponding to the Stokes problem.
The procedure is a rather obvious generalization from what has been done
earlier; see Remark 5.6. The first field equation is multiplied by an arbitrary
weighting function w;(x,,x,)=w_(x,y), the second by w, (x;,x;) = w, (x,¥),
and the third by w(x; ,x3) = w(x,y), the resulting equations are integrated over
the domain £2 and added together to produce a weak form

FE.[Q(WGRG +wR)dQ2 =0 (8a)
or
F=[_(weR,+w,R, +wR)dQ =0 (8b)

As the weighting functions are arbitrary, this one scalar equation is equivalent
to the three field equations.

Remark 12.5. Of course, the integrand in (8b) can be writien equally well as

w.R, +w, R, —wR or w.R -w,R, -wR elc., thal is, we can take the signs arbitrarily. This

is because Lhe weighting functions are arbitrary and the weak form still remains equivalent to
the field equations. Further, we can write the original field equations with changed signs,
which would apparently again change the outlook of the detailed weak form. We have here
wanted 1o leave the weak form to have the clean standard outlook with only plus signs.
Similarly, we finally wanl to use the finite dimensional weightings corresponding to (15) in
the forms w, = N;, W, = N;, w= N;, without any possible changes in signs. In this way it is
found that the discrele equations become symmetric, which explains the choice discussed in
Remark 12.2. The reason for the symmelry is based on the fact that the Stokes problem can
actually be presented also as an equivalent variational principle. O

12-10  12.3 STOKES PROBLEM

The next step similarly as with diffusion problems is to integrate by parts the
terms containing through the constitutive relation second derivatives (see
formula (B.3.1b):

8 J
,80: W " «
_ J‘ j ax: Oy [d2- L_ WeO pangdl” (9a)
or
dgs, 30, o doy, R 3oy, P

ox ay

—Jr (wxcr;xnx + WO, + W, Orn, w00, ) dr (9b)

ow, .  dw dw, , dw,
+_[Q( gy +— 20 +—L0, +—20), |d&2

In this kind of manipulations the index notation and the use of the summation
convention soon becomes the more attractive alternative — even if the formulas
may seem at first sight too concise — as the manipulations become otherwise
extremely painful to write down.

Here it proves useful to integrate by parts also the terms containing the
pressure:

g ow,
j W o /4 d L, ax: de+IrwapnadF 10)

This is because the pressure now appears also en the boundary and this can be
made use of on the traction boundary I .

The weak form is transformed into

aw, _ow, dv
F=| | =0 2 p+w—S—w,pb, |dQ2
I axﬂ 0xg P wax,_, s
—J'rwa(nﬁoga-nap)drw (11)

The boundary conditions have not yet been discussed. The velocity boundary
conditions (3) are assumned to be satisfied in advance. Similarly as in connection
with the diffusion problem we then demand that the admissible "velocity”
weighting functions satisfy
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w, =0 on I, (12)

Then there remains in the boundary integral in (11} only the part over the
traction boundary I,. But there the traction boundary condition (4) shows that
the term inside the parentheses is i, and this given value can be substituted
there. Introducing further the constitutive expression (5), we obtain finally

Ow, [9vg vy | Ow, ava
Oy ) B Pa | T s
Jﬂ\:axﬁ H{ axa aJCﬁ Bxa 4 axa (13)

~f , wap bad2 = [ walpdl'=0

-
n

12.3.2 Sensitized form

Introduction. We now develop the expressions needed in two dimensions in
more detail. We also change the notation somewhat. For instance, w, — w,

R, — R, etc. The left-hand side in (13) is
du du), 9w ov  du
F= —_— i Skt
Ja [ [ax ax]+ay”[ax+ay]
aw du av aw ov oy
+—t ,u —t— —t—
ay ox dy dy

ow ow, du av
- iu v _ —_ Q
x 7 ay wp( dx Oy ]] d

- Jg(wupbx+vaby)d£2— jra(wu§+wv§)dr (14)

We use the same type finite element approximations for all the unknowns:
ﬁ(x.y)=§Nj(x, y)uj
P(5)=ZN;(xy)v; (15)
Plxy)=IN;(xy)p;

Using the Galerkin method, the contributions to the three system equations
corresponding to node i are thus (put first w, =N;, w, =0, w, =0, second

ﬁ’u =0, “-l-",:N‘-, ﬁp =0, third \;’u =0, ﬁ)v=0, ﬁrp:Nl.)
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an, 3a 3N, (95 3i)_ow
Fl=||—pu2—+—Lpu| —+—|-—=+p [dQ
(")' L?LBx'u dx dy H(ax+ay] dx p]
_IQNlprdQ_J-raN'adr

[oN, (0@ aF) 9N, _av ON,
Fl=| |—pu| —+— [+—=—Lu2—-—Lp(dQ
(), Iﬂt ox F(ay+ax}+ dy # dy Oy p]

~[aNipbydR - [ Nt dl (16)

()l T

As mentioned in Remark 12.3, some sensitizing terms are needed to make the
discrete version work with equal order approximation for velocity and pressure.
Proceeding similarly as in Section 5.3, we start from the additional least squares

functional

T
i Ru Tuu Tuv Tup Ru
n(u,v,p)=§j'n R} |Tw Tw T |fR AR (17
RP Tpu Tpv Tpp RP‘

Taking the variation of (17) and introducing the interpretations Su=w,,
Sv=w,, d p=w,, gives the sensitizing term

(wuvwvn w ) Tun  Tuv Tup Ru (u’ v, p)
FO _J' (wu.wv. ) T T Tap [1RY (u,v,p) de (18)
Lp (wu ’ v) Tpu rpv Tpp R.P (u’v)

The field equation residuals are according (1b) and (2b) with the simplification
of assumed constant g in (5b)

% 9% 9
Ru(u.v,p)':‘l.u(u,v,p)-pbxE—,u.(—-!—‘-+ l‘t]+f_;)—i—p.':ax=0

axZ 8}'2
_ _ 9% 3% ) dp _
R{,(u,v,P)=l?((u,v,P)—Pby="H ﬁ"'ay—z +—a—;—Pby— (19)
du v
Rp(u,v)ELp(u.v)E—a—$=0
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In the formulas for the momentum equations, the continuity equation has in fact
been made use of. In what follows we assume that it is enough to use a diagonal
sensitizing matrix. Further, we neglect the second order derivative tenms in the
residuals and weightings (cf. Remark 6.12). Expression (18) becomes thus

dw d aw d
FO[ |27 [ZP_pop |+—Le, | 22 pp
.[Q|: ox u Ax Py ay w ay P ¥
dw,  ow du  dv
+ L+ — | —+— | |dQ 20
[ dx oy ] ”’(ax ayﬂ (20)
The contributions to the three system equations corresponding to node i are thus

(7, )% = b (aa +£]d9

adx Plox 3y
) aN; o ov
D= el =4—|d
X" =], » T””(afay 2 @

0 _ aN; dp aN; ap
(FP ),' _J-_Q [Ex_fuu(a—x—pbx)'f?‘fw[g"pby)]dﬂ

Remark 12.6. It is of some interest to consider the additional terms emerging inlo the Euler-

Lagrange equations from (20) using the sensitized weak form F +F® =0, Assuming
constant sensilizing parameter values 7,, and 7,, we obtain by inlcgration by parls

respectively the lerms

9, (ou, O
ax Plax oy

d du  ov
L s 2
ay"’"(ax*ay] e

(B (P

uyr axg ax w ayz ay
aon the lefi-hand sides of (19). Parameter 7, has now aciually the role of some kind of
additional dilatational viscosity; see the similarity with expression (7) when introduced into
the momentum equations, Further, the last expression (22) shows that the parameters 7,,, and

1,, introduce desired missing pressure terms into the continuity equation. In fact, in fluid

mechanics a Poisson equation for pressure is often introduced by differentiating the first
momentum equation (19) with respect to x and the second momentum equation with respect
to y and summing the results. The velocity components are found to vanish in Lhe
manipulation, Especially, if 7,, =17,,, the lasl term (22) represents exactly (with a minus

sign) the left-hand side obtained by the manipulation. 0

12-14 123 STOKES PROBLEM

Reference solutions. We try to find some reference solutions by the Taylor
series approach introduced in Section 5.2.2. The governing field equations are
(assuming for reference solution purposes constant viscosity, (see (19))

—Hll — ity + p— pb* =0
—[V — 1Yy, + py—pbY =0 23)

ux+v),=0

(The bedy force components are indicated here using superscripts to avoid
confusion with respect to differentiation.) We develop the unknowns and the
body force components into Taylor series about a generic point (x=0, y=0):

u(x,y)=ugy +(u,)0 x+(uy)D y+-;—(um)0 x? +(un)oxy+%(uw)o y?

1 1 1 1 3
+g(“m)o x3+§(”ny)o x2y+5(um)0 " +g(”m)oy A

v(x, y)=vp +(ux)0x+(v.y)0y+---

p(x.y)=po+(pe)y x+(py), v+ (24)
B*(x,y) =b% +(b"x)0x+(b"y)o Yoo

B (x,) =b%0+(bx ) x+(py) y+--

Evaluating (23) and its differentiated forms at the origin gives

~H () _#(“ﬂ )o +(Pc)y—PbT0=0
._y(vn)o—y(vn,)0+(py)0—pb’o=0 (25)

(u_t)0 +(vy)0 =0

(e )y —y(uw)o +{(Pa)y —P(bxx)():O

~H {4y )0 - (uyyy )0 +(py )o e (bx? )0= v (26)

@n
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um)o+ Y )0=0 (28)

Ending as shown, we have obtained 12 equations (25) to (28) containing 21
unknowns:

("‘x )(J' (uxx)o' (ux)r)o’ (u.v?)o' (um)()’ (uﬂ’l’)o' (uW)o' (um)o
(vy)u’ (Ve o (vxy )o' (Vw)u’ (Ve Jo- ("xry)o' (nyy )o’ ("m)o (29)
(p.r)o' (p}')u’ (pxr)o' (p-")')o’ (pJ’)’)o

We can hope at best to solve 12 of the unknowns (if the corresponding
determinant is non-zero) in terms of the 9 remaining. Experimentation with
Mathematica showed that at least the selection

(P )y (Py)o’ (Pxc)ys (ny)o’ (Pw)o

("y)o' (Vn')o' ("yy)o' (Vaer Jo - ("m)o’ ("w)o’ ("w)o
worked. The solution was

(Px)o = £ (ae o + {11y ), + PB"0

(py) =4 (1 ) + 1 (v )y + PB0

(Pax)o = B (hexeJo + £ty )y + P (87%5)

(Pay )y = (s )y + iy )y + £ (8% ),

(Pw)o—-ﬂ "m)o B(usn)y +0(67),

(v)’ 0

(30)
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("'z:v )o =—(uz)y

("yy )0 == ("x? )0 (G
(el = () 5 (677}, =5 07,

(Very )o == (ze )y

("xyy )o = —(”W )o

("m )o = '(“xry )0

Substitution of these results into the Taylor series expressions gives finally the
reference solution

‘u ] 1 0 0 x y 0
v 0 1 0 —y 0 x
P l=up{0t+vg 10+ po il t+(uc)yd 0 1+ (i) 107+ (ve)p {0
pb* 0 0 0 0 0 0
Lpby. 0 0 0 0 0 0
(1/2- 2] A 1/2.y?| [ O]
—xy ~1/2-y* 0 1/2-x
VR R NOSR R YROR I U
0 0 0 0
0 0 0 0
168 | 1/2-x%y)
—1/2-x%y 1/2- xy*
it Yo {172t —1/2-py? [ Hm o | pry
0 0
| 0 ‘ [ 0
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1/2-xy% (176-5° ) 0

-1/6-y* 1/6-%° 0
+(“m)o4liz-yx2—1l2-py2'+(“m)0‘ pxy (PP Xt (3D)

0 0 -1

0 ‘ | 0 | 0

These are applied in Example 12.1 in an effort to try to determine the

sensitizing parameter values.

Example 12.1. We develop some formulas in more detail. We consider again the square
bilinear element (Figure (a}) and the corresponding four-element patch (Figure (b)).

The clement approximaticns are
u= }'}',Njuj = Ny + Nptg + Nqun + Ny
v=YLNv; =Ny + Nyvg + Nyvy + Nywy
¥
p= %:ijj = Nip + Nypy + Nypy + Nypy

with the shape functions

Ny =1-E-n+fn
Ny=E-€n
Ny=E&n
Ny=n-&n

order

12x1

{“}=[“1 V) Dy Uz V3 Pp U3 V3 Py g V4 F’a]T

T
E[“l @y @y 4, as dg a7 dg 8y &g ay a]

y

7 8 9
@ @@ 3

4 (1 @ @ 6
@ ;@ O x
0 @ @&

1 2 3

Figure (a) Figure (b)

()

(b)

There are 12 nodal paramelers associated wilh the element. We list the paramelers in the

(c)
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We evaluate first he element contributions from the standard Galerkin part. Making use
of formulas (16) al the element level gives assuming constant viscosity

oN, _0d 9N, (¥  di N -
=(F) = L A ae-[ S e
Fi=(R)=x [ax 23x+ dy (ax+ay]] aax ’

= [ NipbAR -jr; NTdr

R P T AN 1 oo
FZ_(Fv)l_“IQ [ {ay ax]+ 2ay]dg a3y pdQ

_I chpb dﬂ—j ¢Nl:ydr (d)
F=(F)=-] ,N,(a“ +%’]dg
F4=(FL)2=

Further,
BN] BNJ aNl aNJ aNl oN oy
= ; dg
fi FZ[IQ'{Z ox ox " dy dy a2 u"+‘u2' Iﬂ' dy ox ¥
_g(j SE d.Q)p] J ge Mipb,82 - ]' N T dr
_ N 3N, ON; N, oN; i,
Fz_“%{'[ dxr OJy dQ] j+P§|:I9'[ dx oOx +2 dy dy Y

—E( N, N.dg]pi-ja,nlpb,dﬂ-jr, NL,dr )

* oy

oN oN;
(J’ Mt cl.Q]u -E[jn,Nl—ay—’dsz]vj
F:'z...

Finally,
F =;¢%(6u1 ~3uy —u3+0-u4)+pi~(v, vy —vy+vyg)
+%(2pl +2p 4 Py + pu) = [ f Ny Ph,A2 —.[F; Ml
F= y%(ﬁul +0-uy —3u3—u4)+,u%(v, —vy = V3 +vs)
"‘182“(21’1 +tpatm +2P4)-_[n, Ny pb,dQ _Ir; N7, dl )

F —-I%(-—Zul + 2y + iy —u4)--1£2(—2v1 ~ vy +vy+ 2v,)
Fy=-e

The sensitizing terms from (21) applied at the element level give assuming constant

parameter values
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1

FO =(F )" =1,, J‘ E)a_NL[aE av]m

* By
0 aN, (dE  oF
B =R =% o > (E S]dg
o _ o _ aNl dp aN ap
FO=(F,) =t/ ax PR P de
dN
4
r,,,,]‘a, 5, P 4R~ [ 5 ety 4 ®
0
O =(r) -
Further,
AN, aN; AN, ON
0 _ 1 J
F _rw§ Ia‘.g aJd.Q]uj+fPPZ[IQ¢a—xl 5 dsz] i
o _ IN; E)NJ AN, ON;
F. _r,,,,)j: ja, 5 o dQ uj+r”§ [ ay‘—a;dﬂ :
IN, ON IN, ON;
(0 _ L 4 B 1 J 3
FJ tuu? In' ax ax dﬂ]p1+fw§[‘[af ay ay m]pj (h)

Again, still further development gives
Fo =7 Lo 2 .
=T E( 1y + My — Uy — u,.)-l-‘r,,}J Z(v] vy —Vy =)
1 1
sz) =7ppz(“l =ty —uy g )+ Ty, -6—(2v1 +vg —vy = 2vy)
1 1 .
F? =5 o (2p 4 Py = Py~ 204) 4T o (2P0 P2 = P2 =2P4) 0]
an,
rwj'ﬂ, % pb dR - T"“Ia' —Lpb,dQ
{m _
FIO =

The data for system equations assembly is obtained from Figure (b) and is given in the
following table:
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(1 (2) &) @)
M@ G @E e @6y qanuy
1 2 3 4 5 6 13 1415 1011 I2
4 5 6 7 8 9 16 17 18 13 14 15
10 11 12 13 14 15 22 23 24 19 20 21

13 14 15 16 17 18 25 26 27 22 23 24

ONOXOXS)

The nodal parameter numbering has followed the global nodal numbering in the order
first u, then v, then p.

The three system equations corresponding Lo the central node 5 are
27

> K3 ja;—b3=0
J=l

27
DKy a;—by=0 ()
J=1

27
Y Kys,ja; ~bys =0
=1

The assembly happens as explained earlier. For instance,

Ky, = K"lll 3 ®©
K310 = K700 + K4
The detailed calculations arc performed by Mathematica. There is obtained
(-5 - 22)un + - - 7) v 'E ap(1) + & oul2) +
(-ﬂz-—)ulap . )v131+§-p[31+(-u- %) w4 -
%ap['ﬂ] +(8us 4;;9) u[s) + (-u- 2‘;“’) 7] + % ap(6) +
(-__—"'?)u[?]o 1 -%np['?]f%rmulﬁw
(-4 - T2 ueom o (-4 - Z2) w91 ¢ o mproy - b33 =0 o
(-4 - ZB)uyy + (-5 - ) wul -5 aBMl+ (- u-—)v121 -
-1-ap[2] ellie +—)u[3)+ (-5 - )VT3] ——19[3) + < rmVI‘l +
(dw )v[S]i-—t;pv]G]+(—+—-)\.l[7]+(-—-—)v[7]+
i-pr?l 4 (-n- '“’)vm +—ap(81 ‘(-— - %)u[sl +

' BT e - O
=55 5)vt1+nap(91 b{14] = 0 (m)
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1 1 T 1 . 2w
T 2 g eVt - - g et g ava s (S - S pran -

1 i o TV 1
Eau[Sl +E avi{d]+ (-_6 - —s') P[a] + 5 auld] +

d:uu‘-ltvv
3 3

Zraa  Tvw
(-fﬂ +

3 3

) prdn + ) pi5) —%5\1[6] +

2rnan  Tvv 1 1 T vy
(-5 + ) Pr@ 5 au7 - S aviTl 4 (== - =) BT -
1 o 2Tvw 1 1 o TVv
Saviel« (5 - =2l - o auis] - - avi9l « (-~ - =) pI9I -
b[15] = 0 (n)

The constant terms b depend on the detailed source terms used in the reference solutions.

It is rather obvious that in equation {n) corresponding to the nodal pressure parameier
ps, nonzere sensitizing parameter values T,, and 7, are needed to introduce the

pressure nodal parameters into the formulation.

It is of some interest to notice that the terms of the form x™y" (m > 0, n > 0) appearing
in the reference solutions for the velocity components and the pressure disappear on the
x-and y-axes. Thus, it is only the nodal values at the nodes 1, 3, 7 and 9 that can
participate in Lhe possible determnination of the sensitizing parameter values in the patch
test. The conclusion obtained with the reference solutions given above proved to be a
disappointment as the only result obtained was the obvious one 7, =1, . Usually the

patch test was passed irrespective of the parameter values. Thus further study is needed.

Application. In an earlier effort some parameter values were obtained in
Freund and Salonen (1998) and we here just give some end results. For
example, the selection

Tow Tuv  Tup R'p 0 0

1
w Tw T =] O Ry 0 (33)
Toe Tov Tpp 0 0 s

where h is a measure of the element size, was found appropriate for bilinear
elements.

Remark 12.7. Contrary lo what has been the case with all sensitizing parameters encountered
this far, the parameter 7, in (33) does not vanish with a vanishing mesh size. However, as

there are only first derivatives present in the corresponding residual R p i (19), no crimes
concerning the continuity requirements for convergence are performed here. 0

Figure 12.1 shows some results for the so-called moving lid problem presented
in dimensionless form in a unit square domain with a non-regular crude 15x15
mesh of rectangular bilinear elements. The boundary conditions consist of
velocity boundary conditions with zero data except on the edge y=1 where
u=1. With prescribed velocity on the whole boundary, the pressure is
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determined only up to an additive constant. The pressure level is fixed here by
setting p=0 at point (0.0,0.0). The light (dark) color means high (low)
pressure. (In the black and white version here the pressure distribution cannot
be well discermned.)

1

0.8

0.6

04

0.2

0

0 0.2 04 0.6 0.8 1

(2)
(b)

Figure 12.1 (a) Mesh. (b) Some velocity vectors, streamlines and pressure
distribution.

12.4 NAVIER-STOKES PROBLEM
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When the ineriia forces are no more negligible, the field equations (1a) have in
the steady case the additional term

e 1
Pvg 2xg iy

on the left-hand side. The integrand in the standard weak form (13) is modified
with the additional term

WaPVg 5}; (2)

Because of this non-linear term, the problem must be solved iteratively. In
practice we use the deltaform: v, =¥, + Av,, in the way described in Chapter
11. Here V, is the current updated solution satisfying the velocity bosndary
conditions.

The sensitizing matrix in the sensitizing term (17) is found to have the form

Tun uv up a 0 0
w Tw Ty |=[0 & 0 (3)
pu TPV TPP 0 0 ﬂ
with
1 H
o= . p=£ @
20|v|h+12p1 0 12

where |v| is the flow speed. Compared to the Stokes case the diagonal

elements except the last one, contain an additional term that is essential in the
convection dominated case, i.e., when the Reynolds number is large.

Figure 12.2 gives some results for a case similar to that explained in connection
with Figure 12.1; however, the Reynolds number is not zero but has the value
2000. The solution is now unsymmetrical and secondary vortices appear at the
bottom comers (when using a denser mesh).
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T
08f]
i
i
0.6
\ !
A (78N
0.4
\ /a4
VI §
0.2 b
\“‘-.,-'—-4-4#/,
0
o 02 0.4 0.6 0.3 1

Figure 12.2 Some velocity vectors, streamlines and pressure distribution.

REFERENCES

Freund, J. and Salonen, E-M. (1998). Stability parameters in connection with fluid flow
problems, Report no. 47, Laboratory of Theoretical and Applied Mechanics, Helsinki
University of Technology.

Hughes, T. I. R., Franca, L. P, and Balestra, M. (1986). A new finite element formulation for
computational fluid dynamics: V. Circumventing the Babuska-Brezzi condition: A stable
Petrov-Galerkin formulation of the Stokes problem accommodating equal order
interpolations, Compur. Methods Appl. Mech. Engrg., Vol. 59, pp. 85..99.

Malvem, L. E. (1969). Introduction to the Mechanics of a Continuous Medium, Prentice hall,
Englewood Cliffs, New Jersey.

Wilcox, D. C, (1994). Turbulence Modelling for CFD, DCW Industries, Inc. La Canada,
California, ISBN 0-9636051-0-0.

PROBLEMS



11.1 STEADY CASE 11-13

Siegel, R. and Howell, J. R. (1981}. Thernial Radiation Heat Transfer, 2nd ed., Hemisphere
Publishing Corporation, New York, ISBN 0-89116-506-1.
Stelzer, J. F. (1984). Physical Property Algorithms. Karl Thiemig.

PROBLEMS



13 SOLUTION OF SYSTEM EQUATIONS

Discretization by the finite element method produces what we call system
equations. They are usually algebraic equations, eigenvalue equations or
ordinary differential equations and especially their linear forms. We shall deal
here with algebraic system equations and briefly with eigenvalue problems.
Ordinary differential system equations have been considered in some extent in
Section 9.2. These themes are classical and belong to the contents of textbooks
on numerical mathematics, e.g., Mikeli et al. (1982). Efficient solution of
system equations is naturally very important in practice as often a large part of
the computations is spent in this phase.

13.1 ALGEBRAIC EQUATIONS
13.1.1 Linear equations

Introduction. Let us consider the linear algebraic system of equations

{F({ah)}=[&Ka}-{p}={0} (1)

or in simpler notation the system

(K {a}={5} @

axa  nxl axl

The task is to determine the column vector {a}. In the pioneering days of the
finite element method the problem was considered large when the number of
unknowns n was of the order of one hundred. Nowadays n can easily be in
practice of the order of tens of thousands, sometimes even of the order of
millions.

There are in principle two different ways to find the solution: direct methods
and iterative methods. In direct methods the solution is obtained in theory
exactly — if roundoff is not considered — by executing a finite number of
certain calculation steps. The direct methods are in general versions of the
Gauss algorithm, e.g., Kiveld (1980). In iterative methods — such as the
Gauss-Seidel method — the solution is improved by consecutive steps until it is
accurate enough but fully accurate solution cannot be achieved in a finite
number of steps. Both methods have their own merits. Lately the popularity of
iterative methods has been growing. For instance adaptive methods and
multigrid methods have increased this trend.

13-1
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To be efficient, the solution methods must take into account the most important
features of the system equations generated by the finite element method. These
are:

(1) The coefficient matrix is sparse (harva), that is, the relative number of non-
zero entries is small.

(2) The coefficient matrix is — when a suitable numbering order of the nodal
parameters is used — often banded (nauhamainen), that is, the non-zero entries
situate near the main diagonal.

(3) If the discretization can be based on a quadratic functional, the coefficient
matrix is symmetric and often also positive-definite.

123456

5 4 3 X X\ 1

® O X xX, |2

i X %, |3

© @ [x]= Sk XX 4

® @ XX ox{s

6 1 2 :x..----...x...xaﬁ

@ 123456

5 6 4 XL T

@ @ X x X |2

_Ix  x X, |3

@ @ [K]—-_Lx— % % |4

® 0 X x x|s

3 1 2 L :_><_3<_>_<‘6
(b}

Figure 13.1 Two identical meshes of one-dimensional two-noded elements
numbered in different ways.

Figures 13.1 (a) and (b) show the pattern of two system matrices resuiting from
two different numbering order of two identical meshes. The meshes could
represent for example a pipe network loop. The case concemns a situation with
one nodal parameter per node and the nodal parameters are numbered according
to the nodal numbering. Those entries denoted by X in the matrices can be non-
zero. The dotted line gives the profile or skyline (profiili, ##riviiva) of the
matrix. It is the line, which reaches vertically in each column up to the last non-
zero entry and similarly horizontally to the lefi.

1t is of some interest to note that even in the case of a non-symmetric coefficient
matrix where in general K; # K;; the profile is still symmetric meaning that the

non-zero entries sitwate symmetrically when the systemn is generated by the



13.1 ALBEBRAIC EQUATIONS  (3-3

finite element method. To see this we have to recall the assembly process
explained in Section 2.3.2. Let the nodal parameters be numbered in a certain
way and we have ended up with the quantities a,,a,,--",a,. Each parameter has
been associated with a certain node (be it actual or bookkeeping one) which is
further connected to one or several elements of the mesh. The system equations
are generated normally so that the first equation is associated with the first
nodal parameter, the second equation with the second nodal parameter and so
on. In a variational formulation the equation associated with the parameter a; is

clearly 0/1/9a; =0. In the residual formulation this concept is actually not

self-evident. We have in principle first to agree on the weighting functions
associated with the nodal parameter in question, after which the system
equation is generated from the relevant weak form. If the weighting functions
are selected so that they are non-zero at most in the elements connected to the
nodal parameter (as is the case especially in the Galerkin method) the
corresponding equation is seen to contain coupling only from the nodal
parameters connected just to those elements. The assembly rules given in
Section 2.3.2 in fact have been based on this assumption. Considering the
assembly rules, we realize that if the element gives an entry Kj; when

assembling the system equation associated with parameter a;, (the element thus

has the global nodal parameter values i and j), when generating the system
equation associated with parameter a;, it also gives a possible contribution Kj; .

The example cases of Figure 13.1 show that the structure of the system matrix
depends on the numbering order of the nodal parameters. Numbers m;,
i=1,2,---,n, determine the profile of the matrix and the numbers (i -m;),
i=1,2,---,n, the so-called column heights (sarakekorkeus), Bathe and Wilson
(1987). For example, in the case of Figure 13.1 (a), m; =1, my =1, my; =2,
my =3, mg=4, mg =1 and the corresponding column heights are 0,1,1,1,1,5.
The maximum value of the column height is called the half-bandwidth, also
semi-bandwidth (puolinauhanleveys; usein myds nauhanleveys). In the cases of
Figure 13.1 (a) and (b) the values of the half-bandwidth are 5 and 2,
respectively. The half-bandwidth is determined by the formula

B =max (max|i- j|) (3)

where i and j refer to the global nodal parameter numbers of element ¢ of the
mesh. The maximum of the absolute value is searched for from the whole mesh.
To keep B as small as possible, the nodal parameter numbering should be
executed so that no large differences in the numbers should appear in an
element. Algorithms for keeping B small have been developed, as the solution
by a banded solver is the cheaper the smaller B.
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Gauss algorithm. The Gauss algorithm or the Gauss elimination method is
based on systematic modification of the equations by linear combinations so
that the number of unknowns gets smaller in the new equations until the last
equation contains only one unknown. After this the determination of the
unknowns takes place through consecutive substitutions.

Example 13.1. Let us consider the solution by the Gauss elimination method of the
equation System

4 0 —4 2] 4 —l
2 4 1 fayt=10 y 2)-1
1 -4 6.1lxy 1 {a)

having three unknowns. The first phase of the Gauss elimination method has been
already indicated. The notations mean that the first equation has been added mulliplied
by the factors —1/2 and —1/4, respectively, to the second and third equation. In this
way we obtain the next sysltem

4 0 =4 4
0 4 3 fjm(=12
1
10)

0 =4 7.l ()

The unknown g; has been thus eliminated from the last two equations. The essential
point for succeeding in this is that the corresponding element of the matrix, the so-called
pivot {tukialkio) — here the member ();; — is non-zero. If this is not the case, some
rearranpgement of the order of the equations or the unknowns has Lo be done before we
can proceed. The arrow in (b) shows the next slep in the Gauss elimination, which
produces the set

4 0 —4)[a)] [4
0 4 3 [jayf=1-2 ©
0 0 10lla;) I3

We have produced a so-called upper triangular set (ylakolmioryhmi). The steps used
can be called triangularization (kolmiointi). The back substitution (takaisinsijoitus) or
the fina! deterrnination of the values of the unknowns takes place using set (c) with the
following obvious formulas:

1
=—(8)=0.8
y 10()
a,=-i(-z—3-a3)=-1.1 (d)

a =-‘l?(4+4-a3 ~0-a;)=1.8

Let us further write down the matrices
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1 0 0 4 0 -4
[L]=|142 1 o), [U]=|0 4 3 (c)
114 -1 1 ¢ 0 10

The former is a lower triangular matrix whose diagonal elements are ones and the rest of
the elements are the pivols with negative signs used in the triangularization and put at
obvious positions. The lalter matrix is the matrix of the upper triangular system (c). For
reasons explained for instance in Kiveld (1980), we have

(x]=[L]{v] M
It is said that {f) is the LU-decompaosition (LU-hajotelma) of the original matrix.

By performing the calculations we see that the product

(4 0 -4

0 4 3

[0 0 10

1 0 0l[4 0 -4
[Lllv]=|t/2 1 ofl2 4 1 (&)

V4 -1 1)1 -4 6

s0 that the coefficient matrix of (a) is indeed obtained.

Using the notations of the above example, the Gauss algorithm is written often
in the form

[L{x}={}
[UNa}={x}

If the LU-decomposition is available, it is easy to determine {x] from the first
set (4) and then {a} from the second set (4).

(4)

The most popular solution versions based on the Gauss elimination method
used in connection of the finite element method are the band-, profile- and
frontal solvers (nauha-, profiili- ja rintamaratkaisija).

When using the band solver, the bookkeeping is based on the domain
determined by the half-bandwidth so that considerable economy is achieved in
connection with banded matrices, as the zero elements outside the banded
domain need not be processed.

As the name implies, the profile solver differs from the band solver in the
respect that the bookkeeping includes only the domain bordered by the profile.
The algorithm becomes more complicated bui it is much more efficient
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especially if the matrix contains only few columns having high column heights,
which thus determine the half-bandwidth (cf. Figure 13.1).

The frontal solver differs from the two versions above in an essential manner.
The elimination is started already during the assembly process and for
efficiency the numbering order of the elements, not the nodes, is of importance.
To see the main idea, let us consider Figure 13.2. Figure (a) shows the elements
1,2, 3, 4 and the global nodes 3, 6, 7, 8, 11. One nodal parameter is associated
with each node. We assume that the contributions from elements 1, 2, 3, 4 have
been assembled into the system matrix and into the column matrix. We obtain
the situation shown in Figure (b). The entries denoted by the letter symbols are
clearty fully assembled. The entries denoted by X have also obtained non-zero
contributions but have not yet been fully assembled, The equation associated
with the nodal parameter a5 is here the only one fully ready. This means that by
using it, a; can be eliminated from all the equations — the 3rd, 6th, 8th, 11th
equation — in which this variable is going to appear. Although these equations
are not yet ready assembled, the factors K3/ Ky, Kg /K3y, Kgp/Kqq,
K17/ K77 needed in the elimination, are known. The elimination thus means
the addition of certain terms on the rows 3, 6, 8, 11. The addition of the
contributions of the next element {(element 5) can mean that the equation
associated to a new nodal parameter has been fully assembled and again this
variable can be eliminated from the system. It should be noted that after the first
eliminated variable, the equations are in general no more the original system
equations but some linear combinations of them because the assembly and the
elimination (= formation of linear combinations) are mixed. The set of variables
present at each stage of the procedure is called sometimes the front or wave
front (rintamna, aaltorintama), which gives the name for the solution method. In
Figure 13.2 (a) the front is after the elimination of a; the set ay, gg,ag,a;;. The
bookkeeping takes naturally place differing from the presentation of Figure
13.2 (b} in a condensed form, which makes the algorithm rather comptlicated.

8

11

(a)
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Figure 13.2 (a) Part of a mesh. (b) Contributions from elements 1, 2, 3, 4 into
the system equations.

Remark 13.1. Above, a very brief description of the versions of the Gauss elimination
method used in connection with the finite element method has been given. For insiance the
references Bathe and Wilson (1976), Hughes (1987), Zienkiewicz and Taylor (2000) give
much important information on this theme. It should be noted that the triangulation or thus the
formation of the LU-decomposition is the most expensive part of the solution. After this has
been obtained, the solution for a possible new right hand side {b}, is using substitutions {4)

rather cheap. This can made use of for instance in the time integration described in Section
92.0

Remark 13.2. If the coefficient matrix is symmetric, all the versions discussed above can be
designed so that the symmetry is taken into account, which means that the algorithms get
more efficient. If the coefficient mawrix is positive-definite, it can be shown, Bathe and
Wilson (1976, p. 37), Lhat the eliminalion can be performed without pivot search in a fixed
order without danger of division by zero. Wilh indefinite matrices the elimination in a fixed
order can lead to a failure even when the matrix is non-singular. (0

Jacobi and Gauss-Seidel iteration. These are the simplest iterative methods.
Nowadays they are not often used as such alone but for instance as a part of a
multigrid method. In iterative methods a sequence of consecutive solutions
{a](o), [a]m, {a}m, -+ is generated which hopefully tends to exact solution

{a). To measure the convergence we must have a suitable norm. The most usual
one is the Euclidian vector norm

||{ﬂ}|| = (1'112 +a12 +-..+a3)h’2 (5)

Instead of the mere error it is usually more sensible to monitor the relative
dimensionless error using in theory the expression
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[{a)” ~{a}
T ©

E=

However, as the exact solution is in general unknown, in practice often the
measure

Jte)® ~ "]
"]

£E=

M

15 used.

Example 13.2. We consider Lhe sysiem of equations of Example 13.1:
4a +0-a;-4ay =4
2a +4a;+1a; =0 (a)
la,—4a, +6a, =11

whose exact solution is

{a}=[1.8 -11 o3 ()

We assume the reader to know the conlent of the Jacobi and Gauss-Scidel ileration. We
just describe their use in this example.

In the Jacobi iteration the obvious iteralion procedure is

1
ﬂlumn =H( _o_aék)+4a§t)+4)

1
ait*h - " (— Zal(“ - lagk) + O) (©)
ag“') = %(— la,m + 4a£l) +1 l)

In the Gauss-Seidel iteralion

en) _ 1 ) gk

a ]—Z( -0-a; +4a§)+4)

Ak _1(_2 (k+1) 1 40 d
p =2 (-2 -l1a§" + (d)

ag“') = é(-—-la{“” + 4a¥+]) +1 l)

The difference with the former version s just thal new information is used as soon as it

is available.
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Tables (a) and (b) show some results from calculations when the starling vector {alm)
has been the zero vector. In the evaluation of the relative error expression (6) has been
used where

Hal}={1.82 1.2 +0.8° )% w2256 ©

The Gauss-Seidel iteralion seems 1o converge; the Jacobi iteration seems not lo.

Table {a) Jacobi iteration

k a](k) aék) aék) E

0 0 0 0 1

[ 1.00 0.00 1.83 0.76
2 2.83 -1.87 0.12 0.65
5 2,25 -1.44 0.50 0.28
10 1.92 -1.23 0.75 0,082
15 1.90 -0.98 0.90 0.082
* 1.8 -1.1 0.8 0

*  Exact

Table (b} Gauss-Seidel iteration

| k ad a) aP £
0 0 0 0 1
1 1.00 -0.50 1.33 0.50
2 233 -1.50 045 0.33
5 1.980 ~-1.235 0.680 0.11
10 1.776 -1.082 0.816 0.015
15 1.803 -1.102 0.796 0.0018
* 1.8 -1.1 0.8 0
* Exact

A sufficient condition for convergence of the Jacobi and Gauss-Seidel iteration
is that the coefficient matrix is diagonally dominant (1ivistidjivaltainen), that is,
on each row
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¥ [kl <lKal ()

J=lj#i

In the case of Example 13.2 this condition is satisfied only in the equality form
in the first equation. However, in the Gauss-Seidel iteration it is enough for
convergence if {8) is given with the equality sign if at least one row satisfies (8)
with the inequality sign as is the case in Example 13.2. The Gauss-Seidel
iteration converges also if the coefficient matrix is positive definite.

In connection with the finite element method the Gauss-Seidel iteration has the
advantage that it is not necessary to assemble the whole system matrix and
column matrix at all as the evaluation of the terms Kj; a*) can be performed by
summation at the element level. A disadvantage is the uncertainty about the
convergence rate. Also, with a new right-hand side {b}, the previous solution is
of no help (see Remark 13.1). Convergence rate can be improved by using so-
called overrelaxation (ylirelaksaatio), e.g., Kiveia (1980, p. 228).

Remark 13.3. When expressions like (5) are used, one has to take care so that the terms have
the same physical dimension. (For instance, one cannot perform summation of nodal

parameter values consisting of say of velocily and pressure,) This can be laken into account
for example by writing instead of (5) say

112
H{a}[l = (n:'lal2 +eyal -k cpal ) ©)
where the positive factors ¢ make the expression dimensionally homogeneous, 00

Miscellaneous. Important solution methods, not discussed here, are projection
methods (projektiomenetelmd), multigrid methods (moniverkkomenetelmi),
element-by-element methods (elementti elementilti-menetelmd) and conjugare-
gradient methods (kojugaattigradienttimenetelmii). Reference Pitkiranta (1986)
gives a clear explanation of the multigrid method. Reference Reddy and
Gartling (2001) contains a detailed exposition of solution of system equations
in peneral.

13.1,2 Non-linear equations

Introduction. System (1) remains in the non-linear case in the form

{F{{a})}=10} (10)
which is often written also as

[k ({a}) {a}={r} (i1
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The latter formn — in which the non-linearity has been buried in the coefficient
matrix — is however not unique as is found in Example 13.3.

Remark 13.4. In this lext non-lingar continuum cases are linearized usually already at the
differential equation phase as described in Chapter 11. In this case the resulting algebraic
system equations are always linear. It is however instructive to consider the Picard method
and the Newton-Raphson method also here to see the similarities in the formulations wilh
those discussed in Chapler I1.0

Example 13.3. Lzt us consider the non-linear system, Faux and Pratt (1979, p. 299),

};]'Ealz+a§—4=0

EEala2—l=0 (a)

which is quadratic with respect Lo ils unknowns.

Form (11) can be represented for example as

P RN ®
I MEN @

Or as

]

Figure (a)

The graphs of (he equations in the a,a; - plane are shown in Figure (a). The first graph is
a circle with radius 2 centered at (he origin. The second graph is a hyperbola whose
asymptotes are the g, - and g, -axes. According lo the figure, the system has four
solutions. The point indicated by x is the solulion

T T
{a}=[@+V3)"%, -3 ] =[L932, 0.518] @

obtainable analytically.
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The example shows clearly that non-linear systems can have several — or no —
solutions. Which solution is possibly oblained depends often on the selected starting
vector in the iteration. The solution methods for non-linear systems are in practice
always iterative.

Picard method. Here the iteration takes place based on (11} in the form

| (a)®) Jfay* =6} )

Also the names fixed point iteration, direct iteration, successive approximation
are used in this connection. In certain cases — as in heat conduction with
temperature dependent conductivity — this kind of simple solution version
emerges almost by itself.

Example 13.4. We congider the solution of the system of Example 13.3 by the Picard
method,

We try to arrive at the solution (d) of Example 13.3:

{a}=[1932, 0.518] @
by taking as the starting vector for example

(&} =[2, 0] ®)

Forms (b) and (c¢) of Example 13.3 give the slarting sels

o ofal £ g
o o0 0

respectively.

and

The coefficient matrix of the latter set is singular and the calculations cannot proceed.

The calculations based on the former set proceed as follows:
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(-2
B

7 et

(2 S

[1.875 0533{ }‘5’ { } {1}‘5’ {1.991}
= = =
L O 1.87511a, I ) 0.533

The solutions seem lo accumulate al two different slightly erroneous points so the
ileration does nol converge. (The mean values a; = 1,933, a, =0.513, however, are here
near Lhe exact solulion.)

o m e W

The pessimistic end result found in Lhis example should not be feared too much. The
problem here is such that the coefficient matrix depends very strongly on (he updated
solution vector value; for instance at zero vector the coefficient matrix elements vanish.
In the applications of the finite element method the behavior is usually much milder.

Newton-Raphson method. This is the standard solution method in connection
with non-linear systems. Usually the name Newton method is used if only one
unknown appears; otherwise the name Newton-Raphson method is used.

Leat us consider the illustrative case of only two unknowns:

F](ﬂl,az)=0

(13)
Fz (a1,02)=0

Let the current approximate solution obtained by iteration be al(k) aék) which

should be made more accurate, Equations {13) are thus not satisfied and we
obtain the non-zero residuals

K9 =R {0

kY — k k
F( )_F (af ),ﬂ( ))

We develop functions Fj and F into truncated Taylor series and demand that
the resulting expressions vanish:
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(k) (k)
ﬂ“‘“’=ﬁ“"+(?] Agy+ (aF‘] Ay =0

a aa2
(k) (k) (15)
FikY = g0 +(%J Agy +(g%] Aay =0

In this way again a linear system now for the changes of the values of the
unknowns is obtained:

3F;13a, 3F 190, [8q W [R® G
anlaﬂl anlaaz A02 - Fz

The notations for the coefficient matrix and for the right-hand side mean that

they are evaluated with the current variable values n(k), aék) After the solution

of (16) has been determined, the updated variable values are obtained from

{a}** ={a}* + Afa}® a7

and the iteration can be continued until the error in some norm falls under a
given tolerance.

The generalization for several unknowns is obvious. The analogue of (16) can
be written as

1P a{a)® =-{F}® (18
where the coefficient matrix with entries

J; =3F; 1 3a; 19
is called in this connection again as the Jacobian matrix.

Example 13.5. We consider again the case of Example 13.3 now using the Newlton-
Raphson method,
Here

F]'aa|2+a% -4=0
E=aa,-1=0

(@)

50

(1=[ 2124 3R 10ay |_[20) 2y ©
an laﬂl an laaz & a)
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Taking the starting vector again as
{a}” =[2. 0] (©

the calculations proceed as follows:

4 0 a @ 0 a 1 0

A = = A =
0 2 [27) -1 a 0.5

(1} ()

4 1 025 -1/15

AL =a =a{Ml = ()
05 2 as 0 a 1/60

{a}(Z) =[29115, 31/6()]T =[1.933, 0.517]T

The solutions converge very fasl. The residuals are after two iterations
F® =000472, FE?=-000111 (e)

whereas in Lhe initial guess
;9 =2, =0 (f)

Miscellaneous. Application of the Newton-Raphson iteration means that
several consecutive linear systems with different cocfficient matrices have to be
solved. Because the execution of the LU-decomposition is expensive, the work
burden is often lessened by applying the so-called modified Newton-Raphson
method also called the secant method, chord method. This simply means that
the coefficient matrix is updated only now and then and not on each iteration.

A pood starting vector is important for attaining convergence. Often a problem
contains a parameter on which the non-linearity depends and grows with the
parameter value. (For instance the Reynolds number in fluid flow.) One can
then proceed so that first an approximate solution for a reasonable small value
of the parameter is determined. The solution obtained acts then as a starting
vector for a new problem with a higher value for the parameter etc.

13.2 EIGENVALUE PROBLEMS

The linear algebraic eigenvalue problem can be presented in the form

[k {a}=2[M [{a} (1)

axn  axl nxn  wxi
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The task is to determine the values A; of the unknown scalar A — the so-called
eigenvalues (ominaisarvo} or charaéteristic numbers or latent roots — and the
corresponding values {d}; of the column vector {G} — so-called eigenvectors
(ominaisvektori) or modes — for which the set (1) is satisfied. We have used
the notation {d} instead of the conventional {a} as often when using the finite
element method the components of {4} are not directly the nodal parameters of
the unknown function of the original problem.

This kind of problem emerges for instance in vibration and wave phenomena
after discretization. Reference Bathe and Wilson (1976) is a well-written
important textbook on the theme.

More specifically, problem (1) is called generalized eigenvalue problem
(yleistetty ominaisarvotehtivii). If matrix [M] is a unit matrix, we obtain a so-
called standard eigenvalue problem (tavallinen ominaisarvotehtivii):

[k}{a}=2{a} @

If matrix [M] is non-singular, one can transform the generalized eigenvalue
problem (1) into a standard form in theory by multiplication from the left by
[M]_1 and the algorithms available for the standard problems can be used.
However, if [M] is not diagonal, its inverse is no more sparse and one has to
operate with full matrices.

The solution of eigenvalue problems leads in practice always to an iterative
procedure. In principle we have first to determine the n roots A; of the

characteristic equation
det([K]-A[M])=0 (3)

This is a polynomial equation of degree n. (Closed form expressions are
available only for n<4.) For each A;we then have to solve the linear system
(1) for the corresponding eigenvector (a};. The practical algorithms in use are
however based on different lines of thought.

Eigenvalues and eigenvectors have an important role in many theoretical and
practical considerations, e.g., Crandall (1956).
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NOMENCLATURE cr continuity up 1o the mth derivative included

The most important notations used in the text are explained here. The symbols Latin symbols
used in the MATHFEM program are not included.

a; nodal parameter, nodal value
Sets A plane surface
c sink factor, heat capacit
0 set i
. . . . D diffusivity
{u:P} set whose typical member is u; statement P contains further explanation
R real number ! souree term
- i h heat transfer coefficient, mesh parameter
o union (yhdiste) ¢ .
. R . i convection flux vector
Ia intersection (leikkaus) d
& empty set i diffusion flux vector
€ is a member of k thermal conductivity
c is a subset of L linear operalor, length
v Forach L Lagrange interpolalion polynomial, length, area, volume coordinate
Ja.b[ open interval M bending moment, magnification factor
[a,b] closed interval n outward unit normal vector
. . N; shape function
Various integers q heat flux vectar
heat {low rate densi
n, number of elements 1 oW e 7
(4} shearing force
n, number of nodes .
r radius
Matrices R residual
§ curve lenglh, heat source rate per volume
[1 square or rectangular matrix S| curved surface
{} column vector (pystyvektori) t stress vector {traction)
[]T matrix transpose t time, thickness
-l L. T temnperature
(1 matnx nverse u,v,w  Cartesian velocity components
0T (arh’ = v velocity
(a) column matrix of nodal paramelers v volume
(1] column matrix of given quantities w weighting function
[K] coefficient matrix W, weight coefficient
/] Jacobian matrix X, ¥,z Cartesian coordinates
[M] mass matrix
Greek symbols
Error study
. o weight factor
11 absolute value, seminorm a, B,y coefficients
II-1l norm 8 variation symbol, Kronecker delta
(O] inner product o ] 1
e bilinear form poat ang e
a() 1 I functional
B() linear form
o stress tensor



given quantily, extension of Dirichlet data, with sets: closure (sulkeuma)

finile element interpolant to the exacl solution, dimensionless quantity

T sensitizing parameter

(] Lypical unknown function

@ trial function

P domain (alue)

3 closure of £2 = domain and ils boundary
r boundary of £2 (alueen reuna)
En.g natural coordinates
Superscripts

0F convection

0° quantity connected to eth element
0 reaction

() lime derivalive

(j material time derivative

O time rate of change of a non-state quantity
0 approximation, finite dimensional
0

0

o value on the +side

O value on the -side

Subscripts

Op Dirichlet

0L left

Om middle

Qn outward normal

On Neumann

(O 5 at constant pressure

Or Robin, right

Or at constant temperature

0. velocity

Og traction

0w free stream value
Miscellaneous

bt terms arising from boundary

Pe Peclel number

Re Reynolds number

N-3



10 THREE DIMENSIONS

Nothing new is needed on the theoretical level to extend finite element
procedures from two space dimensions to three. The computational burden to
solve practical problems naturally increases considerably.

10.1 SOME ELEMENTS

The elements in two dimensions extend in a natural way to three dimensions. A
triangle becomes a tetrachedron (tetraedri, nelitahokas) and a quadrilateral a
hexahedron (heksaedri, kahdeksantahokas). In fact, the elements and shape
functions can be extended analogously formally to four or more dimensions. In
all cases considered here, isoparametric mapping is used again to generate the
elements in the global space. The shape function expressions can be usually
detected rather easily directly by inspection using the logic explained in Section
32.1.

10.1.1 Tetrahedral elements

Four-noded element. Figure 10.1 shows a four-noded or linear tetrahedral
element (nelisolmuinen tai lineaarinen tetraedrielementti). It is the extension of
the triangular element of Figure 3.7.

5 n z
7 7y
(a) (b)

10.1 (a) Linear reference element. (b) Linear element in global space.

The independent natural coordinates are £€[0,1], n€[0,1], {€[0,1]. The
shape function expressions are

N=L=1-§-n-¢(
Ny=1; =¢
Ny=Lz=n
Ny=Ls=¢

Y

The formulas include the altermative forms in volume coordinates (tilavuus-
koordinaatti)

10-1
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v, v, V, v,
L1=T/1-. Lz=—vl, Lg=-‘3¢, L4=—‘j- @

These are defined quite analogously as in two dimensions: V is the volume of
the tetrahedron, V| is the volume of the subtetrahedron defined by the vertex
points P, 2, 3, 4 where P:(x,y,z) is the generic point inside the tetrahedron,
ete. L; can thus also be interpreted as a dimensionless distance of P from the
face 234 etc., (see Figure 3.8 for a comresponding interpretation). The volume
coordinates are not independent as they must satisfy the obvious condition

Liv+L+L+L =1 ()

The isoparametric mapping

x=X Nix;
y=Z Ny 4
z=2 Nz

is used to obtain the element in the global space (Figure 10.1 (b)).

Ten-noded element. Figure 10.2 shows a ten-noded or quadratic tetrahedral
element (kymmensolmuinen tai kvadraattinen tetragdrielementti). It is the
extension of the triangular element of Figure 3.9. One possible systematic node
numbering order differing from the logic of Figure 3.9 is shown in Figure 10.2.

(@)

Figure 10.2 (a) Quadratic reference element. (b) Quadratic clement in global
space.

Shape functions are for a typical vertex node
N =(24-1)L (5)

and for a midside node
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The element faces in the global space are no more planes in general.

Remark 10.1. We have not cared to number the element faces (tahko) here although this
would be naturally needed in actual calculations using a MATHFEM program type
formulation. O

10.1.2 Hexahedral elements

Eight-noded element. Figure 10.3 shows an eight-noded or trilinear
hexahedral element (kuusisolmuinen eli trilineaarinen heksaedrielementti). It is
the extension of the four-noded quadrilateral element of Figure 3.11. Often the
telling name "brick element"” is used for hexahedral elements.

!

Nar

AN\
/ 3

(a) : (b)

10.3 (a) Trilinear reference element. (b) Trilinear element in global space.

The independent natural coordinates are £€[0,1], n€[0,1], { €[0,1]. Using
the nodal numbering order of Figure 10.3, the shape function expressions are
M =(1-8}(1-m)(1-¢)
Ny =£(1-n)(1-¢)
Ny=En(1-¢)
Ny=(1-8)n(1-¢)

Ns=(1-€)(1=n)¢ v
Ng=E(1-n)¢

N,=En¢

Ng=(1-&)n¢

Again, the faces of the element in the global space no more remain planes in
general.
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27- noded element. The extension of the nine-noded quadrilateral element of
Figure 3.13 produces a 27-noded or triquadratic hexahedral element (27-
solmuinen eli trikvadraattinen heksaedrielementti). Extension of the eight-
noded Serendipity element of Remark 3.5 produces a rather popular 20-noded
hexahedral element. We do not consider these elements here in more detail.

10.1.3 Wedge eclements

In general, a great variety of different elements due to shape and node
arrangements are possible in three dimensions. Figure 10.4 shows as a further
example a simple six-noded wedge or triangular prism element
(kuusisolmuinen kiila-eli kolmioprismaelementti) .

10.4 (a) Six-noded wedge reference element. (b) Six-noded wedge element in
global space.

Again, the independent natural coordinates are §€[0,1], n€[0,1], £ el0,11.
The shape function expressions are
M= L (=)= (=€ -m)(1-C)
Ny=L(1-¢)=¢(1-¢)
Ny =Ly(1-¢)=n(1-{)
Ny=L{=(1-§-n)¢
Ns=L,{=¢C
Ne=L{=nC

(8

where now the notations L,, I, L, refer naturally to the area coordinates
(3.2.2).

Reference Zienkiewicz and Taylor (2000), for instance, contains additional
collections of three-dimensional elements.
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10.2 APPLICATION (unfinished)

We consider the comner region formed by three perpendicular walls (Figure 10,
5). The walls are all of constant thickness ¢ and of homogeneous material with a
constant thermal conductivity k. Convective heat transfer is taking place with

equal heat transfer coefficient A =h* =h" on the inside and outside surfaces.
The inside and outside air temperatures are T2 and TZ.

() X () x

Figure 10.5 (a) Comer region. (b) View from the positive z-axis direction.
(c) View from the negative y-axis direction. {d) Section z=constant,

02 z>-t.{e) Section z=constant, —f>z=-3r.

It is assumed that the walls extend from the comer to a considerably length
without no change in the conditions. Based on the resulting symmetry, the
wegdelike computational domain with triangular bottom ABE and a triangular
top OCD is considered. (This domain contains some volume without material).
In fact, due to symmetry, a smaller domain could have been taken but as this is
difficult to visualize, we are satisfied with the domain described. To explain the
situation in more detail, we give the coordinates of certain points indicated in
the figure in the following Table 10.1.

The mesh consisting of 777 elements is shown in Figure 10.6 corresponding to
sections shown in Figures 10.5 (d) and (e).

10-6 10.2 APPLICATION

Table 1.1 Coordinates of some points

Point x y z
0] 0 0 0
A 0 0 =3¢
B 3t 0 =3t
C 3t 0 0
D 3t 3t 0
E 3t 3t =3
F fs t -1

7
Figure 10.6 (a) 727, (b) 277

The standard weak form to be used here is (isotropic thermal conductivity and
Zero source term)

ow, 0T ow dT  ow, oT
ow 9T W S gy R(T-T.)dS =0 1
I»{ax oy oy & az) o, wh(T-T2) M

Surfaces consisting of parts of planes x=3t, z=-3t, y=x are Neumann
boundaries with g =0, On plane y=x this follows from symmetry and on the

two other planes it is assumed that the heat flow in the wall is already mainly
one-dimensional, that is, perpendicular to the wall. Thus the surface integral
over the Neumann boundary in the standard weak form is missing in (1). The
inside surfaces y=t, z=—¢ and the outside surfaces y=0, z=0 are Robin

boundaries. There is no Dirichlet boundary in this problem.

In the one-dimensional case far from the comer, the temperature distribution is
schematically according to Figure 10.7.

Figure 10.7 One-dimensional temperature distribution in the wall.



10.2 APPPLICATION 10-7
Analytical calculation gives the corresponding wall surface temperatures

T+=T:—2+::rlk(T:_T;)

T =12 +2+—’1M;(T; —T;)

2)

We take the following data; t=0.20m, & =05W/(m-K), A=10 W:’(m2 -K),
T =20°C, TS =-10°C. From formulas (2):

T'=15°C

T~ =-5C

&)

The temperature distribution obtained by the finite element method on the
outside surface part ABCD in Figure 10.5 (c) is shown in Figure 10.8. As
expected, the surface temperature is lowest at the comer. Some comments on
the results could be made. From symmetry, the exact solution, say at points D

and B should be equal: Ty, =Ty . Finite elements gave Tp, =777, Ty =177?. Also,
for the Neumann boundary condition g=0 to be realistic on faces x=3¢,

z=-3¢, we should obtain Tp =Ty =T~ =-5"C. This is seen to be rather well
satisfied 7.

7

Figure 10.8 Temperature distribution on the outside surface part ABCD by the
finite element method. '
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APPENDIX A GENERAL DIFFUSION-CONVECTION-
REACTION EQUATION

A.l SOME DEFINITIONS

The equation to be studied is of the form

53 2) ) 4 5
§+V-(—D-V¢)+V-(v¢)+c¢ -f=0 (1a)

or using Cartesian coordinates and the summation convention

30 a{ 3

qaxj

]+£:-i—(v;¢)+c¢— £=0 (1b)

ot +5;,-”

Function ¢(x,t) or ¢(x;,#) is the unknown to be determined for position
xe Q=QuUT and for time ¢ [0,7). This kind of equation — or at least a
closely similar one —— is found to be present in various applications of
continuum mechanics when the Eulerian description is employed, as is usual in
fluid mechanics. The equation is called here the general diffusion-convection-
reaction equation (diffuusio-konvektio-reaktioyhtils) (later D-C-R equation).
We will discuss first separately the five terms indicated in equation (1). The
formulas are given both in symbolic form (to help to reference to literature) and
in index notation in Cartesian ccordinates (for hopefully increasing the
readability).

(1} Unstationary term (epastationaarisuustermi) o¢/dr. Another name is the

unsteady term or the time derivative term. If this term is zero (and if further the
boundary conditions do not depend on time) the solution ¢(x) does not depend

on time and we have the so-called stationary (stationaarinen) or steady (pysyvi)
diffusion-convection-reaction problem,

(2) Diffusion term (diffuusiotermi) V«(~D.V¢). D is the so-called
generalized diffusivity tensor (diffusiivisuostensori). It is usnally symmetric.
Sometimes the notation

. o
=DV,  j=-Dt @
4

is used. jd is called the diffusion flux vector (diffuusiovuovektori). Actually

expression (2) is the most usual type of constitutive relationship assumed for
the diffusion flux, c.f. for instance the Fourier law of heat conduction. If D is

A-1
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isotropic, that is, D=DI or D,J,-=D6,-J-, where D is a scalar, I the identity

tensor and 6,3,- the Kronecker delta,

, . 0
Jd=—DV¢, _,151_—._ _a.g (3)
X

The diffusion term gives the transfer of a quantity ¢ due to microscopic

processes through a medium even if it is at rest, say heat transfer due to
conduction.

(3} Convection term (konvektiotermi) V.(v¢). This is also called the

advection term (advektiotermi). Quantity v is the flow velocity vector of the
medinm. Sometimes the notation

F=v¢, Jji=ve 4

is used. j° is called the convection flux vector (konvektiovuovektori). The

convection term is generated as the continuum transfers with velocity v the
quantity ¢ bounded to its particles. The convection type term is typical in fluid

mechanics but appears seldom in solid mechanics when the Lagrangian
description is used in the latter.

(4} Reaction term (reaktiotermi) c¢. This name has it basis in chemical

reactions producing this type of term. Often the source term is not strictly a
given quantity, but may contain the unknown function. A linear expansion
around the current value gives a reaction term. It may be mentioned that the part
“"reaction” is rather seldom used in the name of the D-C-R equation even if it is
contained in (1). Sometimes the name generalized sink factor (yleistetty
nielutekijd) or absorption coefficient is used for ¢. Turbulence model equations,
the Coriolis force in momentum equations written in a rotating frame and
equilibriurn equations for elastic materials on elastic supports are further
examples of cases containing the reaction type term.

(5} Source term (lihdetermi} f. As indicated above, in addition to being a given
forcing function, some "inconvenient terms are often buried"” in the source term
which is then updated iteratively during the solution process. The source term is
often called also the forcing term (herdtetermi).

Using notations (3) and (4), we can now represent the D-C-R equation for later
purposes simply as

o¢ «d - 3¢ aif  of
—+V. Ve ~-f=0 —t =L =4 S
5 +Vej +Vej +cp-f ” +ax,- +ax,- +cp—f=0 (5)
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The conventional boundary conditions (reunaehto) in connection with the D-C-
R equation are

cp=$ on I'p
=7 on I'y (6)
j®=ap+b on I'y

where 5 ,}Td, a, b are given functions of position and time. The term

j*=nej'=-n.D.Vg=n, 'f=—n.'D;,-§—¢ 0

X
where n is the unit outward normal vector to the boundary, may be called the
diffusion flux density (diffuusiovuotiheys). Parts I'y, I'y, I'p form together
without gaps or overlaps the whole space boundary I'. The notations are
similar to those used in Chapter 3 in connection with heat conduction. The
Dirichlet and the Neumann boundary conditions are seen to be obtainable as
special cases of the Robin condition. To keep some of the formulas as basic as
possible, the constitutive relation (2) should preferably be substituted as late as
possible.

In the unsteady case the distribution of ¢ in 2 at the initial instant of time
must also be given:

o(x,t)=pp(x} at t=0 (8)

This is called the initial condition (alkuehto).

Remark A.1. The D-C-R equalion obtains many variations in outlook if the material (time)
derivative (ainederivaalta, aineellinen aikaderivaatta, substantiaalinen derivaatta) expression
in the Eulerian description

Df(x,r)=a_f+v'vf Df {x,1) _3f , , of

Dr or Dt ot "a_x,- ®)

for a general function f of position and time and if the conlinuity equation (see (A.2.1)),
obtainable from the mass conservation principle, are made use of. [0

Remark A.2. The convection term appears often in a modified form, which follows from the
vector calculus identity

Ve(v@)=v.Vo+(V.v)p, %(Vi¢)= v,--g%+-g%¢ (10)

The D-C-R equation can thus be written equally well as
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aa_f+v.(_D.V¢)+v.v¢+E¢—f=o an

where € now may contain the term V.v. Especially in an incompressible flow
{(kokoonpuristumaton virtaus) situation, where V. v =0, the convection term can be writen
thus also as v.V¢@ oras v; d¢/dx; alsoin (1).0

Remark A.3. Equation (1) appears in the literature frequently in such a form, that ¢ is
replaced in the unstationary term and in the convection term by pg:

d

E(,pl,pr)+V.(—D.Va;t)+V.(v,c;n,«)+cn,y—f=() (12)
We have employed here the notation ' for the unknown function to emphasize the difference
in form. This increases the number of different versions still more. [0

Remark A.4. Fluid mechanics problems usually consist of several simullaneous D-C-R type
equations where in each quantity ¢ has a different physical meaning and the solution must be

found from a system of coupled partial differental equations. One solution strategy is,
however, at least as a thought experiment to try to solve each ¢ from its "own" equation
considering then the other unknowns temporarily as given. As the equation system is usually
nonlinear especially due to the momentum equations, one has in any case to use an iterative
solution method, and thus this way of thought is quite natural. In any case one can learn much
by studying qualitatively the behavior of the solution of a typical scalar D-C-R equation. It is
obvious that the nature of the solution must depend on the relative magniludes of the
convection, diffusion, and reaction terms. [

A.2 SPECIAL CASES

Next the continuity equation, the energy equation, and the momentum equations
are considered as special cases of the D-C-R equation.

Continuity equation (jatkuvuusyhtild) is

§£+V-(pv)=0, ——+=—(pv;)=0 ey
ot x;

Comparing with (A.1.1) we have
pep, j'=0, c¢=0, f=0 2)

Energy equation (energiayhtild) is for example in the mechanically incom-
pressible case (see Section 6.1.1)

pcp[aa—f+v-VT]=V-(k-VT)+s+(D (3a)

or
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pcp[a—T+ .BT] g (k' &) ]+s+d5 (3b)

o ||

where T is the temperature, ¢, the specific heat capacity at constant pressure, k

the heat conductivity tensor, s the heat source rate per volume, and @ the
dissipation function. If the term pc,, is assumed to be constant in space (if not,

the source term obtains some extra terms), we obtain further

-a£+v{- k -VT}+V-VT—S+¢=O @)

at pc, pep
Comparison with (A.1.11) gives the interpretations
k s+

¢&T, D2\ T=0, f2
pe, pey

()

The dissipation function depends on the velocity field, and thus increases the
coupling between the temperature and velocity.

%(pv)—V-o’+V-(pvv)+Vp—-pb=0 (6a)
or

*a—(pv- —Ei+-a—(pv-v-)+§€-pb-=o (6b)

dat ! axj axj s Bxl !

where o is the deviatoric stress tensor, p the pressure and b the specific body
force. Comparison with (A.1.12) gives the interpretations

yev, j'2-o", ¢=0, f2-~Vp+pb )]

The deviatoric stress tensor is not exactly of the form D+ Vv, but in any case it

depends on the space derivatives of v contrary to the convection flux j* =p vv
thus giving rise to second order derivatives in the field equation. It is realized
that to consider equation (6) linear with respect to v, we have to represent the
tensor product in j°, say, in the form ¥v where ¥ is assumed to be known from
a previous iteration.

A-6 A.2 SPECIAL CASES

Comparison of the terms in the D-C-R equation with form (A.1.1) or (A.1.12)
shows that for example the quantities D;,9¢/dx; and vi¢ or Dy, dy/dx and

pwy , correspondingly, must have the same dimension. Thus we can infer that

pe=2L| o pe=2¥L ®)
D D

the Peclet number ( Peclet'n luku), is a dimensionless quantity, which measures
in some sense the relative magnitude of convection with respect to diffusion.
Quantities v, L, and D are agreed characteristic speed of flow, linear measure of
the domain and diffusivity of the medium.

No diffusion is present in the continuity equation (1} and thus Pe=e=. In the
energy equation (4), Pe=vLpc,/k, where k is a characteristic heat
conductivity. In the momentum equations (6) the diffusivity is represented by
the coefficient of viscosity g and the Peclet number is seen to represent the
Reynolds number Re=pvL/y.

It is illuminating to consider the extreme cases Pe=oco and Pe=0. (For
simplicity we start in the following in the steady case.) In the former case
diffusion disappears completely in comparison with convection and we obtain
the pure convection equation (puhdas konvektioyhtild). In the latter case
convection disappears completely in comparison with diffusion and we obtain
the pure diffusion equation (puhdas diffuusioyhtiils). The order of the D-C-R
equation drops by one when the limit Pe =< is reached. This fact has its effect
also on the boundary conditions available.

A.3 QUALITATIVE BEHAVIOUR

The direction of the flow field with respect to the boundary is significant from
the boundary condition point of view especially at the limit Pe=e. The
boundary is divided (Figure A.1) into the inflow boundary (sisiinvirtausreuna)
I'_, the neutral boundary (neutraali reuna) I'z and the outflow boundary

(ulosvirtausreuna) I, according to
r_={x:xeI',n-v<0}
Iy={x:xeI',n.v=0} (H
r,={x:xel,n.v>0}

Quantity n.v is the velocity component in the normal direction to the

boundary positive in the outward direction. The meaning of the terminology
used is thus understandable. The neutral boundary appears for instance with
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real fluids for stationary solid walls (the velocity vanishes) and with ideal fluids
also for stationary solid walls (the velccity is parailel to the wall).

Figure A.1 Some notations.

For easy graphical visualization we shall consider next the steady D-C-R plane
case (Figure A.1) with x; = x, x; = ¥, ¥, = u, v; = v. Equation (1b) obtains
the form

d d¢ dpy) 3 9¢ d¢
~2lp 2ip 22|-L|p, 2fyp 2P
Bx( =3 ‘yay] ay{ " ”ay)

d d

+—(up)+—(v)+cp~f =0 2

3x“)+3 (W) rep=f @
The pure convection equation corresponding to this is

d d

il Tl —f= 3

35 10)+ 5, (%)= F =0 3)
or by expanding the derivatives,

d¢ d¢ {du ov

Lyt 4| —+—|p-Ff=0 4

35 (ax ay]cb f )

Let us consider the form this equation obtains on a certain streamline. Let the
unit vector in the direction of the selected positive arclength s direction on the
streamline be e (Figure A.1). Thus

u=ev, v=ey (5)
where v is the scalar flow velocity positive in the e-direction. On the other

hand, the derivative of ¢ in the direction of e is by vector calculus
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3¢ V¢=e,a—¢+ 99

—_—e — 6
de ¢ ox % dy &
50 that the term
d¢ 0d¢ _[ J¢ 3¢ __a¢
u—a'—x+v§;=v(e't$+ey$ —V—a-; (7)

The pure convection equation on a certain streamline has thus the form (we
denote d¢/de=d¢/ds)

TR
vds+(ax+ay]¢ £=0 (8)

When we consider — as agreed — the velocity field and the source term as
given in £2, we in principle know them on the streamline as functions of s.
Thus the steady pure convection equation is an ordinary first order differential
equation on a streamline. The independent variable is the arclength s along the
streamnline {or some other suitable curve parameter). This result is of course
valid also in three space dimensions. In one dimension the, say, x-axis is the
streamline and x is the arclength. It may be mentioned that the inclusion of the
reaction term c¢ in (8) would not clearly change the conclusions obtained,

The pure convection equation is classified in mathematics texts as a hyperbolic
equation and the streamlines are called characteristic curves. The quantity ¢ is

determined on a streamline in principle from the solution of the differential
equation after the value of ¢ is given at one point somewhere on the streamline.

For physical reasons this point is on the inflow boundary I'_. Thus the
boundary condition for the pure convection equation is simply

9<% onTl_ ©)

On the rest of the boundary no boundary condition is needed or in fact no
condition can be given.

On the basis of equation (8) we can say that in the pure convection equation
"effect or information is carried only in the streamline direction”. This is easiest
to see in the incompressible case ou/dx+dv/dy=0 and when f =0. Equation
(8) obtains the form d¢/ds=0 or simply ¢ =constant on a streamline. Figure
A.2 gives a typical qualitative solution for the geometry and flow field of
Figure A.1. If ¢ would be completely discontinuous, the corresponding jump
would also propagate into the domain without any smoothening.
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Remark A.5. If there are conltrary to Figure A.l closed streamlines inside the domain, an
imaginary cut crossing each streamline once must be drawn and the value of ¢ given on one

side of the cut for ¢ to be delerminate in the whole domain. O

Figure A.2 A qualitative solution for the pure convection equation.

The pure diffusion equation corresponding to (2) is after a change of sign

] d¢ 99, d 29 d¢
2ip. 22.p 2+ (p, 22+p 22|+ f=0 10
ax( '“3x+ "”ay] ay( ” ox ”ay] f (10)

Further development gives (D, =D}

3¢
D —+2D
T =

3% ¢ .
Bxay+D”-E_)-y_i-+f =0 (1)

where some terms have been buried in

0Dy, % . aD,, . oD,
dy Jox dy ox
It is seen that if the diffusivities vary with position, in fact some convection

type terms emerge. According to mathematics texts, (11} is an elliptic
differential equation-if, Crandall (1956, p. 355)

]-a—g (12)

LI aDR
f _f+[ ox * dy

(2D1)')2"4DHDY?=4(D3y_D-uDyy)<0 (13

For physical reasons the diffusivity matrix [D] is vsually positive definite so
that, Crandall (1956, p. 15)

A-10 A3 QUALITATIVE BEHAVIOUR

det(D)=D,D,, - D%, >0 (14)

The inequality (13) is then valid and thus the steady pure diffusion equation is a
second order elliptic partial differential equation. Boundary conditions must be
given on the whole boundary I . The inclusion of the reaction term in (10)
would not change the conclusions obtained. Boundary conditions {A.1.6) can
all be used. The steady heat conduction preblem is a standard example leading
to a typical pure diffusion equation.

Let us consider as an illustrative special case the Poisson’s equation

3% 3% f
92 9y* D Sl

which is obtained with an isotropic and homogeneous diffusivity. This equation
is known to describe for instance the behavior of a stretched membrane where
¢ is the (small) transverse displacement of the membrane due to the transverse

loading per unit surface f (and due to the given boundary displacements) and D
the uniform tension per unit membrane length.

Figure A.3 A qualitative solution for the pure diffusion equation.

Figure A.3 shows a rough sketch of the type of solution to be expected for the
pure diffusion equation with Dirichlet boundary conditions on the whole
boundary. The same non-smooth distribution has been taken for the boundary
I'_ as in Figure A.2. At least with the interpretations in connection with (15), it
is easy to see intuitively that the solution smoothes all irregularities possibly
present in the boundary data. It is also obvious that in a longish geometry as in
the figure the boundary conditions at I”_ cannot have much influence on the

solution far from I"_. In other words, the solution is determined more or less by
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the boundary data nearest to the point in question. This behavior is completely
different in nature from that corresponding to the pure convection equation
where the inflow data is transferred undiminished into the solution domain.

On the basis of the discussion above it is apparent that the solution for a general
D-C equation must be roughly some kind of weighted average of the solution
for the pure convection and for the pure diffusion equation. The actual value of
the Peclet number has an essential effect on the end result. When Pe# oo,
boundary conditions (A.1.6) must be given on the whole boundary.

r. =
= 1
r"".. ¢ " =
D
it
¢ T
¥ ~
e r
= - r, I;'p

Figure A.4 A qualitative solution for the diffusion-convection equation.

A possible type of solution for a moderate value of the Peclet number has been
sketched in Figure A.4. Dirichlet boundary conditions have been assumed on
the whole boundary and the data on the inflow boundary is the same as in
Figures A.2 and A.3 and on the rest of the boundary the data is the same as in
Figure A.3. The nature of the solution can be understood by a simultaneous
study of Figures A.2, A.3, and A.4. The solution in the domain must resemble
the more the solution of the pure convection equation the higher the value of
Pe. The solution, however, has to satisfy the boundary conditions on I'z and

I', not present in the pure convection probiem. This means that ¢ must alter its

values with large gradients in the neighborhood of these boundares; a
boundary layer (rajakerros) is generated. The boundary layer concept is naot
confined to the velocity components, for which the phenomenon is perhaps best
known, but in principle any of the dependent quantities such as temperature or
concentration of a species can show a similar behavior. As the gradients
perpendicular to the boundary layer are large so is also the diffusion (the second
derivatives must also obtain large values). Thus for instance in connection with
the flow field the diffusion flux in the boundary layer — essentially the same as
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the shearing stress — cannot be neglected if realistic results are to be expected
even when the layer is very thin.

When numerical methods are employed, one must be prepared to model
boundary layers either with dense meshes or by basing the model to some
theories taking in advance into account the properties of the boundary layer.

Remark A.6. Diffusion tends to smooth possible irregularities in the solution. In longish
geometries in the flow direction the boundary layers have time to get thick duc to diffusion
and they can finally fill the whole flow ficld. The term crosswind diffusion or false diffusion
(poikkivirtadiffuusio, valediffuusio) is often used in connection with numerical methods. This
means shortly a harmful phenomenon in which diffusion type resuits are obtained due to the
numerical procedure even in pure convection problems. Faise diffusion takes place when the
flow direction is oblique to the grid lines and when simultaneously the dependent quantity has
a non-zero gradient component perpendicular to the flow direction, Patankar (1980, p. 108).0

Remark A.7. The Dirichlet type boundary condition on the outflow boundary I, — as used

for demonstration purposes in connection with Figure A.4 — is for physical reasons not very
sensible when the Peclet number is relative large. In fact the flow field carries the unknown
with it and we usually have no realistic basis to prescribe meaningful Dirichlet data on the
outflow boundary. A rather standard way is to assume that the diffusion flux is small
compared to the convection flux and to employ the Neumann condition {A.1.6) in the form

j9 =0, This kind "soft" boundary condition is not so demanding on numerical methods as
the *hard" Dirichlet condition as the exact solution behaves then usually smoothly in the
neighborhood of ", .0

The steady pure reaction equation (puhdas reaktioyhtild)

a0

is no more a differential equation and we can solve it directly for ¢:

o= an

If boundary data is given, it has no connection with the field equation. If f is
discontinuous, so is ¢. In practice there is always some amount of diffusion
present making the solution continuous. Figures A.5(b) and (c) show the
corresponding solution behavior in one dimension. Boundary layer and internal
layer (sisdkerros) type solutions can thus again emerge and difficulties with the
numerical solution are to be expected.

A study of equation (A.1.1) shows that the dimensionless quantity

cI?
Ce=— 18
D (18)
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measures in some sense the relative magnitude of reaction with respect to
diffusion. Quantities ¢, L, and D are agreed characteristic sink factor value,
linéar measure of the domain and diffusivity of the medium. It seems that
quantity (18) has no settled name in the literature, so we will call it the Cecler
number (Ceclet'n luku) by inventing an imaginary person with a name similar to
Peclet.

f

(c) \J R

Figure A.5(a) Discontinuous source term. (b) A qualitative solution for the
pure reaction equation. {¢) A qualitative solution for the diffusion-reaction
equation with large reaction.

We have this far considered the D-C-R equation without the unsteady term.
Completing equation (A.2.2) in this respect, we obtain

|
o9 3t 9, 9 3
Lt —(up }H+— +cp—f=0 19
3 e oy ety (W)l f (19)
where the diffusion terms are expressed using shortly the flux vector notations.
Employing a little bit of imagination this new situation can be represented
alternatively as follows:

yt at 3=0) 3, 3, . 3 _
T T a9y 0y @)ra-f=0 @O

A-14 A3 QUALITATIVE BEHAVIOUR

The idea is to try to make use of what we have learned earlier in connection
with the steady two-dimensional D-C-R equation. We now have a three-
dimensional "steady” D-C-R equation having "streamlines” in the xyt-space
with the velocity field (,v,1). The diffusion flux component is zero and the
velocity component is 1 in the time direction. This interpretation can be useful
say for instance as follows. Maybe we have devised a well behaving numerical
method for the true steady case. We can immediately try to use the same kind of
method also in the unsteady case by just considering time as an additional space
coordinate.
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APPENDIX B INTEGRATION BY PARTS
B:1 ONE DIMENSION
Q

— {
r

a b =x

Figure B.1 One-dimensional domain (2 =]a,b[ and its boundary I" ={a,b}.

The one-dimensional integration by parts formula can be written as (Figure
B.1Y)

b dh b dg b
, g de=[ K hde+| gk (1a)

or using more general notation as

L}gad!) —Ia%hdﬂ+]jgh (1b)

Functions g(x) and h(x) must be C° functions or smoother in {2 = [a,b] (cf.
Remark B.1).

Remark B.1. Following roughly the definitions in Belytschko et al. (2000, p. 27), a c?
function {or shortly C function) is continuous and its derivative is al least piecewisely

continuous. In one dimension the derivatives of C? functions can have discontinuities or
jumps in their valvues at separate disconlinuity points, in two dimensions at separate
discontiouily lines and in three dimensions at separate discontinuity surfaces. Between the
discontinuities, however, we assume that the functions are smooth enough to posses as high
order derivatives as we like. Similarly, a ¢! function is itself only piecewisely continuous. A
€~ function can have in one dimension Jjumps in its value at separate discontinuity points, in
two dimensions at separate discontinuity lines and in three dimensions at separate
discontinuity surfaces. Again, between the discontinuities, however, we assume that the
functions are smooth enough to posses as high order derivatives as we like. Further, we define

a C™ function similarly as above so that it togelher with its first m derivatives is continuous
and the derivatives of order m—1 can have jumps. Finally, notation like fe C or in more

detail f e C(£2) or f € C(£2) means that fis a C function. In the later notations the domains
of definition for f are indicated. 0

Formula (1) is based on the basic formula — called the fundamental theorem of
calculus —

[} Lax=| 1=1(6)- £ (a) @

B-1
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JF(x) must be here a C? function or smoother. Integration of the identity
(product rule of differentiation)

—(gh)=—"h+g— (3)

over £2 gives

j 2 (ghyar=" S hdx+j" P 4x @

Application of rule (2) for the integral on the left-hand side leads to formula (1).

B.2 TWO DIMENSIONS

- r

X
Figure B.2 Two-dimensional domain {2 = A and its boundary ' =3s.

The two-dimensional integration by parts formulas can be expressed as (Figure
B.2)

g%’idA_— Agg =Ehda+[ ghn,ds
s (1a)
J’A ay ayhdA+j ghn,ds
ar as
[,e %’-‘- Q=-[ aghd9+j' ghn dI’
(1b)
—dQ—— 28 hd2 + ghnydl’
fos2ioa=rf, Braa ],

Functions g(x,y) and h(x, y) must be again C? functions or smoother.

Formula (1) is based on the so-called divergence theorem or Gauss's theorem in
the plane:
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jgfcmjfdr

— 2}
o (
J'Q-B;cm = [ fnydl
derived in mathematics texts, Integration of the identity
a oh
—( h)—-—‘g-h+ga 3)

over £2 gives
_[ (gh)d.Q _[ hdrz+j —d.Q @)

Application of the first formula (2) to the integral on the left-hand side gives the
first formula (1) and the second formula can be obtained similarly.

B.3 THREE DIMENSIONS

)
: Q
s -

Figure B.3 Three-dimensional domain £2 =V and its boundary ' =5 .

For shortness we employ here the index notation. The formulas are direct
generalizations from the two-dimensional case. The integration by parts
formulas are (Figure B.3)

g—dv_—j ag hdv+j ghnds (1a)

or

oh

3
o083 dQ_—_[ 3hdﬂ+j ghndl’ (1b)

The Gauss's theorem is

C-3
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Ingfdﬂ J' fndl (2)

Remark B.2, Actually (2) represents the Gauss's formula for one component of a vector.
Thus by replacing f with f; and by letting the summation convention be valid we oblain

j L dﬂ j fimdl (a)

or using symbolic notation
Jov-fa=[ n.far (3b)

This form is usuaily called the divergence theorem. [

Remark B.3. In the one-dimensional case the formulas look a Iittle bit untidy because there
appears plus and minus signs in the boundary terms; see for instance formula (B.1.2).
However, in this case the boundary consists of just two separate points and we can consider
the unit outward normal vector n to have the component +1 at the right-hand boundary and
the component —1 at left-hand boundary. With this interpretation we see that also the one-
dimensional formulas are special cases of the general formulas (1) and (2). 0



APPENDIX C SOME CONCEPTS OF FUNCTIONAL
ANALYSIS

C.1 INTRODUCTION

Functional analysis (funktionaalianalyysi) is a part of mathematics dealing with
"spaces”. The basic idea is to consider functions as points or vectors in infinite
dimensional spaces.

u,v

(a) (b)
Figure C.1(a) Two functions. (b) Two vectors.

Let us consider the functions u{x) and v(x) in Figure C.1{a}). A very rough
discrete information of u and v is obtained, say by dividing the interval (a,b]

into three equal length subintervals and by measuring the function values at
their midpoints. A function is represented then by three values; u by u;, i3, i3

and v by v, v;, v3. We now associate a Cartesian coordinate for each

subinterval and put the function values along these coordinate lines. Two points
or vectors u=(u),ly,u3), V=(¥,v,v3) represent these functions in some
crude manner in this new three-dimensional space (Figure C.I(b)). If we
increase the number of subintervals and proceed similarly, we cannot any more
draw a picture of the space generated, but we can still speak about the set of
discrete numbers as a vector in a finite dimensional space (d4rellisdimensioinen
avaruus). Continuing without limit leads us to speak about a function as a
vector in an infinite dimensional space (ddretondimensioinen avaruus) or
shortly function space. The set of discrete nodal values of a finite element
simulation of a function can clearly also be given an interpretation of the type
described in Figure C.1.

Many concepts in functional analysis can be considered as generalizations of
familiar concepts of ordinary geometry.

In what follows we borrow heavily from Reddy (1986) and Hughes (1987).
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C.2 LINEAR SPACE

A set V is a linear space (lineaariavaruus) if it has an operation called addition,
an operation called multiplication by a scalar (real number) and it satisfies
certain axioms, Reddy (1986, p. 45).

Here we do not present the axioms. The basic property is that if u and v are two
members of a linear space V, that is, u,v€ V, then the quantity ot + Sv, where

o, B € R, is also a member of the set, that is, ot + fve V.

An example of linear space is the set V={u:m(x)e C(£2)xeQ}.
Alternatively, this set is often denoted C(£2} and called C(£2) space. Similarly,
if the domain is closed, we have C() space. In one dimension the
corresponding spaces could be notated, say by Cla,b[ and by Cla,b]. As an
example, function 1/xe C]0,1[ but 1/xe C[0,1] as }/x is not continuous at
x=0.

The set V = {u:u(x)e C(£2), u(x)20,xe Q) is not a linear space. For instance,
au(x) is not 2 member of V for negative values of .

C.3 INNER PRODUCT

Let V be a linear space. The inner product or scalar product (sisitulo,
skalaaritulo) (u,v) of u,veV is a mapping VXV — R, that is, it associates a

real number with any two members of V, satisfying the following properties

(#,v)=(v,u) (symmetry)
(o + Bv,w)=a(u, w)+ B (v, w) (linearity) (0
(4,4)20 and (u,u)=0 iff u=0 (positive-definiteness)

forall u,v,weV and o,B€R.

An example in V = R satisfying these properties is the conventional dot or
scalar product

(X,¥)=X.¥ =Xy + Y2 + X33 (2)

of two vectors X = (x,x3,%3) and ¥ ={y, y2.¥3)-



C.3 INNER PRODUCT  C-3

A linear space V on which an inner product has been defined is called an inner
product space (sisiituloavaruus).

If
(u,v)=0 )]

the two members # and v of an inner product space V are said to be orthogonal
{ortogonaalinen).

For an inner product the following important result

](m,v)iS(ut,u)”l(v,v)”2 (4

called the Schwarz inequality (Schwarzin epiyhtild), can be shown to be valid.
The Schwarz inequality is a generalization of the familiar result |x.y [<|x||y|
from vector analysis.

C.4 NORM

Let V be a linear space. The norm (normi) ||| on the space V is defined to be a

mapping V — R, that is, it associates a real number with any member of V
satisfying the following properties

Ju]=0 and [u]]=0 iff u=0 (positive-definiteness)
|| au " =| o | " u " (linearity) (1)

" u+v " < || u " + || v “ (triangle inequality)

forall #,veV and xe R.

A norm describes in some abstract manner the magnitude of a function. It is a
generalization of the concept "length of a vector" familiar from vector analysis.

Namely, let V = R?, then

Ix]=0f +3 +x3)"2 =|x| 2)

for x =(x,x0,%3).

The above interpretation explains why ﬂ u—v" is often called the distance
between u and v.

C4 C.4 NORM

A linear space V on which a norm has been defined is called a normed space
(normiavaruus).

It should be noticed that an inner product (u,u) generates automnatically a norm

"u"E(u,u)” 2 This can be checked by applying formulas (C.3.1) and the

Schwarz inequality to see that conditions (1) are satisfied. In this case the
Schwartz inequality can be written alternatively as

| ) <l v] @)

One vsual measure is the so-called L-norm

1/2
ful,, =( [ a2) @

Function with the right-hand side of (4) finite is called square integrable
(nelidintegroituva), The set of square integrable functions is said to form

L,(£2) space.

A convenient problem dependent measure for certain problem class is the so-
called energy norm (energianormi) which in one-dimensional heat conduction
is simply

||u||f[Ink(‘f;“]zdxr ®

It should be noted that a norm can be taken of a quantity even when it is not a
member of a linear space; "the norm does not sec the difference".

In the mathematical analysis of the finite element method, norms consisting of
integrals over the domain under study like (4) or (5) are in common use. This is
understandable because error analyses can start in a natural way from weak
forms which themselves consist of integrals.

The seminorm (seminormi) || is defined similarly as the norm; the oanly
difference being that the first condition of (1) is replaced with

[ U | 20  (positive-semidefiniteness) 6)

The seminorm symbol is usually equipped with some subscript to discern it
from the absolute value symbol.

An example:
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2_ d'u
lul;= X I“(W] drdy-+- 0

In fact, (5) defines a seminorm unless x is demanded to satisfy a homogeneous
Dirichlet condition. (Otherwise a member u(x)=constant # 0 gives the zero

value.)

C.5 LINEAR FORM AND BILINEAR FORM

Linear form (lineaarimuoto) b(i) of neV (V linear space) is a mapping
V — R, that is, it associates a real number with any member of V with the
property

b(cu+ Bv)=ab(u)+ Bb(v) ()
forall u,veV and a,Bc R.

An example. Let V =C[a,b]. The mapping
b
b(u):jﬂ usdx 2)

where s€ L, [a,b] is given, is a linear form.

Bilinear form (bilineaarimuoto) a(u,v) of ue U and veV (U and V linear

spaces) is a mapping U XV — R, that is, it associates a real number with any
pair of members of U and V, satisfying the following properties

a(au+ﬁw,v)=aa(u,v)+ﬂa(w,v) u,wel, veV, a,BeR o
a(u,av-i-ﬁw)zaa(u,v)-l-ﬁa(u,w) uel, v,weV, o,feR

Often in applications U =V .

An example. Let U =V = C'[a,b]. The mapping

a(::,v)zjj(uv+%%]dx @)

is a bilinear form. It is also an inner product.

It should be noticed that expressions like (4) appearing in mathematics text
make usually no sense in physics unless a dimensionless formulation is used or
unless we define instead of (4) say

C-6 C.5 LINEAR FORM AND BILINEAR FORM

a(u,v)EJ-:[uv-i—cl %%] dx ()

where ¢ is a positive constant making the expression dimensionally
homogeneous.

Finally, again, linear and bilinear forms can be generated from quantities that
are not members of linear spaces.
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APPENDIX D VARIATI ONAL CALCULUS

As mentioned in Chapter 1, the earliest applications of the finite element
method were based on the variational formulation which uses a variational
principle (see Remark 2.3}, i.e., the stationarity of a functional is the starting
point for discretization. As the residual formulation is more general and
includes the variational formulation as a special case, we strictly do not need to
discuss the latter formulation and the concept of a functional at all. However,
sensitizing principles can be introduced (see Chapter 5) rather understandably
by making some use of functionals and variational calculus. In addition, a mild
knowledge of variational calculus is useful for following the finite element
literature in general.

D.1 FUNCTIONAL

Functional (funktionaali) is an operation associating a real number 17 for each
member ¢ of a set § the members consisting of functions of agreed kind, that is,

it is a mapping I7T:S— R.
Usually the mapping is effected via a definite integral. An example:
d¢

2
ng=|" 1+(3] dx (1

Here 5 is the set of functions ¢(x) defined on the x-axis interval [a,b]. The
functions must satisfy the conditions ¢(a) =« and ¢(b)= 8 were & and  are
given and to be so smooth that the integral can be evaluated.

7
¢ ¢ ($3)
11(9,)
& 2 p
o b %

Figure D.1 Mappings of three functions.

The integral clearly represents the length of a curve passing through the points
(a.) and (b,f). Figure D.1 shows schematically the mapping of three

functions ¢(x) to real numbers I7 . Because of the geometric interpretation, it
is clear that IT obtains the minimum value as ¢(x) describes a straight line.

D-1
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Functional (1) is a special case of a more general situation
b d¢
ne=|, f( x,¢,§]dx @

where the integrand depends on the independent variable x, on the argument
function (argumenttifunktio) ¢(x) and on its derivative d¢/dx. In the example

case (1) xand ¢ are missing.

A functional can contain higher order derivatives than the first, several
argument functions and several independent variables and terms from the
boundary of the domain.

When we pick a certain argument function, its derivatives can be evaluated and
it can be fed in the functional expression to give as the cutput a certain number.
The main task of variational calculus (variaatiolaskenta) is to determine that
argument function giving the functional an extremal value. The necessary
condition for this is that the functional obtains a stationary value
(stationaarinen arvo). This means that for "small" changes of the argument
function the changes of the functional are zero. The corresponding argument
function is called the stationary function {stationaarinen funktio).

From the stationarity condition so-called Euler differential equation(s) or
Euler-Lagrange differential equation(s) (Eulerin differentiaaliyhtdlt(t)) with
their boundary conditions can be derived,

If we are able to find a functional, for which the stationarity condition gives the
differential equations and boundary conditions we want to solve, we have
obtained a convenient way to perform the discretization; it can be based on the
functional.

For any differential equation set a corresponding functional unfortunately does
not exist. A notably example are the Navier-Stokes momentum equations. This
fact constraints the usefulness of the variational forrmulation.

To study the changes of functionals and functions when the argument function
experiences changes we need a way of thinking different from conventional
differential calculus. Certain notations and calculation rules necessary to deal
with functionals are considered next, In the following we borrow strongly from
the fine text by Lanczos (1970).

D.2 VARIATIONAL NOTATION

We again consider just the case of one independent variable x and one argument
function ¢(x) (Figure D.2). The function can experience two kinds of changes.
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The infinitesimal change d¢ is due to the infinitesimal chance dx of x. The
infinitesimal change d¢(x), however, is effected by the change of moving from

the curve ¢(x) to an infinitesimally near neighboring curve ¢ (%)=
$(x)+5¢(x). In variational calculus this latter type of change is considered.

The variational symbol (variaatiomerkki) & is customarily used instead of the
symbol d to tell the difference. The quantity 8¢ is called the variation

(variaatio) — in more detail the first variation — of function ¢ and the new

function ¢" is called the varied function or modified function or comparison
function (varioitu funktio).

x x+dx x
Figure D.2 Differential and variation.

If ¢(x) is the actual function representing some quantity, the generation of a
varied function means that some kind of mathematical thought experiment is
performed to obtain comparison results: what would be the outcome if instead
of --+ 7 In mechanics the most common example of the variation of a function is
probably the concept of virtual displacement. It is usuvally defined to be an
infinitely small imagined displacement, which is thought to take place with time
"freezed". This definition is seen to equivalent to the concept of the variation of
a function. (x means now the time and ¢ is one space coordinate of a particle.

Freezing time means that we move in vertical and not in horizontal direction in
Figure D.2.)

The expressions containing the argument function and the functional in
particular obtain changes due the variation of the argument function. These
changes are also called variations and the &-symbol is again used.

Table D.1 Some rules of variational calculus

(i +)=8/+8f, Variation of sum

SkfI=kd f Transfer rule for a constant

S(fi- )= -KL+f-8F Variation of product

D-4 D.2 VARIATIONAL NOTATION

S(fMy=nf"5f Variation of power function

Variation of derivative

8(d¢/dx) = d(5¢)/dx

8] fdx=[8fdx Variation of definite integral

Table D.1 contains some calculation rules of variational calculus, These rules
are valid also in the case of several independent variables. The formulas are
quite analogous to the comresponding differentiation expressions.and they are
not especially difficult to derive.

The stationarity condition of a functional [T is represented in the form
8I1=0 8))

or the variation of the functional must be zero with respect to arbitrary
admissible variation of the argument function(s). The content of condition (1) is
called variational principle (variaatioperiaate). Perhaps the most well-known
variational principle of mechanics is the principle of stationary (or minimum)
potential energy: when the potential energy of a conservative system obtains a
stationary value, the corresponding configuration of the system is the
equilibrium position.

The argument functions competing in a functional must obey some smoothness
conditions so that the functional can be evaluated and in general some boundary
conditions. In this way defined argument functions are called admissible
Sfunctions (luvallinen funktio). The boundary conditions demanded to be
satisfied in advance from the admissible functions are called essential boundary
conditions (oleellinen reunaehto). The stationarity condition gives as
consequences the Euler differential equations and the so-called natural or free
or additional boundary conditions (luonnollinen reunaehto). (The concepts of
an admissible function, essential and natural boundary conditions are used in a
similar meaning also in connection with weak forms; see Section 4.2.2.) These
features are described concisely in the following with some simple applications.

D.3 HEAT CONDUCTION
D.3.1 One dimension

Let us consider the functional
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2
H(T):J': [%k[%) —erderaTL:b (1

in which the admissible argument function T(x) must satisfy the essential
boundary condition

T=T on I'p ={a} (2)

The meaning of the notations is the same as in Section 2.1.1. We state the
variational principle

SIT=0 (3)
and find out what follows from it.

Variation gives first
pl 1. (dTV
8= Eka[ﬁ?] — 58T |dx+ 76T __, @

Rules (6), (1) and (2) of Table D.I have been employed. It should be noted that
the term "constant” means here that the quantity in question does not depend on
the argument function. By further applying rules (4) and (5) we get

2
5(4TY _54T 5T _,dT 46T ®
dx dx dx dx dx

and

811 =|

a

b| dT d6T —
[kTJ?“SST]m+q6T|x=b (6)

The next step is based on the fact that variation 87 is arbitrary. However, no
conclusions can be yet drawn from expression {6) as it contains in addition to
8T its derivative. The derivative must first be removed by applying integration
by parts. Similarly as in generating weak forms, integration by parts
manipulation is always needed in variational calculus to produce the Euler
equations. Formula (B.1.1) with g 2 kdT/dx and h28T gives

B
J’b pCUE bi(k£]5de+ 3 57 (M
dx a dx
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The variation of the functional looks now

5H=Jb A k8T s isTdet k£+6 57| _b—kEST ®
a|dx dx dx = dx

X=da

Because the admissible T must satisfy the essential boundary condition (2), the
variation 8T =T" =T must vanish on the Dirichlet boundary x=a or

87|, =0 )

X=a

Thus we are left with the condition

s[df 4T dr  _
L [a(—ka]—si|5de+[kEr—+q]5T|x=b =0 (10)

This gives the Euler differential equation

%{—k%)ﬂwo i 2121z 5[ (1)

and the natural boundary condition

k%+§=0 on Iy={b} _ (12)

Thus the variational principle (3) is equivalent to the problem posed by the
differential equation (11) and the boundary conditions {2} and (12). These are
the govemning equations of Section 2.1.1 describing one-dimensional heat
conduction.

Let us return in more detail on the logic of obtaining the Euler equation and the
natural boundary condition from the stationarity condition (10). Use is made of
the so-called fundamental lemma of variational calculus (variaatiolaskennan
peruslemma):

If the relation

_[jf(x)ﬂ(x)dX=0 (13)

where f(x) is a continuous function is valid for all continuous functions
n(x),
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f(=0 in Q=]a,bl (14)
n
a ctd b x

Figure D.3 Bubble function,

This is proved roughly as follows. Let us consider a point x =£ in the open
interval ]@,b[ and assume that contrary to what has been stated, f is there non-

zero and say positive. Because of the continuity of f there exists a neighborhood
c<x<d of & where fis positive. We now select 77 as a "bubble” (Figure D.3)

say of the type

_ (x—c)d-x), c<x<d (15)
0 elsewhere
The first expression in (15} is then positive and thus
b d
[ foamGade= | f(0mlde>0 (16)

which is against (13).

In our application the variation 8T has the role of 7. In the weak forms treated
earlier the weighting function w has had the role of n. The lemma can be
extended in an obvious way to cases with several independent variables.

Thus making use of the arbitrariness of 7 in (10) we obtain the result (11)
and (10) is simplified into the form

(k%ﬁ]&ﬂm =0 amn

As 8T at x=5 can taken arbitrarily, there finally follows (12).

The discretization by the finite element method based on the variational
formulation proceeds as follows. When the approximation

() =2 ()7, a8)
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is substituted into the functional J1(T) and the integration with respect to x has
been thought to be performed ~— it is not yet actually necessary to do this — it
becomes and ordinary function of the nodal parameters T;, T, -+~ or shortly
I7({a}). Instead of the condition 617 =0 we now demand this function lo
have a stationary value with respect to the nodal parameters {a}. System
equations are thus obtained as ordinary stationarity conditions (sce (2.1.41)

F.=

i=1,2,-- 19)

|
ol eut
1]
(]

This is considered in more detail in Example D.1.

Remark D.1. In the finite element method based on the variational formulation, il is enough
lo selecl a reasonable approximation such as (18). Given the functional, the discrete equations
(19) follow automatically "by luming the handle”. Nothing more is demanded from the
applier. This is convenient but it also means that the wider possibilities of the residual
formulation where one can make selections in addition with respect to the approximalion also
wilh respect to the weighting arc lost. In fact the weighling is produced automatically by the
trial basis functions and this means that the formulation can be interpreted as the use of the
Galerkin method. The Petrov-Galerkin type method possibility (see Remark 6.10) is not
available. [

Remark D.2. Comparison of say equation (10) for example with equation (2.1.6) shows that
we have in fact here a weak formulation corresponding to the functional and that the
variation of the argument function has the role of the weighting function:

8T =w (20

This interpretation has been made use in Chapter 5 and it will be used later also in this
appendix. It is quile obvious (hat by manipulating any correct (meaning that il corresponds to
a differential equation system wilh certain boundary conditions = strong form) functional by
taking the variation we can [inally amive at an expression like (10). Now this resull can
alternatively be generated also from the strong form as a weak formulaton. This explains thal
the variational formulation cannot produce anything, which is not obtainable from a suitably
selected weak formulation. O

Remark D.3. One may wonder how we can make interpretation (20) as the quantity on the
lefi-hand side was defined to be of infinitesimal size and we have not staled this kind of
restriction for the quantity on the right-hand side. It is true that the varation must be
infinitesimal for formulas like rule (4) in Table D.1 to be valid. Bul alter the variational
manipulations have been performed we always end up with expressions like {6) or (10) where
the variation appears linearly (in \he first power; also the possible derivatives). The same
concerns the weighting function: the weighting function always appears linearly in a weak
form. This feature is fundamental in connection with weak forms; if the governing differential
equation happens to be non-linear, this does not change the situation. After obtaining an
equation like (10}, we can scale the variation by an arbitrary multiplier without changing the
conclusions 1o be drawn (Euler equations and natural boundary conditions). So at this phase
we can even consider the multiplier to be unbounded and thus we can equally well consider
the variation to be here a finite quantity {or the weighting function an infinitesimal quantity).
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This line of thought is seen Lo be valid also for finile dimensional weighling used to obtain the
syslem equalions: we usually say thal in the Galerkin meihod we lake W to be the shape
function ;. However, an equivalent equation is seen to be obtained by using the weighting

function kN; where k is an arbitrary constant. O

Example D.1. We derive the discrete finite element system equations corresponding to
functional (1):

2
|1, (dT
nms= L [Ek(ﬁ;] —s'I‘:Id,t +q7]_, (a)
Substitution of the finite element approximation (18):

F(5)= S, (97, ®

transforms the functional to a function
s 1, (dFY
n([a|)=L Ek(a] -sT dx+§TL=b
_Ib|:1 ( ]-—szN }d.r+qz

A typical system equalion is oblained by differentiation this wilh respect to a nodal
parameter a; =T, and by setting the resull equal Lo zero. Differentation gives first

(c)

x=b

all (e[l _dT @ dFf oT aT
F=22 (" 2k de +F——
a1 =l [2 de oT; dx sar,-] T,
J’ (k d—Tﬂ-sN ]dx+§N;[x=b (@)
Differentiation has been brought inside the integral and use have been made of the
formulas
A _y 2o _an ©
aT; 3T dx  dx

obtainable from (b). The system equations are thus

b dN;  dF - )
F= a—a-kadx-f Nisdce+ NGl =0 i=1,2,,n, )

These are exactly the same obtained by the Galerkin method (see (2.3.5)) and thus thers
is no need 1o develop them again in more detail.

D.3.2 Two dimensions

D-10 D3 HEAT CONDUCTION

Let us consider the functional
ar7axY [k kg {0770
LIOTRY R R N Il N PR
aT13y| |ky k,, |l0T /0y 2l

+5er hT3dr - jﬂ sTAQ + J'FN gTdr - er hT_TdIl (21)

in which the admissible argument function 7'(x,y) must satisfy the essential
boundary condition

T=T on Ip (22)

This is roughly the most general formulation in connection with linear heat
conduction we can devise. The notation is the same as in Chapter 3.

Remark D.4. In a quadratic form (nelidmuoto) like

3T 19x| [kee ko |[3T 10 arar , arar
m kot ky Sy

aT/dy] |k, ky, |(0T /0y dx dx dx dy
or aT oT aT

k ——tk, 23
+yxay3x+”ay8y @3)

the symmetry relation &y, =k, can be introduced without loss of generality. If originally
kyy # kg, we can put

R = k0 = (RO + k)2 (24}

where the meaning of the notations is obvious. The value of the quadralic form is seen to
remain unchanged. O

The variational principle

6IT=0 (25)
is found to give the Euler equation

d T aT ), o ar aT
Ok Sk, | - ke, |+cT-5=0 in £ (26
ax[ *3x "ay] ay( "3x ay] =0 e 9

and the natural boundary conditions

aT aT oT T
n’(k"‘$+k*”a_y)+n”[k”$+k”ay]+q =0 on Iy (27)
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a7 ar orT aT
n_{kn.—2§+kxy§]+ny(kyxa+kw ay]+h(T -T.)=0 on I'y (28)
Equations (26), (22), (27) and (28) describe correctly heat conduction in an
anisotropic medium with the reaction terrn included. However, convection
cannot be introduced vig the variational formulation. The reader may
experiment say by adding a superficially promising looking term like TudT /dx
in the domain integrand to see that nothing useful is achieved. Literature
contains rules telling when a corresponding variational principle exists for a
problem described by a differential equation formulation. For linear problems
the system must be self-adjoins (itseadjungoitu), Crandall (1956, p. 210). See
also Section D.4.1.

D.4 LEAST SQUARES FUNCTIONAL, D-C-R EQUATION
D.4.1 One dimension

We will consider the one-dimensional steady D-C-R-equation (see Appendix A)
in the form

dx dx

i[ d‘f’) dx(¢)+c¢ F=0| in @=]asb[ 1)

with the Dirichlet boundary conditions

at x=a
at x=>b

We form a least squares functional similarly as explained in Section 2.1.2. To
shorten the expression we define

@

lIl

R(9)=L(9)- =_( d¢)+a(u¢)+c¢ =0 @)

dx dx

The least squares functional is (cf. (2.1.39))

-1, waa

We consider boundary conditions (2) as essential so no contribution from them
is needed in (4). Similarly, no weight factor is needed as there is now only one
term in the least squares expression (see Remark 2.6).

D-12 D4 LEAST SQUARES FUNCTIONAL

We will derive the Euler equation and the natural boundary conditions due to
the variational principle 8 IT = 0. The variation is with the help of Table D.1

§r1 =% L; 2RSRAE = j'ﬂ RERAS )
Further
df  dép
SR—dx[ dx] £ (ub9)+ o8 =L(59) ©)
and thus
811 =[  RL(6¢)dQ M

To deduce the Euler equation we have to integrate by parts. First,

I R— dM)dQ ﬁoﬂdg—bm@
2 dx dx a dx )
dR
[, Ra(u5¢)d.(2 =-fa 1§ dQ +[7 Rusp
Second,
dR _ d&¢ dR ¢ _dr
jﬂ—D—dQ jg (Da]6¢d£2+aDaé‘¢ (9)
Collecting all terms gives
d dRY 4R
5 =J'ﬂ [—(-—Daj-u—d—x+cﬁ’]8¢d9
a[ d§+D—6¢+Ru5¢} (10)
We denote
“(p)=2(_pl¢)_ , 4¢
L(cp)_dx( Dde udx+c¢ (1

L' is called the adjoint operator (adjungoitu operaattori) of L. (If L' = L, the
operator L is called self-adjoint. Here convection makes the operator non-self-
adjoint.)
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As 8¢ =0 at x=qa and x=5 due to the essential boundary conditions (2), the
stationarity condition has obtained the form

* dd
[L(R)6sa2-|. DRE¢= 0 (12)
This gives the Euler equation
L'(R)=L(L($)-f)=0 in @ (13)

and the natural boundary condition
R=L(¢)-f=0 on I ={a,b} (14)

It is thus seen — as mentioned in Remark 2.7 — that the least squares method
produces equations, which are not directly those of the differential equation
formulation although the exact solution @{x) is clearly seen to satisfy the set

generated,

For our purposes form (7) is the most useful, If we make the interpretation
d¢ = w we obtain

[, L(w)ra2 =0 (15)

which we will call the least squares weak form (pienimmin nelidn heikko
mueto). This is in detail

i) o]

-[%(-D%—]-r%(ucpﬁap—-f]dﬂ =0 (16)

The underlined terms are essential in sensitizing convection dominated flows. A
preliminary explanation is shortly as follows. Let us assume for simplicity that
u is constant. The underlined terms multiplied together produce then the term

dw 249

RS (17

in the integrand. This is mathematically of the same form as the integrand term

dw , dT
ey Sak 18
I e (18)
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in the pure diffusion problem weak form (see for instance (2.1.28)). Quantity

2 can thus be interpreted as a positive diffusivity (or in particular as a thermal
conductivity). Qualitatively speaking we can through the least squares weak
form inject diffusion into the formulation which can be employed to damp the
oscillations found in the standard weak formulation.

D.4.2 Two dimensions

We consider the two-dimensional steady D-C-R equation (see Appendix A) in
the form

R()=L(#)-1 =

d dp) o a¢l d d .
| D= |+—| -D—= |+ — == —-f= £
ax( Dax]+ay{ Day)+ax(u¢)+ay(v¢)+c¢ F=0| in £ (19)

Isotropic diffusivity has been taken as the idea can be seen already in this case.
No attention is paid on the boundary conditions as they are not present in the
sensitizing terms.

The least squares functional
1 p2
H(¢)——2-_[QR de (20)

leads again to the least squares weak form (see equations (4) and (15))

[o L(w)RaQ2 =0 (21)

This is in detail

d dw) 4 ow) d 0
fﬂ {Ej(_na]*a_y(_pa_y]*ﬁ("”) +$(vw)+ cw]-

d o¢y 4d ag ) 0 d
| =D=—— |+—| —D— [+ +— +cp—f |d2=0 22
[ax[ Bx] ay[ ay) 5 ) ay("") i 2
The underlined terms multiplied together give the term (# and v have been
assumed for simplicity to be constants} essential in convection dominated
flows:
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dy ox oy
_[owlox Trun w[9¢/3x .
- dwidy| |vu wvv||d¢/dy 23)
In the pure diffusion weak form (say equations (3.3.1) and (3.3.2) with the latter

replaced by an anisotropic thermal conductivity) the integrand corresponding to
diffusion is

dof, BT ar\ el O, o
x| ox Yay| oyl Yox ”By

awldx|T [ kx key |[OT /0
= (24)
ow/dy| |k, k,, ||0T/dy

Comparison of (23) with (24) thus shows again that the least squares
formulation produces diffusion now with an anisotropic diffusion matrix.

a—vz(uu@i+uv§2J aw( a—(t'-+vv ¢)

D.5 GRADIENT LEAST SQUARES FUNCTIONAL, D-C-R EQUATION
D.5.1 One dimension

The goveming differential equation is

R(g)=L(9)- :—( d¢] —(up)+cp—-f=0 in Q=]Ja,b[ Q)

dx dx
and we need to pay no attention to the boundary conditions. To stabilize
oscillations due to large reaction, the least squares formulation of Section D.4 is

of no help. The way to proceed is to generate a new differential equation by
differentiating both sides of (1) with respect to x:

dR_d ;o df _d2( o) & d gy 9
dx—d.xL((p) dx—dxz[ dx}-dx (u¢)+dx(c¢) dx—o 2)

We now form a least squares functional from this:

n (¢)=-;- R (%ng @

The variation is
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dL
517__]' 2@5@_(1 ﬁda_RdQ=J' ﬁ_@@dg (4)
9 dx dx 2 de dx
Again the interpretation 8¢ = w is introduced to give
drL(w)dR
———dQ=0 5
o= o (5)

which we will call the gradient least squares weak form (gradientti pienimmiin
nelitn heikko muoto). This is in detail

[ 2( ‘z] (¢)+—(¢) }df) 0 6)

dx

‘The underlined terms are essential in sensitizing reaction dominated cases. The
explanation is analogous to the one given in Section D.4.1 in connection with

convection. Quantity ¢? can be interpreted as a positive diffusivity (or thermal
conductivity).

D.5.2 Two dimensions

In two dimensions the goveming differential equation (D.4.19) can be
differentiated in two independent directions to produce two new equations:

oR oR
—=0, —_— in 2 7
dx dy " 54

The most general least squares functional corresponding to this is
1, [9R/3x|T [T 7wy |(9R/Bx
11(9)=] i~ i@ ®
2°92 |0R/dy} |1, T, [{OR/DY

The weight factor matrix (painotekijirnatriisi) or here the sensitizing parameter
malrix

T rxy
T|= 9
[ ] [Tyx Tyy] ®
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is taken to be a symmetric. Symmetry does not prevent generality (see Remark
D.4). The election of the elements of the sensitizing parameter matrix is
discussed in Chapter 7.

Taking the variation and going through the details similarly as in the previous
section gives the gradient least squares weak form (see Remark D.5)

aL(W /ax xx T,xy aRlax
Q=
.[Q {BL(w !By} l: ‘cw:HaRfay}d 0 (10)
in which
oLw) 9wy, (0w
9x  ox? ox | axdy oy
92 d d
+§(HW)+axay (UW)‘FEX' cw)
dL(w) 8? awY) @° ow
I | pZZ |+ X -p=—
dy dydx ox +ay2 dy
2 2
+ayax(uw)+aaz(vw) :y (cw)
2
rR@)_ @ ( 39, 9 ( 98
ox 8x2 Do axay dy

<u¢)+ (v¢)+—( ¢)—ai

mzi _pd), ¥ 0
3y ayax(Dax)+ z Day
2
a—

82 2
() - (v)+~ (¢) o

(11)

" avox

The underlined terms are essential in reaction dominated cases. Multiplying
them together gives the integrand contribution (constant ¢ has been assumed for
simplicity)

awidx)T| ¥t €1y |[9p/0x -
dwldy| |, c'r,, |(0¢/dy

yx
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Again a diffusion type term has emerged.

Remark D.5. The derivation of equation (10) from expression (8) with matrix notalion can
be performed as follows. Let us denote the integrand in (8) as

=171} (13)
The square matrix does not depend on ¢ . The variation is
§1=8{1"T1+(1"1180)=28(3"[ 1(} (14)

The last equality follows from the fact thal the two lerms in the sum are scalars
(1x 1-matrices) and the value of a scalar does not change in transposition. Thus

(0T0s0) = s (7Y =800 (1)

Here use is made of the symmetry of the square matrix. 0

REFERENCES

Crandall, S. (1956). Engineering Analysis, McGraw-Hill, New York.
Lanczos, C. (1970). The Variational Principles of Mechanics, 4th ed., Universily of Toronto
Press, Toronlo.



APPENDIX E FORMULAS FOR MAPPED ELEMENTS
E.1 TRANSFORMATION OF INTEGRALS

Finite element calculations consist in practice of evaluation of definite integrals
in the reference element space. This means that formulas must be available for
transforming integrals from the global space to the reference space. The
necessary formulas are given in the following mostly without proofs. The theme
is a part of classical mathematics. An excellent Finnish reference is Viisili
(1960).

E.1.1 One dimension

Table E.1 One dimension

e S 1)
a dx b x ,

a d& ¥ &
de=MdE 2)
b Iy
! rac=[" rmag G)
M =dx/d€ 4)

Mapping (1) in Table E.l transforms a differential line element d& of the
£-axis to a differential line element dx of the x-axis:

dx
dx=2aE =M (£)d¢ )

The coefficient M might be called scaling or magnification factor (suurennus-
tekiji) giving the ratio between the lengths of the line elements. Let us consider
the integral

[} 7 (x)ax @)

with x as the integration variable. Remembering the meaning of the definite
integral as the limit of the Riemann sum 3, f(x)Ax, we realize that this sum can

be formed also in the &-space just by multiplying the line elements AE by the
factor M =dx/d& . The transformation formula for integrals is thus

E-1

E-2 E.l1 TRANSFORMATION OF INTEGRALS

Jof (R)ax= 7 £ (=€) (€)ag ®
or shortly formula (3) of Table E.1.

x
b ]

Figure E.1 Mapping x=x(£).
In the isoparametric mapping where
x=x(§)=ZN;(£)x @

the normal requirement is that the mapping is one-to-one or bijection (ki#ntien
yksik#sitteinen, bijektio). If we consider the mapping as a curve in the
£x-plane (Figure E.1), the graph must be either ascending or descending in the

interval [a’,5]. In other words, the derivative dx/d& must not change its sign;

the solid line in the figure. Otherwise the reference element can partly fold on
the x-axis or even map outside the interval {a,b]: the dashed line in the figure.

For instance, let the nodes of a four-noded reference element foliow each other
in the normal order 1, 2°, 3°, 4° in the positive direction of the &-axis. Let us

now put the nodes in the global clement, say in the order 1, 3, 2, 4 in the
positive direction of the x-axis. The corresponding mapping will obviously not
be bijective.

The shape function derivative in global space can be solved from the equation

dNi{e) _dv, dx

A& dx dé ©)

produced by chain differentiation (cf. formula (3.2.13)). If dx/d§=0 at a
certain point — compare the dashed line in Figure E.1 — formula (5) gives an
infinite value for the derivative dN;/dx. This is of course not admissible in the
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approximation of smoothly behaving functions. However, the possibility of
producing infinite derivatives has been employed with profit in two and three
dimensions in fracture mechanics where certain derivatives at the crack tip are
known to have infinite values.

The use of isoparametric elements in one dimension is of course not in principle
necessary if the global elements are not curved. Lagrange shape functions can
be easily generated for any however nonuniform node geometry in the global
space. The presentation above should be considered as an introduction in a case
where some features of the mapping can be easily visualized.

Example E.1 The length ccordinates I, and L, were described in Seclion 2.2.1. We
will derive the closed form integration formula

!t

(a+ﬂ+l)!(x2_x‘) @)

T 2 N
-L’[ L‘ Lq dx B
where o and £ are integers and 0!=1 This formula is convenient in some analytical

finite element calculations.

A 2 U 2
x o odx xzox 0 df 1 £€=1,
Figure (a)

We take £ =L, as the independent natural coordinate for the reference element (Figure
(a)). The length coordinates L; and L, are also the shape functions &, and N, for a
two-noded line element. The mapping

2
x=ENixf = lel ‘i"LzII =(1—LQ)X1 +sz2

i=l

=x+l(xn-x)=x+5(xn-x) (b}

which maps the £-axis interval [0,1] onlo the x-axis interval [x,x,] can thus also be
considered as an isoparametric mapping of a two-noded line element. Here the
magnificalion faclor

dr
M=-‘E=.r2—x1 {c)

which is the element length, does not depend on position. According to formula (3) of
Table E.1

J':lz l:rLng=J.C:L$L€ (12 _Il)d's =(_'|:2 _Il),[(;gﬂ (1_§)a dé (d)

We make use of the general formula

E-4 E.1 TRANSFORMATION OF INTEGRALS

@y g, mlial i+l
Joem (a-1) dr—_(m+n+l)!a (€}

which can be proved by integration by parts. When this is applied in equation {(d) we get
the result (a).

E.1.2 Two dimensions

Table E.2 contains the essential formulas needed in applications. The meaning
of the notations should be rather obvious.

Table E.2 Two dimensions

(1)

dA=MdA (2)

| raa=] rman’ 3)

M =det[J] @

N I(x,y) _ dx /9 ax/arljl

! [acé,n)} [ay;ag dy/am ®
Formula (3) of the table expressed in more detail is

[ FGxypa=[ £ (x(&mn).y(Em))M (€.n)da (6)
or

[ fxy)axdy= [ f(x(€n).y(En)M (E.n)dsan Y

The figure in the table shows how a rectangular differential surface element dA’
is mapped onto a trapezoidal differential surface element dA. Thus, if we write
according to formula (7) formally dxdy = M d£dn, it must be realized that this
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does not mean that two rectangular differential elements are mapped on each
other.

In the isoparametric technique where

x=x(§.n)=EN;(€.n)x
y=y(En)=ZN;(E.m) ¥

the mapping must again be a bijection for the same reasons as described in the
previous section. The right-hand side of formula (4) in Table E.2 must be put in
the general case inside the absolute value signs. Here we have assumed that the
mapping distorts the domain so mildly that the angle between the coordinate
lines 7 = constant, £ =constant in the xy- plane measured from the former line

(8

in the anticlockwise direction remains in the interval (0,180%). In this case the
determinant det[J] of the Jacobian matrix [J] (see Section 3.2.4), called the

jacobian determinant or shortly the jacobian (Jacobin funktionaali-
determinantti) remains positive, provided the images of the line elements dé

and dn do not shrink to zero lengths.

In numerical integration the value of the Jacobian det[J] is evaluated at each

integration point. The program should contain a test, which stops the run if
det[J]1=0 at some integration point and give the element in which this
happens. In this case the element is too distorted. This test can also detect
geometric errors in the mesh due to erroneous input data, If the form |det[.] ]| is

employed, more freedom in element nodal numbering order in the global space
is achieved but the test for possible errors is lost.

Literature contains some rules to avoid too strong distortion. For instance, the
angles between the sides of a four-noded quadrilateral should be smaller than

180°. The side midnodes of a nine-noded quadrilateral should situate roughly in
the midpoint area etc.

The position vector in the xy-plane is

r=r(&.n)=x(&.n)i+y(.n)j 9)
and its differential is
dx dx . [y dy .
dr =| —- Zled - —_
r [a§d§+an n):+[a§dg+andn]1 (10)
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The derivation of result (4) of Table E.2 can be based on this formula by
studying how the differential vectors drf =d£i and dry =dnj in the £n-plane

are mapped to differential vectors dry and dr; on the xy-plane.

Example E.2. The surface coordinates L, L,, I3 for triangles were described in
Section 3.2.1. We will derive the closed form integration formula

arB __ alfiy! H
IAL‘LQIjrdAd(aul-ﬁ«:-y-rz)!ZA ©

This is a direct extension of the comresponding formula (a) in Example E.1 conceming
length coordinates. A is the area of the triangle.

3

Figure (a)

We selecl as the independent natural coordinates E=1L, and n =1y (Figure (2)). The
mapping from the £n-plane on the xy-plane can be thought as an isoparametric
mapping of a three-noded element:

x=EINx =L+ Lo thxn=(1-{-n)n+in +1x5

(b}
y=INyi =L+ Ly, +Lyy=(1-E-n)n +Ey 41
The Jacobian matrix
ox/o9E dx/o Xy~ X  X3—X
[J]=|: 3 ﬂ]=[z 1 X |:| ©
dgy/of dyion]| [(m-» n-n
and similarly the magnification faclor
1 0 0 1 1 1
-8 H—H
det|J|= =y m-x xm-x|=slyg o xn[=2A {d)
(/] Vo= =W 1 a2 KBTh 1 2 8

N 2h ¥»BoxH o Y2 N

are here constants with respect to position, The 2x2 delerminant has been expanded to
a 3x3 determinant to get a more symmelric form. Some delerminant manipulalion rules
have been made use of. (For instance, the value of a determinant is not changed if a row
multiplied by a constant is added (o another row.) According 1o formula (2) of Table E.2,
dA/dA’=M and because M is a constant, the ratio of the finite areas A and A’ is also the
same: A/A’=M =dei[J] and as A"=1/2 we have A=det[J]/2. This explains ihe last

equalion (d).
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Now (see Figure (a))
[, g2 =24 £ [L:'cnf (1= -n)" dn]dﬁ (©)

Formula (¢) of Example E.1 is applied twice:

R .

[, 5L ea= ZA%L:H’ (1-£)*e+ g

plat Bi{y+a+l)l  alfly!
(}'+a+l)!(ﬁ+y+a+2)!_(a+fj+y+2)!2A (g)

For the triangle, it is possible 1o express the area coordinates in closed form in the global
coordinates. We can wrile the equations

l=L+Ly+ 1Ly
x=x|L1 +X2L2+13L3 (h)
y=nL+yly + »l,
the first on being the constraint on the area coordinates and the second and third the
isoparamelric mappings. In matrix nolalion:
| 1 1L
X=X Xy X LJ_ (i)
) In on wnilb
and the solution is, say using Cramer’s rule,

1
L =ﬂ£"2}’3—xz)'2+(y2")'3)x+(x3~x2)y] 0

The dots mean that the formulas for L, and Ly are obtained by cyclic parmutation in the
order 1, 2, 3 of the indices. These formulas are given also in Section F.2,1,

E.1.3 Three dimensions

The contents of Table E.3 correspond to that of Table E.2 in three dimensions.
Again the mapping should distort the domain so mildly that the images of the
differential line elements d&, dn, d¢ still form a right-handed system. The

Jacobian det[J] remains then positive. The isoparametric mapping is of the
form

E-8 E.1 TRANSFORMATION OF INTEGRALS

x=x(€,n.8)=ZN,(&.1.8)x
y=y(Em.0)=EN:(E.n.C)w (405
z=z(§.n=§)=2Ni(‘:sU'C)Zi

Table E.3 Three dimensions

4 xﬂ(?ﬂ.i’) W v
dv »=y(,10.6) (H
@/ z=2z(5,1,%) \@
z 4
y

al

x 4
dv =mdv’ (2)
), £av=|, smav : ®)
M =det[J] ®
XNni) | _
y=| 20 | _la a8 ayan ayaC s)
[a(é.n.g“)] s

dz/0& 0dz/dn 07/98

E.2 TRANSFORMATION OF INTEGRALS WITH DIFFERING NUM-
BER OF SPACE DIMENSIONS

E.2.1 One independent variable

Table E4 is concerned with the mapping of a line to a space curve. In
mathematical terminology equations (1) in the table give a parametric
representation of the curve and £ is called the curve parameter.

Let us measure the curve arclength 5 in the direction of increasing &, that is,
from point A towards point B. In principle we need to evaluate integrals
| f(x(8), y(s),2(s))ds or shortly [ f(s)ds. When using the finite element

method the integrand is however approximated so that the integrals to be
determined are finally of the type

[ £(&)as ()
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Thus no explicit dependence s=s() is needed; it is enough to have the
relationship ds =M (£)d&. It has been given in the table. The transformation
formula (3) of the table is thus in more detail

B B’
[ f@ds=[  r&IME&es @
Table E.4 Line to three dimensions

B
R S (9]
" y=y(&) )

z z2=z(6)

y + = {
’ d ’

. A A 4 B’ ¢
ds=Md<¢ )
2 ras=I7 rmac ®
M =M +M3+ M) @)
M, =dx/dé, M,=dy/df, M,=dz/dé (5)

Table E.5 describes the mapping of a line to a plane curve. In applications the
expression for the unit normal vector n{€) to the curve is often needed. When

using the formulas of the table, it should be noted that n has been directed here
90" to the anticlockwise direction from the increasing direction of the variable

£.
In the isoparametric mapping

r=x()=2N, (€)%

3
y=y(E)=ZN: ()
and for instance
M.\’ =EdN,-Id§-x,-
1G]

M_V =Ele' /dn’y!
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Table E.5 Line to two dimensions

B
:1#__‘_ x=x(&) )
ds y=y&) \
y I o ]
’ d ’

fo A A 13 B &
ds=Mdé (2)
B B’
JA fd¥=.[A,fMd§ 3)
n=nxi+nyj=%i—%j @)
M =(Mf +M§)”2 (%)
M, =dx/d, M,=dy/dE (6)

E.2.2 Two independent variables

Table E.6 is concerned with the mapping of a plane domain to a space surface.
The variables £ and 7 can be called in analogy with the discussion in the

previous section as surface parameters. A differential plane element dA” is
mapped onto a differential surface element dS . In the formulas of the table the
unit normal vector n has been directed so that the images of d&, dn and the

vector n form in this order a right-handed system. In practice integrals of the
form | s f(&,mdS are needed and formula (3) of the table means in detail

[ fEm)as =], f(En)M (& m)aa §)

Sometimes it is necessary to generate a local rectangular coordinate system at
certain points of the surface so that one axis — for instance z’— coincides with
the normal direction and the two remaining — x* and y* — coincide with the
tangent plane. The treatment is based on the fact that dr/d¢ and dr/dn are

seen to be tangent vectors to the surface and they thus span the tangent plane.
Here r means the position vector of the surface:

r=r(§,n)=x(&.n)i+y(&.n)i+z(&. Mk (6)
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In the isoparametric mapping

x=x(E.n)=ZN;(&.n)x;
y=y(En)=ZN;(E.n)}¥
z=2(§:m)=ZN;(E.m)z

Table E.6 Plane to three dimensions

M

ds=MdA’
Joras=), ruod

&M

x=x(&,M)
y=y&.m
z=z(£,7)

. q M
n=nitnjtnk =7x

- d(z,x) |_
y—dct[a(g';)]—det

Max/aé
=de

M
4y
M

M=MI+Mi+M2H)?

M, = dctl:a(y’ ZJ}=det

Faylaf
| 9z/9¢
[02/0&
_a.rfa§

[9y/9¢

jrMey
M

dy /97 |
dz/97n |

0z/07 |
dx/0n |

axla?f

dy /97 |

(1)

2
&)

4
&)

(6)
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APPENDIX F SHAPE FUNCTION INTEGRALS

Some ready evaluated shape function integrals for simple elements and simple
geometries are given below to ease hand calculations.

F.1 ONE-DIMENSIONAL ELEMENTS

F.1.1 Linear line element

i l.\
— N =1-&
1 x 2
E=x/l 1 m=t
Figure F.1 Linear element and shape functions.
Some integrals:
2 1
f N;Njdx =~
611 2
-1
I 2T
2|1-1 1
|, A 1] 1 <1
ON‘-dex—I[_l ) ] (0

The dash refers to differentiation with respect to x. The left-hand side indicates
to an element of the right hand side matrix. Index i refers to row and index j to
column.

F-2 F.1 ONE-DIMENSIONAL ELEMENTS

F.1.2 Quadratic line element

£
§=xll

Ny =1-3E+ 282
LN =g
_aA Ny=—E+282

Figure F.2 Quadratic element and shape functions.

Some integrals:

4 2 -1 [-3
I sy |
[NiNaxe—i 2 16 2 IOMdex--g —4
-1 2 4 |1
’ AR 2 all
!
[NiNjxe =4 -8 4 IN,-’N'-de— —8
L ot gy
1 21
4'—1 2 -1 .
2 a0 l 114 "’
NiNjaxe—1 0 0 0 [N NFdxe rib
1 2 1]
{ ! ’_1 i
[ 4y [ Nidx240 jozv,.'dx

4 -1
0 4
-4 3 |
-8 1]
16 -8
-8 7]

2)
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F.2 TWO-DIMENSIONAL ELEMENTS

F.2.1 Linear triangular element

A 2=

=—(a, +hxtey)
x (i= k,l )
Figure F.3 Linear triangular element and shape functions.

The quantities a, b, ¢ are obtained by applying cyclic permutation in the order &,
[, m to the following formulas:

A =X ¥m — XYl
by =Y~ ¥m (1)
Cp = Xy — X

Some integrals (i, j=k,[,m):
J’NNdA —A (=90, =%A (j#i)

J NN LdA= 6bj J-N,Njyd.A

1
j Ny oNj A == biby

@)
[ NialV; dA-—,,

JAM.ny.YdA =a(}f Cj
1 1
JNida=24 J’AMJM:E@ IAN

A is the area of the triangle. The notations ,x and , y refer to partial differen-
tiation with respect to x and y.

F4 F.2 TWO-DIMENSIONAL ELEMENTS

F.2.2 Bilinear rectangular element

’ 3
4 4 3
b
1 2
1 a 2 x N =(1-51-m)
= 1—-
E=xla _i( U
n=x/b =5y
Ny=(1-5)n

Figure F.4 Bilinear rectangular element and shape functions.

Some integrals:

421 2
INNdA ab2421
3611 2 4 2
212 4
'—221-1'
[ NN, das B2 2 1 1],
12l-1 1 2 2|
_~112-2_
(2 -1 1 27,
-1 2 2 1|
JN‘N”dA__ -1 -2 21
2 -1 1 2]
1 1 -1 -1
[ Nl A2~ -bbd
-1 -1 1 1
1 1 -1 -1

&)



F.2 TWO-DIMENSIONAL ELEMENTS

1
[ NN qaalft 11 -
VR A AT § RS I S|
1 -1 1 -1
O
162 2 1 -1
. 3 & _
IAN”‘NJ-‘M 6al-1 1 2 =2
i ol w9
2 1 -1 =2
1 P e |
3 =25
R 6b -1 2 2 1
N L )
1 -1 -1
ab |1 b|1 al-1
_[ANidAéT] J.AN,-JdAEE 1 LN,-'),dAEE
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